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Clonal architectures predict clinical outcome
in clear cell renal cell carcinoma
Yi Huang1,2, Jiayin Wang1, Peilin Jia3, Xiangchun Li4, Guangsheng Pei3, Changxi Wang2, Xiaodong Fang 5,

Zhongming Zhao 3, Zhiming Cai6, Xin Yi2, Song Wu6 & Baifeng Zhang2

The genetic landscape of clear cell renal cell carcinoma (ccRCC) had been investigated

extensively but its evolution patterns remained unclear. Here we analyze the clonal archi-

tectures of 473 patients from three different populations. We find that the mutational

signatures vary substantially across different populations and evolution stages. The evolution

patterns of ccRCC have great inter-patient heterogeneities, with del(3p) being regarded

as the common earliest event followed by three early departure points: VHL and PBRM1

mutations, del(14q) and other somatic copy number alterations (SCNAs) including amp(7),

del(1p) and del(6q). We identify three prognostic subtypes of ccRCC with distinct clonal

architectures and immune infiltrates: long-lived patients, enriched with VHL but depleted

of BAP1 mutations, have high levels of Th17 and CD8+ T cells while short-lived patients with

high burden of SCNAs have high levels of Tregs and Th2 cells, highlighting the importance

of evaluating evolution patterns in the clinical management of ccRCC.
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C lear cell renal cell carcinoma (ccRCC) is one of the most
lethal forms of urogenital tumors and over 140,000 cases
are estimated to die of ccRCC annually all over the

world1,2. To understand the etiology of ccRCC, genetic alterations
in ccRCC had been screened in large cohorts of patients pre-
viously3–8. These large-scale studies revealed that the genetic
landscape of ccRCC is characterized by the high prevalence of
somatic copy number alterations (SCNAs) and a relatively low
burden of somatic substitutions3–8. Arm-level SCNAs including
del(3p), amp(5q), amp(7q), del(9p), amp(12p) and del(14q) were
found to affect 45–85% of ccRCC patients and several driver
genes including VHL, PBRM1, SETD2 and BAP1 were observed
to be mutated in 10–50% of patients. Integrative analysis of
the genetic and clinical information demonstrated that certain
SCNAs or mutated driver genes could be potential prognostic
markers9. For instance, BAP1 mutations, mutually exclusive with
PBRM1 mutations, can predict poor clinical outcome in ccRCCs
independently10–12. The development of human cancers is driven
by the stepwise accumulation of somatic alterations and muta-
tions acquired at different stages of tumor evolution are likely
to be associated with different clinical outcomes13. However, the
temporal order of acquiring the somatic events during ccRCC
evolution as well as their potential clinical effects had not been
fully studied.

Accumulating evidence suggested that ccRCCs had startling
intratumor heterogeneity (ITH) which may have great influence
on tumor metastasis and therapeutic responses14,15. Multi-region
exome sequencing of several ccRCC patients showed that differ-
ent sections of the same tumor masses harbored somatic events
co-existing in distinct subclones which evolved following a
branched pattern14,15. These studies found that del(3p) and
inactivation of VHL were trunk events while most of the other
driver aberrations were subclonal. However, the numbers of
patients analyzed in these studies were quite small. It is necessary
to evaluate the inter-patient differences in ITH and evolution
patterns systematically and to further analyze their influence on
clinical outcomes in large cohorts of ccRCCs. Previous studies
had demonstrated the possibility of reconstructing the clonal
architecture of single tumor biopsy by estimating the fraction of
tumor cells carrying either SCNAs or single-nucleotide variants
(SNVs)16–19. Nevertheless, no previous study had quantified the
cancer cell fractions (CCFs) of both SCNAs and SNVs simulta-
neously within the same ccRCCs and thus had some limitations
for reconstructing the evolution history of ccRCCs.

To more fully characterize the clonal diversities of ccRCCs, we
obtain the published large-scale genomic data from The Cancer
Genome Atlas (TCGA) and the Japanese population3,4. Addi-
tionally, we also sequence the whole-genomes of a cohort of
Chinese ccRCC patients. We infer the temporal order of the
somatic events frequently occurred in ccRCCs, compare the
mutational signatures and evolution patterns among different
populations and evaluate their clinical relevance in a total of
473 ccRCC patients. Our results generate a full picture of varia-
tions in mutational signatures and ITH during ccRCC evolution,
propose putative evolution models of ccRCC development and
discover several clonal or subclonal events as potential prognosis
markers. We further perform molecular subtyping of ccRCC
based on the CCFs of all potential prognostic events and char-
acterize the expression and immune features of the different
prognostic genomic subtypes.

