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Decoherence of black hole superpositions
by Hawking radiation
Andrew Arrasmith1,2, Andreas Albrecht2,3 & Wojciech H. Zurek1

An environment interacting with a system acquires information about it, e.g. about its

location. The resulting decoherence is thought to be responsible for the emergence of the

classical realm of our Universe out of the quantum substrate. However, this view of the

emergence of the classical is sometimes dismissed as a consequence of insufficient isolation

and, hence, as non-fundamental. In contrast to many other systems, a black hole can never be

isolated from its Hawking radiation which carries information about its location, making this

lack of isolation fundamental. Here we consider the decoherence of a “black hole Schrödinger

cat”—a non-local superposition of a Schwarzschild black hole in two distinct locations—due

to its Hawking radiation. The resulting decoherence rate turns out to be given by a sur-

prisingly simple equation. Moreover, and in contrast to known cases of decoherence, this rate

does not involve Planck’s constant ħ.
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Despite nearly a century of effort, the unification of quan-
tum mechanics with general relativity is still a work in
progress. Perhaps the most promising breakthrough in

investigating the relation between quantum theory and general
relativity came when Hawking1 (following heuristic arguments
of Bekenstein2) used quantum field theory to show that
Schwarzschild black holes radiate as if they were at a temperature
TH given by:

kBTH ¼ �hc3

8πGM
¼ �hc

4πRS
; ð1Þ

whereM is the mass of the black hole and RS is the Schwarzschild
radius.

Hawking radiation defies the classical expectation that nothing
can be emitted from a black hole. It was initially hoped that this
result would pave the way to quantization of gravity. However,
Hawking radiation has instead deepened the mystery by implicating
entropy (and, hence, information) in questions involving quantum
theory and gravity (e.g., the black hole information paradox).

The origin of classicality in other settings has been, in the
meantime, clarified by the theory of decoherence3–5. As in the
black hole information paradox, information plays a key role:
Decoherence is caused by the information flowing from the sys-
tem into its environment and the resulting formation of records
of its selected observables in that environment6–8. It is now widely
(though not universally) accepted that the effectively classical
behavior of macroscopic systems in our quantum Universe is a
consequence of decoherence. Even weak interactions can result in
such leakage of information and, consequently, in decoherence.
However, information has been traditionally viewed as incon-
sequential in classical Newtonian physics, and isolation as an
experimental difficulty that should be inconsequential for foun-
dations. Therefore, the decoherence-based view of the emergence
of the classical in our quantum Universe has been regarded by
some9 as not fundamental.

Unlike other cases that have been investigated, a black hole
cannot be isolated: it creates its own environment—Hawking
radiation. Therefore, its decoherence is not just a practical matter,
but fundamental. The decoherence of black holes by Hawking
radiation thus provides a glimpse into a place where quantum
mechanics and general relativity meet in course of a quantum-to-
classical transition. Below we obtain and discuss the rate of
decoherence of a Schwarzschild black hole in both thermal
equilibrium with a radiation bath as well as in a vacuum and
discuss the implications of our results.

Results
Decoherence in thermal equilibrium. We first consider the case
of a Schwarzschild black hole in thermal equilibrium with a
radiation bath. Decoherence is caused both by the quanta emitted
by the black hole and by the quanta in the external heat bath that
are scattered by it (see Fig. 1). The cross section for emission and
absorption of Schwarzschild black hole approaches 27πR2

S for high
energy quanta of massless species (i.e., the geometrical optics limit)
10. When the wavelength of these quanta becomes comparable to
the size of the hole, their behavior becomes more complicated and
species-dependent. This is because quanta have to penetrate the
potential barrier at ~3RS which gives rise to the so-called graybody
factors for the modes. For the sake of simplicity, we choose to work
in the geometrical optics approximation.

