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GSK3 suppression upregulates β-catenin and
c-Myc to abrogate KRas-dependent tumors
Aslamuzzaman Kazi1, Shengyan Xiang1, Hua Yang1, Daniel Delitto2, José Trevino2, Rays H.Y. Jiang3,

Muhammad Ayaz1, Harshani R. Lawrence1, Perry Kennedy1 & Saïd M. Sebti 1,4

Mutant KRas is a significant driver of human oncogenesis and confers resistance to therapy,

underscoring the need to develop approaches that disable mutant KRas-driven tumors.

Because targeting KRas directly has proven difficult, identifying vulnerabilities specific for

mutant KRas tumors is an important alternative approach. Here we show that glycogen

synthase kinase 3 (GSK3) is required for the in vitro and in vivo growth and survival of human

mutant KRas-dependent tumors but is dispensable for mutant KRas-independent tumors.

Further, inhibiting phosphorylation of GSK3 substrates c-Myc on T58 and β-catenin on S33/

S37/T41 and their subsequent upregulation contribute to the antitumor activity of GSK3

inhibition. Importantly, GSK3 blockade inhibits the in vivo growth of G12D, G12V, and G12C

mutant KRas primary and metastatic patient-derived xenografts from pancreatic cancer

patients who progressed on chemo- and radiation therapies. This discovery opens new

avenues to target mutant KRas-dependent cancers.
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Ras proteins are low-molecular-weight GTP/GDP-binding
GTPases that, under physiological conditions, regulate
several important cellular processes, including cell growth,

differentiation, and survival1,2. There are three human Ras genes
that encode HRas, NRas, and KRas proteins. Ras proteins mediate
the transfer of biological information from cell surface receptors
to intracellular signaling pathways such as the Raf/Mek/Erk,
PI3K/Akt, RalGDS/Ral, TIAM1/Rac, and p190/Rho pathways,
eventually leading to regulation of gene expression, cell cycle
progression, survival, cytoskeletal changes, and motility2.

Since their identification in mammalian cells in 1981, Ras
genes have been shown to play pivotal roles in human tumor
pathogenesis, contributing to several hallmarks of human cancer
and driving tumorigenesis in genetically engineered mouse
models1,2. Clinically, KRas, the most frequently mutated Ras
gene, confers resistance to therapy in cancers such as pancreatic,
colon, and lung1,2. Notably, patients with mutant KRas cancers
have poor prognosis, increased tumor aggressiveness and
metastasis, and are less likely to respond to chemotherapy and
targeted therapies3–6, leading the National Comprehensive Can-
cer Network to recommend treatment with epidermal growth
factor (EGF) receptor inhibitors only in patients whose tumors
harbor wild-type KRas4. These observations prompted many to
target mutant KRas, which unfortunately has proven to be diffi-
cult. Although recent efforts to understand the conformational
changes and dynamics of KRas resulted in the identification of
covalent as well as non-covalent binders of KRas7–9, currently
there are no approved therapies that directly target mutant
KRas10. However, mutant KRas-driven cancers may gain
dependencies through other pathways11. Here, by exploring
vulnerabilities of human tumors that depend on mutant KRas, we
sought to identify kinases and their corresponding pathways that
mutant KRas depends on to induce malignant transformation
and to target such pathways for cancer therapy.

Results
GSK3 is required for survival of KRas-dependent tumors. To
identify kinase inhibitors that selectively suppress the viability of
human cancer cells that depend on mutant KRas, we first
screened a 304-compound, well-cured kinome inhibitor library,
the GlaxoSmithKline Published Kinase Inhibitor Set 112, against
human pancreatic (MiaPaCa2) and lung (A549) cancer cells.
Although both MiaPaCa2 and A549 cell lines harbor mutant
KRas, previous work showed these cell lines to be mutant KRas-
dependent and -independent, respectively13,14, and we confirmed
their dependency status in cell culture (Fig. 2) and in mice
(Fig. 3). After cells were treated with the 304 kinase inhibitors (1
µM) for 72 h in 96-well plates using a “one well-one kinase
inhibitor” format, we determined the difference in percent inhi-
bition of viability [D= (% MiaPaCa2 inhibition)− (% A549
inhibition)] for each compound based on the average of two
screens. Figure 1a shows that 197/304 compounds (65%) affected
MiaPaCa2 and A549 cell viability equally, with D values from
−10% to +10%. The GSK3α/β inhibitor SB-732881-H (SB)
(Fig. 1a, inset) had the highest selectivity for inhibiting the via-
bility of MiaPaCa2 versus A549 cells (D= 81%), inhibiting
MiaPaCa2 cells by 85 and 80% (two independent screens) but
A549 cells by only 1 and 3% (Fig. 1b). We synthesized SB in-
house to confirm these findings, showing that SB inhibited
MiaPaCa2 versus A549 cell viability with a 45-fold lower IC50 (0.4
versus 18 µM; Fig. 1c). Other GSK3 inhibitors (Tideglusib,
AZD1080, and BIO) with chemical structures different from SB
showed similar selectivity (Supplementary Fig. 1, top), confirming
that MiaPaCa2 cells are more sensitive than A549 cells to inhi-
bition of GSK3α/β. Furthermore, SB induced caspase-3 activation

