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Floquet group theory and its application
to selection rules in harmonic generation
Ofer Neufeld1,2, Daniel Podolsky2 & Oren Cohen1,2

Symmetry is one of the most generic and useful concepts in science, often leading to con-

servation laws and selection rules. Here we formulate a general group theory for dynamical

symmetries (DSs) in time-periodic Floquet systems, and derive their correspondence to

observable selection rules. We apply the theory to harmonic generation, deriving closed-form

tables linking DSs of the driving laser and medium (gas, liquid, or solid) in (2+1)D and (3+1)

D geometries to the allowed and forbidden harmonic orders and their polarizations. We

identify symmetries, including time-reversal-based, reflection-based, and elliptical-based

DSs, which lead to selection rules that are not explained by currently known conservation

laws. We expect the theory to be useful for ultrafast high harmonic symmetry-breaking

spectroscopy, as well as in various other systems such as Floquet topological insulators.
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Symmetry has been used as a principle concept throughout
science1. It simplifies problems and hints to initial ansatz
solutions. For example, symmetries give rise to conserved

quantities, and to selection rules for electronic transitions in
molecules and solids2. A unique class of symmetries are spatio-
temporal symmetries (denoted dynamical symmetries (DSs)),
which are exhibited by time-periodic Floquet systems. Floquet
systems are very widespread, including Floquet topological
insulators3–6, Floquet–Weyl semimetals7,8, modulated photonic
and solid state lattices3,9–14, Bose–Einstein condensates15–17,
and more. Still, the manifestation of DSs and their observed
selection rules in Floquet systems has not yet been formulated by
a general approach, but rather has been limited to several ad-hoc
cases18–20.

A particular Floquet process of interest is harmonic generation
(HG) in both the perturbative21–23, and non-perturbative high
harmonic generation (HHG) regime24,25. HHG provides a unique
table-top source of coherent radiation in extreme UV and X-ray
spectral regions, and serves for producing attosecond pulses for
ultrafast spectroscopy25. The HG process is greatly affected by
DSs in the driving laser and material target that dictate the
allowed emission. For instance, HG by a half-wave symmetric
driving laser that interacts with isotropic media results in odd-
only harmonics18. Additionally, discrete rotational DSs have been
employed for generating circularly polarized high harmonics
using bi-circular two-color laser fields26–34, as well as other
combinations of drivers and molecular targets19,20,35–38. Notably,
to date, all known selection rules in HG can be explained and
derived from DSs, or equivalently by conservation laws.

Mathematically, symmetries are best described by group the-
ory, which provides a rigorous platform for their analysis.
Space–time groups that describe DSs (excluding time-reversal
symmetries) were presented in the 1960s39, yet they were not
utilized for exploring Floquet systems. A closely related theory
was developed in the 1970s describing so-called line-groups40,41,
which characterize the spatial symmetries of polymers. The
selection rules in polymers are determined by analyzing the sys-
tem’s eigenstates and transition probabilities under finite per-
turbations. This approach however, is inappropriate for Floquet
systems because they are continuously excited by a strong time-
dependent perturbation that requires a dynamical theory. Selec-
tion rules in Floquet systems thus arise from the actual time-
dependent dynamics, which is generally unknown and may be
extremely complex (as in many-body systems). A unified analy-
tical approach for describing DSs and their resulting selection
rules in Floquet systems will therefore be useful in many areas of
physics and chemistry.

Here, we explore the symmetries in Floquet systems using
group theory. We systematically derive DSs as generalized pro-
ducts of spatial and temporal transformations in both (2+ 1)D
and (3+ 1)D, yielding closed-form dynamical groups that
describe the symmetries of Floquet systems. We prove that if a
time-dependent Hamiltonian commutes with a dynamical group,
then the group’s generating operators dictate the evolution of all
the physical observables in the system, and we derive the resulting
restrictions for all DSs. We apply the theory to HG from gaseous,
liquid, or solid media, in either collinear or non-collinear geo-
metries (in both perturbative and non-perturbative regimes), and
derive tables linking the harmonic emission selection rules to the
symmetry of the laser–matter system. We introduce several DSs
that lead to selection rules, including time-reversal-based DSs,
reflection and inversion-based DSs, and an elliptical DS that can
be used to control the polarization properties of high harmonics.
Remarkably, some of the selection rules are not explained by
currently known conservation laws.

