Fig. 2 | Nature Communications

Fig. 2

From: Gut microbiome-derived phenyl sulfate contributes to albuminuria in diabetic kidney disease

Fig. 2

Pathophysiological features of PS in vitro and in vivo. a Plasma levels of PS, PCS; IS, and TMAO in 11-week-old db/db mice in control (Ctrl; n = 5) or PS (50 mg/kg/day for 6 weeks, n = 6). b Plasma albumin and Cr levels before and after administering PS for 6 weeks to db/db mice. Control (white circles, n = 5) and PS-treated (black circles, n = 6) groups. c Glomeruli in db/db mouse with or without PS for 6 weeks. Bar, 80 μm (PAS) and 1 μm (EM). d Cell toxicity analysis (n = 6). e Cellular GSH level (n = 6). f Bioenergetic characterization of cultured human podocytes in terms of oxygen consumption rate (OCR). n = 4. g PS, albuminuria and Cr levels before and after administering PS for 6 weeks in HFD-KKAy mouse (6 weeks old). For PS, n = 3 (HFD-control) and n = 4 ((HFD-PS). For Cr and albuminuria, n = 4. Wilcoxon (PS) and Student’s t test (Cr and albuminuria). h Histological images of PAS and electron microscopic analysis of podocytes from control (Ctrl; top row) and PS-treated (PS; bottom row) groups of HFD-KKAy mice. Scale bar = 200 μm for PAS and 1 μm for electron microscopy. The effacement of podocytes (white arrows) and GBM thickness (yellow arrow heads) are shown. The inflammatory area (Elastica Masson) and macrophage infiltration (F4/80 immunostaining) around the vascular area are indicated (black arrow heads). Scale bar, 80 μm. i PS levels in eNOS knockout mice with or without diabetes (n = 5). j Histological examination stained with PAS of eNOS knockout mice with or without diabetes. Scale bar, 50 μm. *p < 0.05 vs. control according to Student t (a, b, d, e, I, j) or Tukey’s test (f). Source data are provided as a Source Data file

Back to article page