and PARP cleavage only in MiaPaCa2 but not in A549 cells
(Fig. 1d), suggesting that GSK3α/β inhibition selectively induces
apoptosis in mutant KRas-dependent tumor cells. Kinome pro-
filing at 100 nM showed that SB is highly selective for GSK3α/β,
with over 96% (216/224) of the kinases inhibited by <10% (data
from ref. 9 plotted as Supplementary Fig. 1, bottom; with per-
mission from Nature Biotechnology). GSK3α and GSK3β were the
two most potently inhibited kinases (80% and 77%, respectively).
Furthermore, unlike GSK3 inhibition with SB that suppresses the
viability of the mutant KRas-dependent MiaPaCa2 cells selec-
tively over that of the mutant KRas-independent A549 cells,
inhibition of other kinases does not. For example, treating Mia-
PaCa2 and A549 cells with the PLK1 kinase inhibitor,
GSK317314A12, or the dual PLK1 and LOK inhibitor,
GSK237701A12, inhibited equally the viability of both cell lines
(Supplementary Fig. 2). The MAPK3 inhibitor, GW301789X12,
and the ErbB4 kinase inhibitor, GR269666A12, had little effects
on the viability of neither MiaPaCa2 nor A549 cells (Supple-
mentary Fig. 2). Furthermore, the multi-kinase inhibitor
GW780056X (ARK5, KIT, CDK4, HIPK1, CLK2, DYRK1, and
CDK2)12 inhibited equally the viability of MiaPaCa2 and A549
cells, whereas another multi-kinase inhibitor, GSK619487A (PKC,
AKT1, IKK, PKA, AKT2, and AKT3)12, had little effect on the
viability of either cell line (Supplementary Fig. 2).

These findings support the hypothesis that mutant KRas-
dependent human cancer cells are vulnerable to GSK3α/β
inhibition and that mutant KRas-dependent cells may require
GSK3α/β for tumor survival. To further investigate this
hypothesis, we used SMARTpool siGENOME small interfering
RNAs (siRNAs) to deplete KRas and GSK3α/β from a panel of
eight mutant KRas-harboring human cancer cell lines and then
determined the effects of silencing these genes on apoptosis and
viability. KRas depletion induced caspase-3 activation and
PARP cleavage in MiaPaCa2 and L3.6pl (pancreatic), SW620
(colon), and Calu-6 (lung) cells but did not in A549 and H460
(lung) and DLD-1 and HCT-8 (colon) human cancer cells
(Fig. 2a), indicating that the former four tumor cell lines are
mutant KRas-dependent, whereas the latter four cell lines are
not. Importantly, GSK3α/β depletion only induced apoptosis in
cell lines that were mutant KRas-dependent (Fig. 2a). Similarly,
GSK3α/β depletion only inhibited viability in cell lines where
depletion of KRas inhibited viability (Supplementary Fig. 3a).
Consistent with these findings, pharmacological inhibition of
GSK3α/β with SB only induced apoptosis and inhibited viability
in cell lines where depletion of KRas induced apoptosis and
inhibited viability (Fig. 2b and Supplementary Fig. 3b). Notably,
SB did not affect the viability of human non-malignant
immortalized cells from kidney (HEK293), pancreas (human
pancreatic epithelial nestin-expressing; HPNE), and ovarian
(T80) origin (Supplementary Fig. 3b). In addition, SB was not
able to induce apoptosis in eight human cancer cell lines that
harbor wild-type KRas (H661, H2126, H322, H1299, H522,
PC9, H4006, and DU145) as compared to those that harbor
mutant KRas (Supplementary Fig. 3c). Finally, Supplementary
Fig. 3d shows that SB treatment induced apoptosis in control
empty vector cells as well as cells ectopically expressing wild-
type GSK3. In contrast, ectopic expression of the constitutive
active GSK3-S9A mutant compromised the ability of SB to
induce apoptosis. Together, the above findings support the
hypothesis that mutant KRas-dependent human cancer cells are
vulnerable to GSK3α/β inhibition and that, in these cells,
mutant KRas requires GSK3α/β to maintain tumor cell survival.