Results
Symmetry elements in Floquet systems. The symmetries of
Floquet systems can be described by adjoining point group-like
dimensions (molecular-like) that describe spatial symmetries,
and an infinite and periodic dimension which is space group-
like (lattice-like) that describes the T-periodic time axis and
temporal symmetries. For simplicity, we exclude spatial transla-
tional symmetries (extension to time-crystals is possible), and
only deal with vectorial time-dependent functions (though
the method also applies to scalar functions). Considering a
general time-dependent vector field E(t), a symmetry of
the field is an operation that leaves it invariant. Thus, X̂ is a
symmetry of E(t) if X̂�E(t) = E(t). X̂ can be a purely spatial
operation, a purely temporal operation, or a product of
temporal and spatial operations. In the (2+ 1)D case, there are
only two relevant types of spatial symmetry elements: rotations,
denoted by the operator R̂n (R̂n stands for rotation by an angle
2π/n), and reflections, denoted by the operator σ̂. In (3+1)D
we also consider spatial inversion î, and improper rotations
ŝn ¼ σ̂h � R̂n (σ̂h stands for reflection in the plane perpendicular to
the adjoined rotation axis). Temporal symmetry elements include
time-reversal, denoted by T̂ (which is order 2), and time-trans-
lations, where translations by time T/n are denoted by τ̂n (which
is order n).

We derive here a general theory for Floquet systems by
considering all products of spatial and temporal operations that
close under group multiplication. We exclude purely spatial
transformations2 since they arise only in trivial cases (such as
reduced dimensionality), where the symmetry group is a direct
product of the spatial and dynamical groups. This exclusion
greatly reduces the amount of DSs that permit closure. For
instance, consider a general DS with temporal and spatial parts,
X̂t � X̂s. If this DS is raised to the order of X̂t, then X̂s raised to the
order of X̂t must be the spatial identity (otherwise, we get a purely
spatial transformation). This, combined with the fact that T is the
basic period of E(t), implies that either X̂t and X̂s have the same
order, or X̂s is the spatial identity, permitting purely temporal
DSs. In what follows, this approach is used to systematically
derive all DSs in Floquet groups according to their operation
order.

DSs and groups in (2+1)D. We start out by considering the (2
+1)D case, and derive DSs that are products of 2D spatial and
temporal operations. Adjoining order-2 temporal operators with
spatial reflection yields the following DSs (Fig. 1):

D̂ ¼ T̂ � σ̂ ð1Þ

Ẑ ¼ τ̂2 � σ̂ ð2Þ

Ĥ ¼ T̂ � τ̂2 � σ̂ ð3Þ

The same temporal operations can also be adjoined to rotations
by 180° (Fig. 2):

Ĉ2 ¼ τ̂2 � R̂2 ð4Þ

Q̂ ¼ T̂ � R̂2 ð5Þ

Ĝ ¼ T̂ � τ̂2 � R̂2 ð6Þ
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Next, we map out higher order operators that involve rotations
(temporal screw-axes):

Ĉn ¼ τ̂n � R̂n ð7Þ

The operator Ĉn is a DS of bi-circular EM fields, and of the
Hamiltonians of circularly polarized electric fields interacting
with rotationally invariant molecules19,29,30,32,33,38 (Fig. 3a). The
Ĉn operator is generalized to cases where the spatial rotations
return to the identity after more than one cycle (Fig. 3b), denoted
Ĉn;m. This type of DS is exhibited by bi-circular EM fields of
frequencies mω and (n−m)ω32,42, and is expressed as

Ĉn;m ¼ τ̂n � R̂n

� �m� τ̂n � R̂n;m ð8Þ

For m= 1 this operator reduces to Eq. (7).
The above DSs contain spatial transformations that are all

symmetries in molecular groups2. We have also discovered a type
of DS with a spatial term that has no analog in molecules. This is
a discrete elliptical symmetry that generalizes Eq. (8) by
considering rotations along an ellipse instead of a circle. By
convention, we define elliptical symmetries to always have their
major axis along the x-axis. This symmetry is expressed as
products of rotation and scaling operators:

