Fig. 6 | Nature Communications

Fig. 6

From: Different soluble aggregates of Aβ42 can give rise to cellular toxicity through different mechanisms

Fig. 6

Influence of the different sequence regions of Aβ42 on its toxicity mechanisms. a We used five rationally designed antibodies that target different epitopes of the Aβ42 sequence. The antibodies DesAb3–9 and DesAb36–42 bind to the N-terminal and C-terminal regions of Aβ42, respectively. Representative experiments showing the concentration of each antibody (x-axis) added to aggregates present in solutions at b and d 20% and c and e 30% sucrose and the reduction of aggregate-induced toxicity. The error bars represent the standard deviation among the field of views (b, c) and among the well (d, e). Antibodies that target C-terminal regions of Aβ42 are more effective at reducing the membrane permeability induced by Aβ42 aggregates. Antibodies that target N-terminal regions of Aβ42 are more potent in reducing the inflammatory response induced by Aβ42 aggregates (d, e). As a positive control, we used lipopolysaccharides (LPS), which is known to induce TNF-α production in microglial cells. For each case, P values are calculated using two-sample t-test to compare the inhibition by most N-terminally binding antibody (DesAb3–9) and C-terminally antibody (DesAb36–42) at their highest concentration (two biological repeats n = 2, the lines are simply guides to the eye). Source data of be are provided as a Source Data file