GSK3 or KRas silencing inhibits in vivo growth of KRas-
dependent tumors. To evaluate the effects of SB on tumor

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07644-6

2 NATURE COMMUNICATIONS |          (2018) 9:5154 | DOI: 10.1038/s41467-018-07644-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


growth in vivo, we subcutaneously implanted MiaPaCa2 and
A549 cells on right and left flanks, respectively, of nude mice
(Fig. 3a). After tumors reached 150–200 mm3, mice were treated
daily with vehicle or SB (50 mg/kg intraperitoneally). SB treat-
ment suppressed the growth of MiaPaCa2 but not A549 tumors
(Fig. 3a–c). At day 21, MiaPaCa2 tumor growth was inhibited by
81% in SB-treated mice compared with vehicle-treated mice
(Fig. 3b), whereas growth of A549 tumors was not inhibited
(Fig. 3c). The difference in the average tumor volume between
vehicle- and SB-treated MiaPaCa2 tumors was statistically sig-
nificant starting at day 7 and remained so thereafter (Fig. 3b).

To determine whether depletion of either GSK3α/β or KRas
affects MiaPaCa2 and A549 tumor growth in mice, we transfected
MiaPaCa2 and A549 cells with non-targeting (NT), KRas, or
GSK3α/β siRNA for 48 h and then subcutaneously implanted
equal numbers of harvested cells on right (MiaPaCa2) and left
(A549) flanks. An aliquot from the same cells used for
implantation was analyzed by western blot to confirm depletion
(Fig. 3d, e, insets). Compared with control NT siRNA, knock-
down of KRas in MiaPaCa2, but not in A549, cells inhibited
tumor growth in mice, confirming in vivo the dependency of
MiaPaCa2 but not A549 tumors on KRas. Importantly, depletion
of GSK3α/β inhibited MiaPaCa2 but not A549 tumor growth,
further supporting the hypothesis that mutant KRas-dependent
but not -independent tumors require GSK3α/β for growth and
survival. Differences in average tumor volume of NT versus KRas
or GSK3α/β-depleted MiaPaCa2 tumors were statistically sig-
nificant starting at day 4 (Fig. 3d, e).

SB inhibits growth of mutant KRas xenografts from pancreatic
cancer patients. To determine whether the GSK3 inhibitor can
also inhibit growth of patient-derived xenografts (PDXs), we used
fresh tumor biopsies from three pancreatic cancer patients.
Patient 1 (G12C mutant KRas; poorly differentiated T3N1 stage
IIB) was refractory to neoadjuvant FOLFIRINOX (oxaliplatin
(Eloxatin®), leucovirin, irinotecan, and fluorouracil)/radiation;
patient 2 (G12V mutant KRas; poorly differentiated T3N1 stage
IIB) had no therapy; and patient 3 (G12D mutant KRas; stage IV
hepatic metastasis) progressed after gemcitabine (Gemzar)/
abraxane (albumin-bound or nab-paclitaxel)/xeloda (Capecita-
bine) with radiation. Freshly resected tumors were sub-
cutaneously implanted in NSG mice as previously described15

and randomized into vehicle (n= 10) or SB (n= 9–10) groups
for each of the PDXs. Throughout treatment, SB significantly
inhibited tumor growth of all three PDXs (Fig. 3f–h). By the last
day of vehicle treatment, PDXs from patients 1, 2, and 3 showed
average growth of 531%, 492%, and 522%, respectively. In con-
trast, SB treatment resulted in only 179%, 232%, and 207%
growth, respectively (Fig. 3f–h). Differences in tumor growth
between vehicle- and SB-treated mice were statistically significant
starting at day 3 (patient 1) and day 2 (patients 2 and 3) (Fig. 3f–h
and Supplementary Fig. 4a–c).