ên;m ¼ τ̂n � L̂b � R̂n;m � L̂1=b ; where ð9Þ

L̂b ¼
1

b

� �
ð10Þ
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Fig. 2 Order-2 spatiotemporal DSs in (2+ 1)D involving spatial rotations by 180° with examples for each symmetry. (a) Ĉ2 symmetry for the example field
E(t)=sin(ωt)x̂+sin(3ωt+π/7)ŷ, (b) Q̂ symmetry for the example field E(t)=sin(ωt)x̂+(sin(ωt)+sin(4ωt))ŷ, and (c) Ĝ symmetry for the example field E(t)
=(sin(2ωt)+cos(3ωt))x̂+cos(ωt)ŷ. The fields are represented on Lissajou plots. The spatial parts of the operators is indicated by dashed arrows, colored
arrows in the plots indicate the direction of time
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is a scaling transformation along the elliptical axis spanned in
Cartesian coordinates, and 0 ≤ b ≤ 1 is the ellipticity of the
underlying symmetry (see example third-order case in Fig. 3c).

The DSs described above form the basis of dynamical groups
(or Floquet groups). Physically, this means that a specific Floquet
system can simultaneously exhibit several types of DSs, that is, its
symmetry properties are uniquely defined by a set of generating
operators. We mention several examples (more examples are
given in supplementary note (SN) 4 in supplementary table 1, see
SN 5 for further discussion). First, there are order-2 groups with
one generator (examples seen in Figs. 1 and 2), and cyclic groups
of higher order that have Ĉn;m or ên;m as generators (Fig. 3a),
which are all abelian. Groups with two generators can be either
abelian (Fig. 4a, b), or non-abelian (Fig. 4c).

DSs and groups in (3+1)D. We now consider the full (3+1)D
case. In terms of the symmetry operations themselves, this means
upgrading reflection axes to planes, and rotational operators to
revolve around specific axes. Thus, all DSs in Eqs. (1)–(10) are
extended to the 3D case by choice of plane or axis. For example,
elliptical rotations are extended to 3D by denoting the z-axis as
the rotation axis, and specifying the axis around which the scaling
transformation occurs (within the xy plane):

ên;m ¼ τ̂n � L̂yb � R̂z
n;m � L̂y1=b; where ð11Þ

L̂yb ¼
1

b

1

0
B@

1
CA ð12Þ

An example for the (3+1)D case of the Ĉ2 DS is shown in
Fig. 5a. Beyond these DSs, (3+1)D also offers DSs that have no
analog in (2+1)D. These include order-2 DSs with spatial
inversion appended to temporal operations (see Fig. 5b):

Ĵ ¼ T̂ � î ð13Þ

F̂ ¼ τ̂2 � î ð14Þ

Â ¼ T̂ � τ̂2 � î ð15Þ

and DSs that involve spatial improper rotations, which are
products of a rotation and a reflection about the plane normal to
the rotation axis. There are two different improper rotational DSs,
for even or odd orders, respectively. For even orders we define the

DS:

M̂2n;m ¼ τ̂2n � σ̂h � R̂2n;m � τ̂2n � ŝ2n;m; ð16Þ

whereas for odd orders we have:

M̂2nþ1;m ¼ τ̂2ð2nþ1Þ � ŝ2nþ1;m ð17Þ

where M̂2n;m is order 2n, M̂2nþ1;m is order 2(2n+ 1), and the
index m is equivalent to that in Eq. (8) (for example see Fig. 5c).
The operator in Eq. (16) was previously considered in cross-beam
geometries20. Naturally, these symmetries can be generalized to
an elliptical case by replacing the standard circular rotations with
elliptical ones. This leads to improper elliptical rotation DSs:

P̂2n;m ¼ τ̂2n � σ̂h � L̂b � R̂2n;m � L̂1=b
� �

¼ ê2n;m � σ̂h ð18Þ

P̂2nþ1;m ¼ τ̂2ð2nþ1Þ � σ̂h � L̂b � R̂2nþ1;m � L̂1=b
� �

ð19Þ

All of the (3+1)D DSs construct similar groups to the (2+1)D
case that have three finite spatial dimensions, and an additional
infinite and periodic time axis. For example, the field shown in
Fig. 5c possesses not only improper rotational DS of order 4, but
also a two-fold rotational DS around the z-axis (Ĉ2), as well as
other DSs which all together form a dynamical group.