In thermal equilibrium, in each mode, the black hole will
radiate back as much as falls into the horizon, making the
information exchange from absorption and emission essentially
the same as a scattering from a dielectric sphere from the point of
view of decoherence. We therefore adapt the decoherence

formalism for photon scattering from dielectric spheres to our
current case. The decoherence rate of a dielectric sphere that
starts in a superposition of two locations separated by Δx and is
immersed in a radiation heat bath at temperature T in the dipole
approximation (Δx � λ, where λ is the dominant wavelength of
the radiation) is given by5,11,12:

τ�1
D ðΔxÞ ¼ 16

8!ζð9Þ
9π

� �
~a6Δx2ðkBTÞ9

c8�h9
: ð2Þ

Above ~a is the effective radius of the sphere. Adapting this for a
Schwarzschild black hole in a radiation bath at temperature T=
TH, we set ~a2 ’ 27R2

S. The resulting decoherence rate is then:

τ�1
D ðΔxÞ ¼ 16

8!ζð9Þ
9π

� �
273

ð4πÞ9
Δx
RS

� �2 c
RS

� �
¼ d

Δx
RS

� �2 c
RS

� �
;

ð3Þ

where d≃ 0.0576. This is a surprisingly simple expression and is
expected to a be good approximation when |Δx| < RS. The total
rate will be proportional to the number of such species, and will
have to be suitably modified for massive quanta.

Neither the above decoherence rate nor the corresponding
decoherence time:

τDðΔxÞ ¼ d�1 RS

Δx

� �2 RS

c

� �
’ 17:37

RS

Δx

� �2 RS

c

� �
; ð4Þ

depend on the Planck constant ħ. This is unusual as other
decoherence rates and times generally depend on ħ. Here, however,
the decoherence timescale in the natural black hole units [RS/c] is
simply the square of the distance in natural units [RS]. Planck’s
constant, quantum theory’s defining constant, unexpectedly dis-
appears. Since the basic timescale here is set by the “light-crossing
time” RS/c, superpositions of larger black holes would decohere
more slowly when separated by the same distance, or even by the
same fraction of their Schwarzschild radius. This may seem
surprising (usually larger systems decohere faster), but the

Δx

Fig. 1 A black hole in a superposition of two position states with separation
Δx, immersed in a thermal bath of massless quanta. The quanta from the
thermal bath are shown in red. Information about the location of the black
hole is carried off by scattered and emitted quanta, shown in cyan and
purple for the two different positions
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temperature of the radiation responsible for decoherence decreases
with black hole size, and this effect dominates.

Two extreme cases (that mark the two likely limits of the range
of applicability of Eqs. (3) and (4)) are worth noting. For
superpositions Δx > RS, the dipole approximation (which assumes
that the dominant wavelength responsible for decoherence is
larger than Δx) breaks down, and the decoherence rate saturates12

(i.e., it does not increase with larger separations, as Eqs. (2) and
(3) would suggest).

The other interesting case where Eqs. (2) and (4) will likely break
down is when Δx becomes equal to Planck length ‘p. In that case
the decoherence time is given by:

τDð‘pÞ ¼ d�1 RS

‘p

 !2
RS

c

� �
¼ 8

d
G2M3

�hc4
’ 139

G2M3

�hc4
: ð5Þ

Thus—assuming the black hole stood still13—it would be localized
to Planck length on a timescale comparable to but somewhat
shorter than its lifetime due to evaporation into vacuum:

tBH ¼ 5120π
G2M3

�hc4
: ð6Þ

Both expressions assume a single massless mode, and would
change accordingly otherwise.

Decoherence in a vacuum. Next, let us consider decoherence in
the case of emission into a vacuum. Aside from changing from
effective scattering to emission, this case differs because the black
hole will be evaporating and thus have a time-dependent tem-
perature. However, assuming the black hole is sufficiently large,
we can follow the standard quasi-static formalism1,10 and say that
the black hole will evaporate slowly compared to the decoherence
rate. We will also once again use the geometrical optics limit to
simplify our calculation.

Under these approximations, for the emission of a single
massless species we get a decoherence rate of (see the Methods for
details):

τ�1
D ðΔxÞ ¼ 27cζð3Þ

8π4RS

þ
27ic ψð1Þ 1� iΔx

4πRS

� �
� ψð1Þ 1þ iΔx

4πRS

� �� �
8π3Δx

:

ð7Þ

Here ψ(1)(y) is the n= 1 polygamma function. (See Fig. 2 for a
plot of this function and some test cases.) Note that again, ħ does
not appear anywhere in this expression.