Results
Mutational signature analysis of ccRCC. Of the ccRCC-473
cohort, 328 were TCGA samples, 104 were Japanese and 41 were
Chinese. We identified the somatic SNVs from the Japanese and

Chinese samples using MuTect2 and generated the profiles of
SCNAs with the whole-exome or whole-genome sequencing data
using ReCapSeg20,21. After several preprocessing and filtering
steps, a total of 40,697 somatic SNVs and 9,451 SCNA segments
were kept for downstream analysis in the ccRCC-473 cohort. We
estimated the CCF of each SNV and SCNA in all samples16,17,22.
A somatic event was defined as clonal if the CCF harboring the
SNV or SCNA was ≥0.95 with probability >0.5 and subclonal
otherwise16,17,22. According to this criterion, we identified 12,458
and 4,143 subclonal SNVs and SCNA segments, respectively.
Of the coding SNVs, 68.1% were clonal mutations.

The mutational signatures can reflect the potential influence
of previous exposures to different carcinogens as well as the
associated DNA damage and repair processes operating in
ccRCC tumors. We performed mutational signature analysis
by stratifying the SNVs according to their trinucleotide mutational
contexts23–25. Of the five independent mutational signatures
we identified (Fig. 1a), three matched known signatures (cosine
similarities ranged from 0.84 to 0.93) that had been described in
the Catalogue of Somatic Mutations in Cancer (COSMIC) database
(Supplementary Fig. 1 and Supplementary Data 1)23–25. The
signature matched COSMIC signature 1 (denoted as process 4 in
Fig. 1a), characterized by C>T transitions at CpG dinucleotides,
was observed in different tumor types and was likely to result from
5-methlcytosine deamination23–25. The signature closely resem-
bling COSMIC signature 22 (process 2 in Fig. 1a), characterized by
T>A transversions at CT [A/G] (where the mutated T is preceded
by C and followed by A or G), was found in urothelial carcinomas
with known exposures to aristolochic acid23–25. The signature
closely resembling COSMIC signature 5 (process 5 in Fig. 1a),
characterized by a broad spectrum of base changes, was also
present in different tumor types and was suggested to be associated
with ERCC2 mutations in bladder cancer26. Two other signatures,
characterized by C>A transversions at GC [A/T] and [C/T] C [A/
T] motifs, did not match any known COSMIC signatures well
(with maximum cosine similarities of 0.59 and 0.79 to signatures
29 and 4, respectively) and maybe occur in ccRCC only (processes
1 and 3 in Fig. 1a).

To investigate the heterogeneity in mutational signatures, we
compared the activity of each mutational signature among three
patient cohorts. Overall, process 5 was active in all three ccRCC
cohorts while the activities of four other signatures varied
substantially among different cohorts (Fig. 1b, c). Process 1 was
relatively enriched in Japanese patients while process 4 was
prevalent in Chinese patients, demonstrating the presence of
diversity in ccRCC mutation signatures among populations
(Fig. 1b, c). To further explore whether mutational signatures
varied during ccRCC evolution, we analyzed the distribution of
clonal and subclonal SNVs for each signature among different
populations. Among the five mutational processes, process 2 was
significantly more prevalent in clonal than subclonal mutations in
both Japanese-104 cohort and Chinese-41 cohort (P < 0.0001 and
P < 0.0001, respectively). In contrast, processes 1 and 3 were
significantly enriched with subclonal mutations in Japanese-104
cohort (P < 0.0001 and P < 0.0001), suggesting processes 1 and
3 as mutational processes contributing to the accumulation of
subclonal mutations in Japanese patients (Fig. 1b).