Dynamical symmetry selection rules. We derive the physical
constraints that arise in systems exhibiting DSs. We consider a
general periodic time-dependent Hamiltonian: HðtÞ ¼ Hðt þ TÞ.
The Floquet Hamiltonian is defined as43

HF ¼ H tð Þ � i∂tð Þ; ð20Þ

whose eigenstates are T-periodic Floquet modes ( unðtÞj i), with
corresponding quasi-energies (εn). Solutions to the time-
dependent Schrödinger equation (TDSE) are comprised of
Floquet states: ϕnðtÞ

�� 	 ¼ expðiεntÞ unðtÞj i, which we assume are
nondegenerate. If H(t) conforms to a DS group G, then the
Floquet Hamiltonian commutes with all operators in G:

X̂;HF


 � ¼ 0; X̂ 2 G ð21Þ

In this case, the Floquet modes are simultaneous eigenmodes of
the Floquet Hamiltonian, and of X̂. Also, since X̂ is unitary or
anti-unitary, its eigenvalues are roots of unity:
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X̂ unðtÞj i ¼ eiθn unðtÞj i, where θn is real. Thus, if the initial wave
function populates a single Floquet state, the symmetry directly
manifests in the time-dependent probability density ϕn tð Þ�� 	�� ��2 (or
any other quantity that does not depend on the phase of the
state). In this case, any measured observable o(t) also upholds the
DS:

o tð Þ ¼ un tð ÞjÔjun tð Þ� 	

¼ un tð Þ X̂y � X̂ � Ô � X̂y � X̂�� ��un tð Þ� 	 ¼ X̂ � oðtÞ ð22Þ

where X̂y is the inverse of X̂. Any observable then complies to
all the spatiotemporal symmetries in the group G, which imposes
selection rules on its spectrum (Eq. (22) can be generalized to
spatially dependent observables such as flux operators by
transforming the spatially dependent part). In SN 1 we show
that Eq. (22) can be re-written as a set of eigenvalue problems in
the Fourier domain. Also, in SN 2 we show that the conditions
imposed on the temporal evolution can be expressed by the
generating DSs in G alone. If G is non-abelian, unðtÞj i can
become degenerate, in which case Eq. (22) applies only to a set of
commuting operators in G, of which the initial state is chosen as
an eigenmode. Still, for an isotropic ensemble (that contains an
equal population of all degenerate states), the observables are
symmetric under all operations in G even if it is non-abelian,
since the sum of the projections on all degenerate states is always
symmetric. unðtÞj i may also become degenerate if G contains
time-reversal symmetry and the system has a non-integer spin
(through Kramers degeneracy44). This condition results from the
anti-unitarity of time reversal, as opposed to spatial reflections
which are unitary, hence this feature does not have an analog in
previously derived line-groups41 and space–time groups39. In this
case, Eq. (22) still holds for isotropic ensembles that populate an
equal amount of the Kramers pairs (the degenerate time reversal
partner states) due to the same conditions described above. Lastly,
we note that in a homogenous chiral ensemble, any DSs that
involve spatial reflections, inversions, or improper rotations will
not lead to selection rules as a consequence of the medium
breaking those symmetries45.

Selection rules for HG. As an example, we apply the theory to
HG, deriving the selection rules for important symmetries, and
discussing several symmetry breaking mechanisms.