As with the thermal bath case, we will take a moment here to
discuss the limiting cases for this expression. Beginning with the
large Δx limit, we can explicitly find the asymptotic saturation
discussed in the equilibrium case:

lim
Δx!1

τ�1
D ðΔxÞ ¼ 27cζð3Þ

32π4RS
¼ Λtotal; ð8Þ

where Λtotal is the total emission rate for the massless species (see
the Methods.) In other words, for sufficiently large separations
the decoherence time becomes the time to emit a single quantum.

In the limit that Δx is small compared to RS, Eq. (7) is
approximately:

τ�1
D ðΔx � RSÞ ’ 27ζð5Þ

256π6

Δx
RS

� �2 c
RS

� �
’ 1:138 ´ 10�4 Δx

RS

� �2 c
RS

� �
:

ð9Þ

We note that, except for a different numerical prefactor, this
decoherence rate has the same form as our approximate result for
the equilibrium case. Once again, we expect that this result would
break down once Δx approaches ‘p, which would give us a
decoherence time of:

τDð‘pÞ ¼
8 � 256π6

27ζð5Þ
G2M3

�hc4
’ 22400π

G2M3

�hc4
: ð10Þ

Note that this is longer than the black hole evaporation time of
Eq. (6).

Discussion
The independence of the decoherence rate on ħ is not the result of
either the dipole or geometrical optics approximations we used.
In particular, the geometrical optics approximation that ignores
the details of the graybody factors plays no role for the black hole
in the heat bath as Kirchhoff’s Law14 mandates that the combi-
nation of scattered and emitted quanta induces as much deco-
herence as if it were indeed a black body emitter. In the case of
emission into vacuum, the graybody factors will obviously modify
the emitted spectrum, “endowing the black hole with color”.
However, these graybody factors depend on the ratio of the
wavelength to the Schwarzschild radius in a way that does not
introduce any dependence on ħ.

This independence of ħ contrasts with the “standard lore”3–5. For
instance, in quantum Brownian motion the decoherence rate is
proportional to γ(Δx/λdB(T))2, where γ is the rate of energy loss and
λdBðTÞ ¼ �h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π=ðmkBTÞ

p
is the thermal de Broglie wavelength.

Here ħ enters the decoherence rate via its appearance in λdB.
Generalizing to black holes with angular momentum and

charge (the Kerr–Newman case) also will not introduce any ħ
dependence for the decoherence rate for massless, uncharged
quanta. Aside from breaking spherical symmetry and adjusting
the black hole’s radius, this generalization would modify the
Bose–Einstein statistics factor for the emissions by adding
dependence on the angular mode number m and charge e of the
emitted quanta: ω → ω−mΩ− eΦ/ħ, where Ω is the angular

0.012
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Fig. 2 The decoherence rate as a function of Δx/RS. Note that this levels off
for larger separations. Inset is the same function plotted on a log–log scale
and showing the decoherence rates that correspond to black hole
superpositions with separations of 1 cm if the black hole had the mass of
the sun (shown with the yellow sun symbol ⊙), the earth (green earth
symbol ⊕), and the moon (gray moon symbol ☾). The mass, Hawking
temperature, and decoherence time for these cases are as follows. For the
sun M⊙= 1.99 × 1030 kg, TH⊙= 6.17 × 10−8 K, and τD⊙= 7.52 × 109 s. For
the earth M⊕= 5.97 × 1024 kg, TH⊕= 0.0205 K, and τD⊕= 2.07 × 10−7 s.
For the moon M☾= 7.35 × 1022 kg, TH☾= 1.67 K, and τD☾= 1.09 × 10−11 s
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velocity of the event horizon and Φ is the static electric potential
from the black hole’s charge evaluated at the event horizon. So
long as the particles that are being emitted with these statistics
have e= 0, the decoherence rate remains ħ independent.

The decoherence rate does, however, depend on ħ when the black
hole is small enough to emit massive particles. This is because they
have a mass-dependent emission probability including a lower fre-
quency cutoff given by ωmin ¼ mc2

�h . Moreover, the emission of
charged particles from a charged black hole has an additional factor
of ħ in the statistics due to the electromagnetic interaction.