The clonal architectures of ccRCC. To explore the contribution
of SCNAs during ccRCC evolution, we estimated the CCF of each
SCNA segment in each sample and calculated the fraction of
samples harboring clonal or subclonal SCNAs at the chromosome
arm level. The fractions of samples harboring clonal or subclonal
events were generally similar among the three cohorts for almost
all the arm-level SCNAs except for del(16p) and del(17p), both of
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which showed an elevated level of subclonal event in the Eastern
Asian populations (Supplementary Fig. 2). We identified 36 fre-
quent arm-level SCNAs that were altered in at least 10% of
patients in the ccRCC-473 cohort. About 53% (19/36) and 3%
(1/36) of the frequent arm-level SCNAs showed significant
enrichment of clonal and subclonal events in the ccRCC-473
cohort, respectively (Fig. 2). Consistent with previous studies
in other cancers13, multiple arm-level driver SCNAs in ccRCC
often appeared as clonal events in the majority of patients
(Fig. 2), including del(3p), amp(5q), amp(7) and del(14q). These
data suggested that most of the arm-level driver SCNAs were
shared by different patient cohorts and were likely clonal events
which occurred early during ccRCC evolution.

We identified 21 genes that were mutated in at least 3% of samples
in the TCGA and Japanese samples (ccRCC-432 cohort) which were
analyzed by high-depth whole-exome sequencing (Fig. 2). Of these
genes, three were known driver genes VHL (P < 0.0001, FDR<
0.0001), PBRM1 (P= 0.0002, FDR= 0.001) and BAP1 (P= 0.047,
FDR= 0.1) significantly enriched with clonal non-silent mutations.
These findings were generally consistent with previous multi-region
sequencing of 10 ccRCCs showing that mutations in VHL and
PBRM1 tended to be trunk events14. In addition, several frequently
mutated genes without well-established roles in ccRCCs were also
found to be enriched with either clonal or subclonal mutations. For

instance, mutations in LRP2 (P= 0.037, FDR= 0.1) showed a
tendency to be clonal while mutations inMUC16 (P < 0.0001, FDR <
0.0001), PCLO (P= 0.0003, FDR= 0.009) and ABCA13 (P= 0.001,
FDR= 0.02) tended to be subclonal, highlighting their potential roles
in either the genesis or progression of ccRCC.

Temporal order of somatic mutation acquisitions in ccRCC. To
examine the probable temporal order of driver acquisitions dur-
ing ccRCC evolution, we ranked the 21 frequently mutated genes
and 36 arm-level SCNAs according to the distributions of CCFs
in the ccRCC-432 cohort (Fig. 3a). Overall, the arm-level SCNAs
had a significantly higher median CCF than all the frequently
mutated genes (P < 0.0001). The median CCF of del(3p) was the
highest among all the somatic events and several other arm-level
SCNAs including del(1), amp(5q) and del(14q) also had slightly
higher medians of CCFs than the well-known renal cancer driver
VHL mutations, suggesting that the acquirement of certain arm-
level SCNAs may play initialing roles in the early stage of ccRCC
evolution.

We inferred the potential temporal relationship between pairs
of frequent somatic events by identifying samples in which one
somatic event was clonal and the other was subclonal. The clonal
mutation was considered to be acquired earlier than the subclonal
mutation in the same patient and a temporal ‘edge’ would be
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Fig. 1 The distribution of mutational signatures across different cohorts. a Five distinct mutational signatures identified by NMF analysis of the matrix of
mutation proportion across tumors from different populations. b Comparison of mutational signatures between clonal and subclonal mutations. Enrichment
of mutational signatures between clonal and subclonal mutations was determined by Fisher test of the relative contribution of each signature in all patients.
c Mutational exposures (number of mutations) attributed to each mutation signature in each patient
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drawn from the former to the latter. We classified each frequently
mutated gene or arm-level SCNA into early, intermediary or late
event based on the degree of enrichment of out-going edges
compared to in-going edges (Supplementary Data 2)27,28. We
further constructed the evolutionary trajectories of ccRCC
according to the temporal relationship between two somatic
events in each of the 749 pairs connected by at least 5 edges
(Supplementary Data 2 and Fig. 3b).

Of the different potential routes of ccRCC evolution (Fig. 3b),
the earliest event del(3p) was followed by three groups of
departure points: (i) somatic mutations involving VHL and
PBRM1, (ii) del(14q), and (iii) arm-level SCNAs including amp
(7), del(1p) and del(6q). These divergent routes of tumor
evolution finally converged toward the late group of SCNA
events such as deletions of chromosomes 10, 18, and 17q and
amplifications of 12, 16p, and others (Fig. 3b), indicating the
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presence of different genomic subtypes of ccRCC with distinct
evolution patterns. The existence of heterogeneity in the clonal
architectures necessitated the evaluation of evolution patterns in
prognosis analysis for ccRCC.