We begin by analyzing the symmetries of the HG Hamiltonian.
Within the Born–Oppenheimer (BO) and dipole approximations,

the microscopic Hamiltonian of a nonlinear medium interacting
with a laser field is given in atomic units and in the length gauge by

HHG tð Þ ¼ � 1
2

X
j

∇2
j þ

1
2

X
i≠j

1

ri � rj

���
���

þ
X
j

V rj
� �

þ
X
j

E tð Þ � rj
ð23Þ

where HHG is the full time-dependent multi-electron Hamilto-
nian, rj is the coordinate of the j’th electron, ∇2

j is the Laplacian
operator with respect to rj, V(r) is the potential energy term, E(t) is
the electric driving laser field, and we neglect spin-orbit
interactions. This Hamiltonian describes HG in most atomic,
molecular, and solid media (the theory can in principle be applied
to any Hamiltonian, for example, Hamiltonians that include
spin–orbit terms, non-dipole light–matter interaction terms, etc.).
For a DS to result in selection rules, it should commute with the
Hamiltonian, that is, commute with all four terms in Eq. (23).
Notably, the first three terms in HHG are time-independent, and
therefore invariant under any temporal operation. Furthermore,
the kinetic and electron–electron interaction terms are both
invariant under all possible rotations and reflections. The spatial
symmetries of V(r) can be analyzed by standard group theory. It is
then left to match the symmetries of V(r) with the spatial part of
the DSs. The remaining laser–matter interaction term is the only
time-dependent term in HHG, and the analysis of its symmetries is
equivalent to analyzing the DSs of E(t). Overall, for a DS to
commute with HHG, the driver field should exhibit the DS, and the
potential term should exhibit the spatial part of the DS.

In HG, the high harmonic spectrum is found by Fourier
transforming the time-dependent polarization:

pðtÞ ¼ ψðtÞ r̂j jψðtÞh i ð24Þ

where ψ(t) is the solution to the TDSE. DSs that commute with
the Hamiltonian impose constraints on p(t) (Eq. (22)), and lead
to selection rules on the harmonic spectrum. To derive the
selection rules, we analyze a general p(t) function that upholds
the constraints in the Fourier-domain (SN 3).

Table 1 presents selection rules for (2+1)D DSs in collinear
HG. These include four selection rules: (1) a reflection time-
reversal symmetry (D̂, Ĥ) that results in elliptically polarized
harmonics, where the elliptical major or minor axis corresponds
to the reflection axis. (2) When HG is driven by a laser field
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Fig. 5 Example time-periodic fields exhibiting (3+1)D DSs. a Ĉ2 symmetry for the example field E(t)=sin(3ωt)x̂+cos(ωt)ŷ+cos(2ωt)ẑ, (b) F̂ symmetry for
the example field E(t)=cos(ωt)x̂+sin(3ωt)ŷ+sin(5ωt+π/6)ẑ, and (c) M̂4;1 symmetry for the example field E(t)=(cos(ωt)+cos(3ωt))x̂+(sin(ωt)−sin
(3ωt))ŷ+cos(2ωt)ẑ. The fields are represented on 3D Lissajou plots. The spatial parts of the operators are indicated by dashed arrows and planes, colored
arrows in the plots indicate the direction of time
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which is time-reversal (T̂) invariant, the harmonics are linearly
polarized. Notably, such fields (see supplementary Figs. 3, 4) can
lead to rich two-dimensional electron dynamics and re-collisions
from multiple directions. Nonetheless, symmetry dictates that the
different contributions interfere in a manner that leads to linearly
polarized harmonics only. (3) A reflection translation symmetry
(Ẑ) results in even harmonics that are linearly polarized along the
symmetry axis, and odd harmonics that are linearly polarized
perpendicular to it, as recently demonstrated experimentally by
HHG from cross-linear ω− 2ω pumps45,46. Our results indicate
that this geometry is a subset of a wider array of laser fields that
uphold this symmetry (examples are shown in supplementary
Figs. 1, 2). (4) Elliptical symmetry (̂en;m) results in a high
harmonic spectrum where all harmonic orders have exactly the
same ellipticity, which corresponds to the ellipticity parameter, b,
of the Hamiltonian’s underlying symmetry. The helicities
alternate between harmonic orders, similar to the circular case
(Ĉn;m). Elliptically polarized high harmonics with fully tunable
ellipticity may be useful for ultrafast spectroscopy and HG-based
ellipsometry47. Notably, the fact that the ellipticity is determined
by the DS makes it much more robust to perturbations than in
other techniques30.