As our paper addresses decoherence of non-local super-
positions of black holes, it is natural to inquire whether such
superpositions could arise in nature. One conceivable candidate
would be three-body systems involving one or more black hole.
Such many-body systems can evolve chaotically, so that the initial
wavepacket of each body would spread exponentially fast at the
rate given by Lyapunov exponents15. Binary stars are plentiful,
and triplets are also relatively common. Moreover, situations
where gravitational interactions give rise to chaotic behavior are
known in our solar system16,17. Furthermore, LIGO (the Laser
Interferometer Gravitational-Wave Observatory) has now detec-
ted several black hole mergers18,19. As black hole “binaries” seem
to be relatively plentiful, it is possible that there may also black
hole triplets with chaotic trajectories that would delocalize the
individual black holes on the relevant Lyapunov timescale. Thus,
while performing a “double slit experiment” with black hole does
not seem feasible, dynamics that could lead to non-local super-
positions may well be present in astrophysical settings. Moreover,
three-body systems with black holes would exert tidal forces,
which may stir up internal degrees of freedom of black holes and
accelerate decoherence beyond our estimates.

We emphasize that in astrophysical settings decoherence due to
environments other than Hawking radiation is likely to over-
whelmingly dominate. Thus, even if we ignore accretion disks,
magnetic fields, interstellar gas, and other likely environments of
astrophysical black holes, the cosmic microwave background
(CMB) alone would result in decoherence rate that is ~(TCMB/TH)9

times faster— ~1068 for a solar mass black hole—than what is
predicted by Eqs. (3) and (7). This estimate follows directly from
Eq. (2). Thus, the decoherence due to Hawking radiation is of
interest not because of its ‘practical’ consequences but because of its
fundamental nature. That is, for all but the hottest, smallest black
holes decoherence in astrophysical settings would be dominated by
other environments.

The resulting CMB decoherence rate does depend explicitly on
Planck constant. This re-appearance of ħ is no surprise: It had
disappeared from our earlier expression only due to cancellations
that are a direct consequence of the ħ dependence of the Hawking
temperature, TH ~ ħ/M, Eq. (1).

We close by noting that the lack of dependence of the locali-
zation rate—the decoherence rate of spatial superpositions—on ħ
as well as the remarkable simplicity of the resulting equation may
be a consequence of the fact that a black hole is not just an object
in space, but is a curved space. One is therefore tempted to
speculate that these results hint at (or, perhaps, confirm) an
unusual relationship between quantum mechanics and gravity.

Methods
Decoherence by radiation. Consider the decoherence of spatial superpositions by
radiation emitted into a state |χ〉. With the assumption that the state of the emitter
is approximately constant, the off diagonal elements of the reduced density matrix
of the emitter’s position state get suppressed as:

ρðx; x′Þ′ ¼ ρðx; x′Þ χðx′ÞjχðxÞh i: ð11Þ

The change in the reduced density matrix is then:

ρðx; x′Þ′� ρðx; x′Þ ¼ �ρðx; x′Þ 1� χðx′ÞjχðxÞh ið Þ: ð12Þ

If such an emission happens at some constant rate Λ, we expect the information
about this event to pass observers off at infinity at the same rate. Thus, after some
small time Δt has passed, we should have a change in the reduced density matrix of:

ρðx; x′;ΔtÞ � ρðx; x′; 0Þ ¼ �ρðx; x′; 0ÞΛΔt 1� χðx′ÞjχðxÞh ið Þ: ð13Þ

Dividing by Δt and taking the limit Δt → 0, we have:

∂ρðx; x′Þ
∂t

¼ �Λ 1� χðx′ÞjχðxÞh ið Þρðx; x′Þ: ð14Þ

Our decoherence rate is therefore given by:

τ�1
D ¼ Λ 1� χðx′ÞjχðxÞh ið Þ: ð15Þ

For Hawking radiation from a large black hole, we generally expect emission of
massless species such as photons and gravitons. (Black holes with radii of order
10−13m or smaller would also radiate massive particles as the temperature would
be comparable to or larger than the rest mass of electrons, but we will not treat this
case.) These emissions will be into a distribution of states with differing frequencies
(or momenta) and angular momentum for each species. Λ will then be the total
emission rates for all momenta and mode types for a given species.