The prognostic value of subclonal events in ccRCC. To evaluate
the prognostic values of the frequently mutated genes or SCNAs,
we performed Kaplan–Meier analysis of the somatic alterations
and identified 18 somatic events (including del(9), amp(12), del
(14q), del(1p), del(4), del(13q), amp(3q), del(11q), del(22q), del
(15q), del(2q), and mutations in genes VHL and BAP1) as
potential factors relevant to the prognosis of ccRCC (Supple-
mentary Data 3). Of these genomic alterations, only mutations
of VHL indicated good clinical outcome. We explored whether
clonal or subclonal alterations would have different impact on
clinical outcomes and further performed multivariate Cox
regression analysis based on four covariates including age, gender,
TNM stage, and Fuhrman grade.

Both clonal and subclonal alterations involving chromosomes
14q, 15q, and BAP1 gene were associated with shortened survival
time in ccRCC patients (Supplementary Data 3). However, only
subclonal del(14q) and del(15q) showed significant associations
with poor clinical outcomes in multivariate analysis. Under the
univariate analysis model, patients with clonal del(9), del(13q),
del(22q), and HMCN1 mutations or with subclonal amp(12), del

(1p), del(4q), and amp(3q) were significantly associated with
shortened survival. In addition, subclonal mutations in USH2A, a
new target shown to be mutated frequently in relapsed leukemia,
were significantly associated with dismal clinical outcome in
univariate analysis29. Under the multivariate model, only clonal
HMCN1 mutations and subclonal amp(12) were significantly
associated with dismal clinical outcome (Supplementary Fig. 3
and Supplementary Data 3).

Interestingly, several subclonal arm-level SCNAs positively
correlated with the TNM stages and Fuhrman grades of tumors.
Comparing with tumors staged as T1 or T2, subclonal del(9), del
(4), del(15q), del(1p) and amp(3q) tended to occur more
frequently in tumors staged as T3 or T4 (all P < 0.05). High
grade tumors (G3 or G4) were more likely to harbor subclonal
amp(12) than the low-grade tumors (P < 0.0001, Supplementary
Fig. 4). The above observations indicated that the evolutionary
stages of mutation acquisitions had great influence on their
prognostic values. Future genomic studies of ccRCC should pay
more attention to the subclonal events which were generally
acquired late during evolution and thus may contribute to the
progression of ccRCC.

Genomic subtyping of ccRCC based on clonal architectures.
We next tried to identify whether there were any molecular
subtypes of ccRCCs whose clonal architectures had great

0.00

0.25

0.50

0.75

1.00

del(3p)

VHL

del(10p)

del(8q)

del(9q)

del(10q)

del(22q)

SETD2

PBRM1

del(9p)

del(18p)

amp(3q)

PCLO

MUC16

del(1p)

del(4q)

del(6q)

del(11q)

del(13q)

del(14q)

del(15q)

del(17q)

del(18q)

del(21q)

amp(5p)

amp(7p)

amp(12p)

amp(16p)

amp(5q)

amp(7q)

amp(8q)

amp(12q)

amp(20q)

CSMD3

KMT2C

ABCA13

DST

del(2q)

del(3q)

Early

Interm
ediate  

Late

Q value
___ < 0.1

----- < 0.2

C
C

F

de
l(3

p)
(3

86
)

de
l(3

q)
(1

00
)

de
l(1

p)
(9

0)
am

p(
5q

)(
21

6)
de

l(1
4q

)(
19

9)
de

l(1
q)

(6
0)

V
H

L(
17

2)
de

l(2
q)

(4
1)

de
l(6

q)
(1

31
)

am
p(

7q
)(

11
2)

am
p(

7p
)(

10
6)

de
l(2

1q
)(

69
)

de
l(8

p)
(1

40
)

de
l(1

1q
)(

63
)

de
l(1

1p
)(

54
)