SB treatment of mice blocks c-Myc and β-catenin phosphor-
ylation. To determine whether SB inhibited its target in vivo, we
evaluated whether SB affected phosphorylation of the
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Fig. 1 Kinome screen identifies GSK3 inhibitor that suppresses mutant KRas-dependent cells. a MiaPaCa2 (mutant KRas-dependent) and A549 (mutant
KRas-independent) human tumor cells were treated for 72 h in 96-well plates with 304 kinase inhibitors (1 µM) using a one well-one inhibitor format.
D [(% inhibition of viability of MiaPaCa2)− (% inhibition of viability of A549)] was determined for each compound based on the average of two screens.
b Effects of SB on percent cell viability from both screens. c IC50 determination of in-house synthesized SB (experiment done three times). dWestern blots
showing SB-induced caspase-3 activation and PARP cleavage in MiaPaCa2 but not A549 cells (experiment done three times)
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GSK3 substrates c-Myc and β-catenin in MiaPaCa2 and A549
xenografts. As shown in western blots, MiaPaCa2 but not A549
tumors from vehicle-treated mice contained high levels of phos-
phorylated c-Myc (Fig. 4a), as measured by an antibody that
recognizes phospho-T58 c-Myc. T58 on c-Myc is phosphorylated
by GSK316. Phosphorylation of c-Myc on T58 was blocked in
MiaPaCa2 tumors from mice treated with SB, indicating that SB
reached its target in vivo. Similar to the c-Myc results, MiaPaCa2,
but not A549, tumors from vehicle-treated mice contained high
levels of phosphorylated β-catenin, as measured by an antibody
that recognizes phospho-S33/S37/T41 β-catenin (Fig. 4a). β-
Catenin phosphorylation by GSK3 on S33, S37, and T41 primes it
for ubiquitination by the βTrCP E3 ubiquitin ligase and
destruction by the proteasome17. Accordingly, we observed total
β-catenin levels to be extremely low in MiaPaCa2 but not in A549
tumors (Fig. 4a). Phosphorylation of β-catenin on S33, S37, and
T41 was blocked in MiaPaCa2 tumors from mice treated with SB,
resulting in increased accumulation of β-catenin. Importantly,
and consistent with our cell culture results, SB treatment induced
apoptosis in MiaPaCa2 but not in A549, tumors in vivo (Fig. 4a).

c-Myc and β-catenin contribute to antitumor activity of GSK3
blockade. The correlation between tumor growth inhibition,
induction of apoptosis, and inhibition of c-Myc and β-catenin
phosphorylation in MiaPaCa2 tumors in vivo suggested that c-
Myc and/or β-catenin may contribute to the antitumor activity of
SB. To test this hypothesis, we determined the effects of SB
treatment (1 µM) in MiaPaCa2 and A549 cells on phospho-β-
catenin, phospho-c-Myc, and their corresponding total levels.
Consistent with in vivo results (Fig. 4a), MiaPaCa2 cells had high
levels of phospho-S33/S37/T41 β-catenin and little total β-catenin
(Fig. 4b). In addition, β-catenin phosphorylation was rapidly

(within 10 min) blocked by SB, and this blockade was paralleled
by an accumulation of total β-catenin levels. A small and tran-
sient increase in phospho-β-catenin occurred between 8 and 24 h,
but the increase in total β-catenin was maintained. Similarly, SB
rapidly decreased phospho-T58-c-Myc levels, which was paral-
leled by a modest increase in total c-Myc in the first 2 h followed
by substantial increases at 4 and 8 h. This is consistent with the
observation that phosphorylation of T58 by GSK3 is associated
with c-Myc degradation16. In contrast to the increase in β-catenin
levels that was maintained until 72 h, total c-Myc decreased after
8 h and was barely detectable by 72 h (Fig. 4b). This is consistent
with in vivo results where long-term (21 days) SB treatment led to
lower levels of c-Myc (Fig. 4a). In A549 cells, SB transiently
decreased phospho-β-catenin at 10 and 30 min but this had little
effect on the already high levels of total β-catenin (Fig. 4b). SB
decreased phospho-c-Myc levels but had little effect on total
levels, except a barely detectable effect after 24 h. Consistent with
the results shown in Figs. 1d, 2b, and 4a, SB induced apoptosis in
MiaPaCa2 but not in A549 cells (Fig. 4b).