For the (3+1)D case that describes non-collinear geometries,
DSs and their associated selection rules are presented in Table 2.
We note two selection rules: (1) n-fold rotational DS (ên;m) leads
to nq harmonics that are all allowed (for integer q), suffice they
are polarized only along the rotation axis. This can lead to photon
mixing between all three polarization axes. (2) Improper
rotational DSs (P̂n;m) lead to selection rules with symmetry-
forbidden harmonics, as well as elliptically/circularly polarized
harmonics. These are both numerically verified and discussed in
SN 6 (see supplementary Figs. 7, 8).

The symmetry of the system (the Hamiltonian in Eq. (23)) is
determined by the DSs of the pump field, and the symmetries of

the potential V(r). Often, HG is driven in atomic gas, and V(r) is
spherically symmetric; hence, selection rules are a consequence of
only the DSs of the pump field (see SN 6). Still, there are various
interesting cases when the medium is not spherically symmetric
that are worth discussing. First, randomly distributed (non-
oriented) molecular gas. In this case, the pump field interacts with
all orientations of the molecule, and it is therefore the symmetry
of the orientation averaged ensemble that affects the HG selection
rules. The orientation-averaged ensemble is either O(3) sym-
metric if it is achiral, or SO(3) symmetric if it is chiral. The O(3)
group is spherically symmetric, so HG from non-oriented achiral
media leads to the same selection rules as those observed from
atomic spherically symmetric media48. Notably, the symmetries
of the molecule are washed-out, and do not lead to selection rules
in the HG spectrum (see SN 7 and supplementary Fig. 9). This
picture is also valid for randomly distributed chiral media, except
that SO(3) does not contain reflection symmetries, so reflectional-
based selection rules are broken (which can be used for chiral
spectroscopy49). Second, a gas of aligned or oriented
molecules38,48,50–52. Here, V(r) depends on the relative orienta-
tion with respect to the laser field, and selection rules are only
observed if both the medium and pump are co-aligned along the
DS axis/plane (see SN 7 and supplementary Fig. 10). Third, HG in
solid media53–56. Some selection rules were previously derived for
HG in solids, but these either dealt with rotational DSs57, or
considered rotation/inversion symmetries of the solid while
assuming it interacts with a monochromatic pump58,59. Here
we derived the general case that accounts for the DSs of the
incident laser field, as well as those of the solid, which requires the
(3+1)D formulation given in Table 2 even for collinear cases
(since the crystal structure can couple different spatial axes).
Thus, apart from the Ĉn operator, the DSs and selection rules
presented in Table 2 are new in solid HG (for details see SN 8).
Here the symmetries of the solid and the respective angle of

Table 1 (2+1)D DSs and their associated selection rules for collinear atomic/molecular HG

Symmetry Order Harmonic generation selection rule

D̂, Ĥ 2 Elliptically polarized harmonics with major/minor axis corresponding to the reflection axis.
T̂, Q̂, Ĝ 2 Linearly polarized only harmonics.
Ẑ 2 Linearly polarized only harmonics, even harmonics are polarized along the reflection axis, and odd harmonics are polarized

orthogonal to the reflection axis.
Ĉ2 2 Odd-only harmonics, any polarization is possible.
Ĉn;m n > 2 (±) circularly polarized nq� mð Þ harmonics, q 2 N, all other orders forbidden.
ên;m n > 2 (±) elliptically polarized nq�mð Þ harmonics, q 2 N, with an ellipticity b, all other orders forbidden.

