Fig. 1 | Nature Communications

Fig. 1

From: Measurement of carrier lifetime in micron-scaled materials using resonant microwave circuits

Fig. 1

Overview of the proposed technique. A radio frequency (RF) source outputs a continuous wave (CW) microwave signal at the resonant frequency of the split-ring resonator (SRR) through port 1. A pulsed laser excites electron-hole pairs (EHPs) in the material under study (an indium arsenide antimonide pixel in this case) loaded within the split gap of the resonator. The EHPs modulate the CW signal on the microstrip busline, whose envelope function is detected by a Schottky diode RF detector. The modulated signal is then sent to a high-speed oscilloscope synchronized to the laser repetition rate. A micrograph shows both the pixel and a thin layer of insulating hexagonal boron nitride (hBN) loaded into the SRR; the scale bar in the image is 20 μm

Back to article page