LR
P

2(
19

)
D

N
A

H
9(

18
)

de
l(6

p)
(9

2)
B

A
P

1(
40

)
de

l(1
5q

)(
60

)
de

l(4
p)

(8
5)

de
l(1

7p
)(

68
)

de
l(8

q)
(9

4)
de

l(4
q)

(8
6)

P
B

R
M

1(
17

1)
de

l(1
7q

)(
53

)
am

p(
5p

)(
11

1)
de

l(9
q)

(1
40

)
de

l(1
3q

)(
77

)
de

l(1
8q

)(
96

)
de

l(9
p)

(1
41

)
A

T
M

(2
1)

am
p(

3q
)(

69
)

A
N

K
3(

16
)

am
p(

12
q)

(6
4)

am
p(

16
p)

(5
5)

am
p(

12
p)

(6
6)

de
l(1

8p
)(

87
)

de
l(1

0q
)(

10
0)

M
T

O
R

(2
9)

am
p(

8q
)(

44
)

K
M

T
2C

(2
0)

de
l(1

0p
)(

86
)

am
p(

20
q)

(4
8)

U
S

H
2A

(1
5)

D
N

A
H

2(
15

)
A

R
ID

1A
(1

6)
H

M
C

N
1(

26
)

S
E

T
D

2(
54

)
de

l(2
2q

)(
55

)
C

S
M

D
3(

25
)

P
K

H
D

1(
17

)
G

P
R

98
(2

0)
D

S
T

(2
0)

M
U

C
16

(6
1)

P
C

LO
(2

1)
A

B
C

A
13

(1
5)

a

b
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influence on their clinical outcomes. We performed non-negative
matrix factorization (NMF) analysis of the CCFs of the eighteen
frequently mutated genes and SCNAs identified to be associated
with survival by the univariate analysis. In total, we identified
three molecular subgroups (termed as clusters A, B, and C)
whose clinical outcomes were divergent (Fig. 4a). The overall
burdens of` somatic mutations were generally similar among the
three clusters of patients, but patients in clusters A and C had a
greater burden of arm-level SCNAs (P < 0.0001 and P < 0.0001,
respectively; Fig. 4b) and had poorer probability of survival than
cluster B patients (Fig. 4c) (HR= 2.69; P= 0.002; 95% CI:
1.36–1.29). Multivariate analysis further proved that we could
predict the clinical outcome of ccRCC patients independently
by clustering analysis of CCFs of the frequent somatic events
(Fig. 4d).

The genomic landscapes and the potential orders of
acquiring the somatic events showed great divergence among
the three clusters. Almost all tumors in cluster B harbored VHL
mutations but were devoid of BAP1 mutations while tumors in
clusters A and C were predominantly enriched with del(14q)
and multiple other cluster-specific arm-level SCNAs. For
instance, three SCNAs including amp(12), amp(3q) and del
(9) and seven events including del(1p), del(4), del(13q), del
(11q), del(22q), del(15q) and del(2q) were predominantly

enriched in clusters A and C, respectively (Supplementary
Data 4). A number of tumors in clusters A and C appeared to
acquire del(14q) in the early stage while a number of tumors in
cluster B acquired del(14q) in the late stage of evolution
(Supplementary Fig. 5).

Expression and immune features of genomic subtypes of
ccRCC. Distinct prognostic subtypes of ccRCC (ccA and ccB) had
been identified previously based on gene expression profiling4,30.
We also subtyped our ccRCC cohorts according to their expres-
sion profiles and compared the relationship between their geno-
mic and expression prognostic subtypes. We found that patients
with the ccA expression profile, an indicator of good prognosis,
were significantly enriched in cluster B (P < 0.0001) which also
showed better clinical outcome than the other two clusters in our
study (Fig. 5).