Table 2 (3+1)D DSs and their associated selection rules for collinear or non-collinear atomic/molecular/solid HG

Symmetry Order Harmonic generation selection rule

D̂, Ĥ 2 The polarization ellipsoid has a major/minor axis normal to the reflection plane.
Q̂, Ĝ 2 The rotation axis is a major/minor axis of the polarization ellipsoid.
Ẑ 2 Odd harmonics are polarized linearly and orthogonally to the reflection plane, only even harmonics allowed polarized

within the reflection plane
Ĉ2 2 Odd-only harmonics in any polarization are allowed polarized in the plane orthogonal to rotation axis, even only

harmonic emission is allowed polarized parallel to the rotation axis.
T̂, Ĵ, Â 2 Linearly polarized harmonics only.
F̂ 2 Odd-only harmonics in any polarization.
ên;m n > 2 (±) elliptically polarized nq� mð Þ harmonics, q 2 N, with an ellipticity b within the plane orthogonal to rotation axis.

Linearly polarized nq harmonics are also allowed, but polarized parallel to the rotation axis.
P̂2n;m 2n > 2 (±) elliptically polarized 2nq� mð Þ harmonics, q 2 N, with an ellipticity b within the plane orthogonal to the improper

rotation axis. nð2qþ 1Þ harmonics are also allowed, but polarized parallel to improper rotation axis.
P̂2nþ1;m 2(2n+ 1) > 2 (±) elliptically polarized 2qð2nþ 1Þ � 2m harmonics, q 2 N, with an ellipticity b within the plane orthogonal to the

improper rotation axis. (2n+ 1)(2q+ 1) harmonics are also allowed, but polarized parallel to improper rotation axis.
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incidence of the pump can determine the system’s overall
symmetry, which could be used for HG spectroscopy. For
example, DS breaking spectroscopy can be used for orientation
spectroscopy (see supplementary Fig. 11), as well as to probe
spin–orbit and magnetic interactions (which break reflectional-
based DSs and time-reversal-based DSs, respectively).

The analysis above assumes that the Hamiltonian is fully
invariant under the DS transformations. In reality, HG
Hamiltonians are not perfectly invariant. For instance, ionization
and the driver pulse finite duration perturb time-reversal and
translation symmetries. In fact, time-reversal symmetry can be
significantly broken when the ionization rate per optical cycle is
large, because field-induced tunneling is a non-reversible process
(this effect is significant for harmonics above the ionization
potential—see SN 6). Still, selection rules in HG are observed
routinely, both numerically and experimentally19,30,48. The
actuality of the selection rule associated with the elliptical
symmetry operation, ên;m, is more subtle, because the kinetic
energy and potential terms are generally not invariant under the
elliptical transformation. One approach to address this incon-
sistency is to use drivers that exhibit both spherical and elliptical
DSs. A burst of linearly polarized pump trains60,61 and a synthetic
piecewise driver pump can conform to this condition (see SN 6
and supplementary Figs. 5, 6). Another approach is to generate
harmonics in media with an elliptically symmetric kinetic term,
for instance by utilizing the concept of transformation optics62. It
is also worth mentioning that propagation effects may influence
the selection rules of macroscopic systems. For example,
individual harmonic polarizations or intensities may change
during propagation (but not forbidden harmonic selection rules).
In fact, specially designed configurations may lead to generation
of circularly polarized high harmonics, even though the emission
from each atom is polarized linearly63, or to quasi-phase
matching of only the even-order harmonics64. Notably, the
presented theory can be extended to include propagation effects
by applying the DS group theory approach also to Maxwell’s
equations and give rise to new selection rules in HG.

Lastly, we discuss the link between DSs and selection rules to
conservation laws. Although Noether’s theorem does not connect
discrete DSs to conservation laws, all previous selection rules in
HG were also derived from conservation laws: the appearance of
only discrete harmonics in the spectrum (the selection rule due to
time-periodicity τ̂1) can be derived from energy conservation, the
Ĉ2 selection rule can be derived from parity conservation, and the
Ĉn selection rule can be derived from conservation of spin
angular momentum of the interacting photons65,66. This duality
is believed to reflect an equivalence between the DS and photonic
pictures in HG65. Interestingly, we find that several of the DSs
(̂en;m; P̂n;m; Ẑ; T̂; Q̂; D̂; and Ĵ) lead to selection rules that have no
analog conservation law derivation. What does this result mean?
It could indicate that the DS perspective is more general than the
photonic perspective. Can conservation laws associated with the
above DSs save the disparity between the two approaches?