We note that our analysis, like all discussions of decoherence, assumes realistic
properties related to the arrow of time. These properties are believed by many to
ultimately be of cosmological origin20 and exclude, for example, the time reverse of
the decoherence process.

Calculating the overlap. Let us now evaluate the inner product term. Following
Hornberger et al.21, we can express the density matrix for the radiated particles
(assuming isotropic emission) in momentum space as:

ρradiation ¼
Z

dq
pðqÞ
4πq2

qj i qh j; ð16Þ

where p(q) is the probability of emitting a particle with this magnitude of
momentum.

In order to account for the emitter being displaced from the origin, we simply
act with translation operators:

ρradiation ¼
Z

dq
pðqÞ
4πq2

e�ibq�x=�h qj i qh jeibq�x′=�h: ð17Þ

If we define our coordinate system so that x− x′= Δxbz and then change the
integral to spherical coordinates, the trace over this density matrix (the overlap
between the states) of emitted particles with different emitter positions is then:

χðx′ÞjχðxÞh i ¼
Z

dq
Z

dϕ
Z

d cosðθÞe�iqΔxcosðθÞ=�h pðqÞ
4π

: ð18Þ

Integrating over the angular variables gives us:

χðx′ÞjχðxÞh i ¼
Z

dq sinc
Δxp
�h

� �
pðqÞ: ð19Þ

In order to match standard notations, let us change variables from momenta p to
angular frequency ω:

χðx′ÞjχðxÞh i ¼
Z

dωsinc
Δxω
c

� �
pðωÞ: ð20Þ

where pðωÞ ¼ cpðqÞ=�h. Again following Hornberger et al.21, we define the rate of
particle emission per ω as:

ΛðωÞ ¼ pðωÞ � Λtotal; ð21Þ

with

Λtotal ¼
Z

dωΛðωÞ: ð22Þ

In this notation, we can express our overlap as:

χðx′ÞjχðxÞh i ¼ 1
Λtotal

Z
dωΛðωÞsinc Δxω

c

� �
: ð23Þ
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Black hole decoherence rate. Specializing to a Schwarzschild black hole, Page10

tells us that the emission rate per frequency of the Hawking radiation should be:

ΛðωÞ ¼
X
s;l;m

1
2π

Γs;l;m e4πωRS=c � 1
� ��1

; ð24Þ

where the Γ's are the graybody factors. Using the geometrical optics approximation
for a massless species with two polarization degrees of freedom, we have10:X

s;l;m

Γs;l;m ¼ 2 � 27R
2
Sω

2

c2
: ð25Þ

Our emission rate per frequency interval (summed over the modes) is then:

ΛðωÞ ¼ 27R2
Sω

2

πc2
e4πωRS=c � 1
� ��1

: ð26Þ

This gives a total emission rate of:

Λtotal ¼
27ζð3Þc
32π4RS

: ð27Þ

The corresponding overlap is:

χðx′ÞjχðxÞh i ¼
iπRS ψð1Þ 1þ iΔx

4πRS

� �
� ψð1Þ 1� iΔx

4πRS

� �� �
Δxζð3Þ :

ð28Þ

This gives the following decoherence rate (Eq. (7)):

τ�1
D ðΔxÞ ¼ 27cζð3Þ

32π4RS

þ
27ic ψð1Þ 1� iΔx

4πRS

� �
� ψð1Þ 1þ iΔx

4πRS

� �� �
32π3Δx

:

ð29Þ

We note that the overlap between two field-theoretic configurations in the
2D “CGHS” (Callen-Giddings-Harvey-Strominger) toy model representing a
superposition of a black hole and a white hole or a black hole and a vacuum
was computed22. The analog of Hawking radiation in that tractable but
unphysical model is very different (e.g., its temperature does not depend
on black hole mass, and a superposition representing a black hole with two
different masses would not decohere). Moreover x= x′ (i.e., non-local
superpositions were not considered in Ref. 22). That being said, these CGHS 2D
calculations can be argued to be related by analogy to a Schwarzschild case. They
also present the decoherence by Hawking radiation as something fundamental
and unavoidable, just as we do. However, aside from noting these very broad
parallels, we see no concrete way of relating these CGHS 2D calculations to our
result.

Data availability
Data sharing is not applicable to this article as no datasets were generated or
analyzed.
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