Previous evidence suggested that the tumor microenvironment
of ccRCC was infiltrated with high levels of different immune
components which may have different consequences on the
prognosis of ccRCC31. We compared the relative expression levels
of the immune signature genes among the three genomic
prognostic clusters using ssGSEA32 (Fig. 5). We found that the
infiltration levels of Tregs and Th2 cells were higher in clusters A
and C (P= 0.005, FDR= 0.016 and P= 0.042, FDR= 0.091,
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respectively) than in cluster B. In contrast, the infiltration levels of
Th17 and CD8+ T cells (P= 0.003, FDR= 0.011 and P= 0.0002,
FDR= 0.002, respectively) as well as the ratios of Th17/Th2 and
CD8+/Treg were higher in cluster B (P= 0.002, FDR= 0.008 and
P= 0.001, FDR= 0.006, respectively) than clusters A and C. The
Tregs and Th2 cells were often suggested to have immunosup-
pressive roles in promoting tumor formation and progression,
whereas the cytolytic CD8+ T cells had been proved to be the key
denominator of survival in patients with various types of solid
cancers33,34. The infiltrating level of Th17 cells in tumor mass was
negatively correlated with tumor growth/stage in some human
cancers35. Th17 cells could elicit antitumor effects by inhibiting
Tregs, inducing the expression of MHC-I and II antigens and
activating cytotoxic lymphocytes34.

Recent data suggested that the overall burden of SCNAs
correlated with tumor immune evasion36. Also, we observed that
the expression of the MHC class I antigen presenting machinery
(APM) and angiogenesis signature genes as well as the infiltration
levels of T cells or cytotoxic cells were the lowest in cluster C,
which had the highest burden of arm-level SCNAs but similar
rates of somatic mutations comparing with clusters A and B. This
observation suggested that the high burden of arm-level SCNAs
may contribute to the poor clinical outcome of patients in cluster
C by inhibiting the activity of cytotoxic lymphocytes within
tumor microenvironment.

Discussion
Our current knowledge about the evolution history of ccRCCs
was mainly based on findings from multi-region sequencing of a
limited number of patients. Most ccRCC patients have startling
intra- and inter-tumor heterogeneity and it is necessary to analyze
the evolution patterns of ccRCCs in large numbers of patients
from different populations. Patients from different areas have
different genetic background and expose to different carcinogens
during their lifetime. In our study, we identified some population-
specific mutational signatures and SCNAs. The mutational
signature caused by exposure to aristolochic acid which may be
contained in some Chinese herbs was notable in Chinese
patients37. The mutational signatures (processes 1 and 3) with
unknown causes were enriched with subclonal mutations in
Japanese cohort. The prevalence of these two novel signatures in
population was also quite low and we cannot exclude the possi-
bilities that whether they were linked to different experiments
conditions. Future studies with even larger sample sizes are
needed to investigate their underlying causes and potential con-
sequences on the genesis of the late-stage mutations during
ccRCC evolution.

Our study provided important insights into the evolution
processes of ccRCC. The CCF of each somatic event was a sur-
rogate quantifying its prevalence of mutation among the het-
erogeneous tumor cell populations within a tumor mass. With
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regard to the distribution of CCFs of all somatic events, the most
frequently observed arm-level SCNA, del(3p), had the highest
median and lowest coefficient of variation. Thus, del(3p) was
considered to be the earliest event acquired during ccRCC evo-
lution. However, all the rest of somatic events exhibited sub-
stantial inter-patient variations in their CCFs, suggesting the
presence of great heterogeneity in the evolution pattern of ccRCC
among different patients. We ranked the frequent somatic events
according to their medians of CCFs and found that most of the
top ranked events, including del(1p), del(6q), amp(7), del(14q),
and VHL mutations, showed disparities in their evolution pat-
terns and comprised the early departure points during ccRCC
evolution (Fig. 3b). Of these top ranked SCNAs, del(14q) was
identified as a subclonal event indicating poor survival in a
number of patients independently, highlighting the evaluation of
the timing of mutation acquisitions during ccRCC evolution in
prognosis analysis. Nevertheless, we also acknowledged that the
statistical inference of the clonality of solid cancers by deep
sequencing of single biopsy would have some limitations which
could be overcome by single-cell sequencing of multiple biopsies
in large cohorts of patients.