Discussion
In this paper, we have implemented the concepts of group theory
to map and characterize DSs exhibited by Floquet systems. We
introduced symmetries that involve time-reversal operations, and
an elliptical symmetry that does not exist in molecular groups.
We proved that if a given Hamiltonian commutes with a dyna-
mical group then the generators of the group constrain the
temporal evolution of Floquet states and the associated physical
observables. We described these symmetry constraints as eigen-
value problems in the Fourier domain, and derived their resulting
selection rules.

For collinear atomic and molecular HG, we discovered several
selection rules: a reflection-time-reversal DS (D̂,Ĥ) results in
elliptically polarized harmonics with an elliptical major/minor
axis parallel to the reflection axis. Any driver with time-reversal
(T̂), or time-reversal followed by π rotations (Q̂,Ĝ) results in
linearly polarized harmonics. A spatial reflection followed by
temporal translation (Ẑ) results in linearly polarized harmonics,
where even harmonics are polarized along the symmetry axis, and
odd harmonics are orthogonal to it45. An elliptical DS (̂en;m)
results in elliptically polarized eigenstates, and is useful for robust
control of the ellipticity of all the high-order harmonics, collec-
tively. These high harmonics would be useful for HG-based
ellipsometry47. Furthermore, we explored non-collinear and solid
HG and found that these include DSs that do not exist in the (2
+1)D case: an inversion-time-translation DS that leads to odd-
only harmonics (F̂), an inversion-time-reversal DS that leads to
linearly polarized harmonics (̂J ,Â), and improper-rotational DSs
that lead to circularly/elliptically polarized high harmonics within
the symmetry plane, and linearly polarized harmonics orthogonal
to it (M̂=P̂). Interestingly, in contrast to current selection rules
that can be derived by DSs or equivalently from conservation
laws, some of the selection rules cannot be derived by the known
conservation laws.

A very exciting aspect of the HG group theory is that it forms a
starting point for utilizing and investigating broken symmetries.
In this respect, even if a DS leads to a ‘boring’ selection rule (for
instance, time-reversal DS, T̂ , that ‘just’ leads to a linearly
polarized spectrum), it still has major implications for ultrafast
spectroscopy of various systems. In this sense, there are no boring
selection rules. For example, the HG group theory can be used to
characterize the symmetries and determine the orientation of any
molecular or solid medium48 (see SN 7, 8), time-transla-
tion and time-reversal DSs (τ̂n; T̂) can be used to find and
characterize atomic and molecular resonances and probe ioni-
zation dynamics (see SN 6), time-reversal DSs (T̂; Q̂; D̂; Ĵ) can be
used to probe magnetic interactions, reflection DSs (Ẑ; D̂) can
shed light on spin–orbit interactions in atomic, molecular, and
solid systems, and as will be reported soon49, reflection/inversion
DSs (Ẑ; D̂; Ĵ; F̂) can be used to probe dynamical chiral pro-
cesses67, and more.

We applied here the derived Floquet group theory for ana-
lyzing HG at the microscopic level. Its application for exploring
wave propagation effects will follow soon. Our work also paves
the way for several interesting directions beyond nonlinear optics.
The introduced elliptical DS can be implemented in other sys-
tems, both static (such as metamaterials22,23 and transformation
optics62) and Floquet, to yield elliptical eigenstates. Extending the
theory to lattice systems by including translational operators gives
rise to dynamical space groups, which may lead to group theory-
based classification of Floquet topological insulators3,6, time-
crystals68, and shaken optical lattices9,10. Extensions to non-
Hermitian systems including PT symmetric waveguides69, and
quasi-periodic Floquet systems70 should also be possible and
exciting, leading to new DSs and selection rules. Overall, we
expect that group theory analysis of DSs will lead to extended
understanding and novel discoveries in various Floquet systems.

Data availability
All relevant data are included in the main manuscript and the
Supplementary information. Additional data are available from
the corresponding authors upon reasonable request.
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