Characterizing the molecular subtypes of ccRCC is critical for
its clinical management. Despite of extensive studies on genetic
prognostic markers in ccRCC previously, no study determined
the prognostic values of genetic markers according to whether
they were clonal or subclonal. Our study demonstrated the
importance of discrimination of clonal mutations from subclonal
in prognosis analysis for ccRCC. The prognostic power of indi-
vidual genetic markers was usually limited by their low mutation
frequencies in ccRCC. To increase prognostic power, we tried to
categorize ccRCC patients into different molecular subtypes based
on the CCFs of multiple prognostic somatic events jointly. Of the
three prognostic genomic subtypes, two (clusters A and C) were
characterized by dismal clinical outcomes. The genomic features
and evolution patterns of these different subgroups of ccRCC
differed from each other. Almost all patients in cluster B harbored
VHL mutations and few of them had BAP1 mutations. VHL and
BAP1 mutations had been shown to be indicators of good and
poor clinical outcomes, respectively9,11. The overall burden of
arm-level SCNAs (especially clonal SCNAs) was highest in cluster
C, followed by cluster A. Several cluster-specific arm-level SCNAs
were also identified in clusters A and C. Patients in cluster B were
depleted of arm-level SCNAs. The overall burden of arm-level
SCNAs had been shown to be associated with shortened survival
in some human solid cancers36. Our study demonstrated the
possibility of genomic subtyping of ccRCC by integrative analysis
of all somatic events which showed associations with the clinical
outcomes of ccRCC in either clonal or subclonal states.

It became increasingly clear that there was a close link between
the genomic architectures of tumors and the components of
immune infiltrates within their microenvironment. Although
the prognostic clusters of ccRCC were identified based on their
genomic features, the tumor microenvironments of different
subtypes also differed greatly from each other. Our analysis
showed that arm-level SCNAs or aneuploidy occurred quite early
during ccRCC evolution. Paradoxically, it had been shown that
aneuploidy or high burden of arm-level SCNAs would increase
the immunogenicity of tumor cells during the elimination phase
of immunoediting38. However, the relative balance between the
immunosuppressive cells and the immune cells with antitumor
effects determined the fates of tumor cells that would either be
suffered from immune escape or elimination. Tumor cell popu-
lations or subclones lack of tumor-specific antigens or with
impaired APM would escape from immune surveillance. For the
relatively short-lived ccRCC patients (clusters A and C) with a
high burden of arm-level SCNAs, our data showed that their

immunosuppressive tumor microenvironment had a low level of
infiltrating CD8+ T cells and decreased activities of APM but
were infiltrated with high levels of immunosuppressive cells such
as Tregs and Th2 cells.

Methods
Data sources and sample information. The study was approved by the institu-
tional review boards at Ethics Committee of The First Affiliated Hospital of
Xi’an Jiaotong University and informed consent was obtained from each partici-
pant. Raw whole-exome sequencing data on the Japanese ccRCC patients were
downloaded from the European Genome-phenome Archive (EGA) (accession
number: EGAS00001000509) and somatic variants (including SNVs and SCNAs)
in the TCGA ccRCC samples with whole-exome sequencing data were
downloaded from the Genomic Data Commons (GDC) data portal (http://gdc-
portal.nci.nih.gov). Tissue samples from 41 Chinese ccRCC patients were snap-
frozen in liquid nitrogen or immersed in RNAlater (Qiagen, Germany) and
stored at −80 °C upon resection. Then, we performed whole genome sequencing
using the Hiseq 2000 platform following the manufacturer’s instructions
(Illumina, San Diego, CA). Genomic DNA extracted from the tissue samples
was sheared with a Covaris instrument to an average size of 500 bp and pair-
ended reads with the length of 90 bp were generated. After removing the adapters,
the sequencing reads were aligned to the reference human genome (hg19)
using BWA.

Clonal state classification of SNVs and SCNAs. All somatic SNVs were called
out by the Mutect2 software20. All somatic SNVs were further filtered with the
following parameters: a read depth of at least 10× in the germline and tumor
samples, a maximum of two variant supporting reads in the germline, a minimum
tumor variant allele frequency of 10% and a maximum germline variant allele
frequency of 2%. The copy number data were segmented with the ReCapSeg
software to identify the SCNAs, with all three cohorts being processed by the
same standard pipeline as described in GATK documentation provided by the
Broad Institute (http://gatkforums.broadinstitute.org/categories/recapseg-
documentation)21.

We used the ABSOLUTE software (v1.2) to calculate the purity, ploidy and
absolute allele-specific DNA copy-numbers of each sample22. To ensure the
accuracy of clonal inference, samples with a low tumor cell purity (below 20%)
were excluded from further analysis. SNVs and SCNAs were defined as clonal
if the probability of observing CCF ≥ 0.95 was >0.5 or subclonal otherwise.
Except for the analysis of mutational signatures, all SNVs identified in the
Chinese ccRCC samples were excluded from inference of clonal architectures of
frequently mutated genes due to the relative low sequencing depths of whole-
genome sequencing which were insufficient for the detection of low-frequency
subclonal mutations. If a gene harbored multiple non-silent SNVs in a patient,
we excluded SNVs located in this gene from analysis of clonal architectures.

Arm-level SCNAs were more prevalent than focal SCNAs in ccRCCs, we
focused on analyzing the clonal state of arm-level SCNAs3. Genomic segments
were called out as SCNAs with the following steps: (i) estimation of the modal
allelic copy number and determination of the genome doubling events;
(ii) calculation of the homolog-specific copy ratios; (iii) identification of allele
specific SCNAs; (iv) determination of the absolute copy number of each
segment and estimation of the CCFs for the SCNAs and SNVs. For each
chromosomal arm in each patient, we divided the cumulative length of the
clonal segments or subclonal segments (defined by ABSOLUTE) by the length
of the corresponding chromosomal arm. A chromosomal arm would be defined
as clonal (or subclonal) if the cumulative percentage of clonal (or subclonal)
segments was above 50%. The median CCF of these clonal or subclonal segments
from each chromosomal arm was defined as the CCF of the arm-level SCNA.
To reduce the background noise, we only analyzed the clonal states of genes
with a mutation frequency of 3% or greater and arm-level SCNAs with a frequency
of 10% or above.

Mutational signature analysis. We applied the “als” algorithm in NMF analysis
to discover the mutational processes in our study23–25. To guarantee that the
within-process distance for each process was always minimal, we applied the
optimal k-means clustering method to select the optimal process numbers (Sup-
plementary Fig. 6)23–25. To compare the relationship between the mutational
processes discovered in our study and the 30 COSMIC signatures, we used ‘cosine’
similarities and ‘Pearson’ correlation values to evaluate their differences26.

Clonal or subclonal mutation enrichment analysis. We used permutation test
to assess whether a specific gene or arm-level event was enriched with clonal or
subclonal mutations. To be specific, for cancer genes with 60 non-silent mutations
including 40 clonal and 20 subclonal across 500 separate samples, we would
randomly sample 60 non-silent mutations from 500 samples and calculated the
observed clonal/subclonal ratios. We repeated 10,000 times, a P value of clonal
enrichment was obtained by dividing the times when the observed clonal/subclonal
ratio was greater than the expected ratio (40/20) by 10,000.
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Molecular subtyping and temporal order of mutations. We applied the default
parameters in the NMF R package to perform molecular subtyping. A numerical
matrix describing the CCFs of genes mutated at 3% or above and SCNAs altered at
10% or above of ccRCC samples (columns) was constructed. Specifically, each entry
in the matrix was the CCF of each gene or SCNA in each sample. To choose the
optimal subgroups, we tried from two to six different values, and computed their
quality measure of the results (Supplementary Fig. 7). We proposed to take the first
value of subgroup number “3” for which the cophenetic coefficient started
decreasing as the optimal value of subgroups39. We applied the method of con-
structing the potential temporal order of mutation acquisitions during tumor
evolution followed by previous studies13,27,28.

Statistical analysis. Two-sided Mann–Whitney and Fisher’s exact tests were
performed with the R functions Wilcox.test and Fisher.test to generate the
empirical P-values, respectively. P-values were adjusted for multiple hypothesis
tests using the R function p.adjust with the “fdr” option.

Survival analysis. Chi-square test statistics in Kaplan-Meier curves were com-
puted using log-rank tests. P values were also calculated from multivariate Cox
proportional-hazards regression models using the R package "survival".

Data availability
Clinical and sample data were collected from the European Genome-phenome Archive
(EGA) (accession number: [EGAS00001000509]) and the Genomic Data Commons
(GDC) data portal ([http://gdc-portal.nci.nih.gov]). The raw whole genome sequencing
data of Chinese ccRCCs have been deposited at the European Genome-phenome Archive
(EGA: https://ega-archive.org) which is hosted at the EBI and the CRG, under accession
number: study, EGAS00001003447; dataset, EGAD00001004588.
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