To further confirm whether the effects of SB on c-Myc and β-
catenin levels are due to inhibition of GSK3, we have shown that
depletion of GSK3α/β with siRNA phenocopies the pharmaco-
logical inhibition of GSK3α/β with SB by upregulating c-Myc and
β-catenin in MiaPaCa2 but not in A549 cells (Fig. 5a). We further
reasoned that if SB inhibition of β-catenin and c-Myc
phosphorylation contributes to apoptosis induction, then forced
expression of phosphorylation-deficient mutants of β-catenin and
c-Myc should induce apoptosis in MiaPaCa2 but not in A549
cells. To this end, we infected these cells with GFP-lentivirus
constructs containing mutant β-catenin that lacks the S33,
S37, and T41 GSK3 phosphorylation sites and is therefore
constitutively active18 or a T58A c-Myc mutant that cannot
be phosphorylated by GSK3. After 96 h, western blots showed
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Fig. 2 Silencing of GSK3α/β induces apoptosis only in mutant (Mt) KRas-dependent cancer cells. Mutant KRas-dependent (MiaPaCa2, L3.6pl, SW620, and
Calu-6) and mutant KRas-independent (A549, H460, DLD-1, and HCT-8) human cancer cell lines were a transiently transfected with SMARTpool KRas,
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PARP, and Vinculin. For a and b, experiments were repeated at least three times for each cell line
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that ectopic expression of mutant β-catenin and mutant c-
Myc induced apoptosis in MiaPaCa2 but not in A549 cells
(Fig. 5b).

To investigate whether SB-induced apoptosis is mediated by c-
Myc and/or β-catenin, we determined whether CRISPR/Cas9-
targeted knockout of c-Myc or β-catenin rescues MiaPaCa2 cells
from SB-induced apoptosis. After MiaPaCa2 cells were infected
with lentivirus containing Cas9 and guide RNA (gRNA) to either
β-catenin or c-Myc or scrambled for 48 h and subjected to
antibiotic selection, we treated the resulting stable cells with SB
for 48 h. In scrambled gRNA-infected cells, SB inhibited c-Myc
and β-catenin phosphorylation, upregulated c-Myc and β-catenin,
and induced caspase-3 activation and PARP cleavage (Fig. 6a). In

contrast, targeted knockout of c-Myc and β-catenin in cells
infected with c-Myc or β-catenin gRNA abrogated SB-induced
apoptosis (Fig. 6a). Similar results were obtained with the other
mutant KRas-dependent cells (Calu-6, L3.6pl, and SW620) where
knocking out c-Myc or β-catenin prevented SB from inducing
apoptosis (Fig. 6b–d). Unlike mutant KRas-dependent cells, in
A549 cells, SB did not induce apoptosis in scrambled gRNA-
infected cells or in c-Myc- and β-catenin-knocked out cells
(Fig. 6). Taken together, we found that pharmacological
inhibition and gene silencing of GSK3α/β selectively induced
apoptosis and inhibited tumor growth of mutant KRas-dependent
tumors, which was at least in part mediated by c-Myc and β-
catenin.
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Discussion
In this manuscript, we revealed that human tumors dependent on
mutant KRas require GSK3α/β for viability, survival, and tumor
growth. In contrast, GSK3α/β is dispensable for mutant KRas-
independent tumors. Importantly, the in vivo growth of three
PDXs from primary chemo-naive, primary refractory, and
metastatic refractory pancreatic cancer patients was inhibited by
the GSK3α/β inhibitor SB. These results suggest that SB can
overcome resistance to chemo- and radiation therapy since two of
the fresh biopsies were resected from patients who progressed on
FOLFIRINOX, gemcitabine, abraxane, xeloda, and/or radiation.
The antitumor effects of SB were independent of the mutant KRas
isoforms, which included G12D, G12V, and G12C (fresh biop-
sies) and G12D, G12V, G12C, and Q61K (cell lines). This is
important as it has been suggested that the position and type of
mutations in KRas influence the transforming capacity of mutant
KRas proteins and drug responses of cancer patients. It is
important to note that GSK3 inhibitors did not score in previous
chemical screens. One possible reason for this is that unlike our

chemical screen, the previous chemical screens were not designed
specifically to identify compounds that inhibit mutant KRas-
harboring/KRas-dependent, but not mt KRas-harboring/KRas-
independent human cancer cell lines. The second possible reason
is that in all our genetic depletion and pharmacological inhibition
studies, we have targeted simultaneously both GSK3α and GSK3β.
Indeed, mutant KRas-dependent human cancer cells undergo
apoptosis only when both GSK3α and GSK3β are knocked down
simultaneously (Supplementary Fig. 5). In contrast, knocking
down GSK3α or GSK3β individually did not induce apoptosis
(Supplementary Fig. 5).

An important finding of our studies is that suppression of
GSK3α/β inhibits mutant KRas-dependent tumor growth at least
in part by a c-Myc- and β-catenin-dependent mechanism. Con-
sistent with this, depletion of GSK3α/β increased c-Myc- and β-
catenin levels; and forced expression of β-catenin or c-Myc
mutants that lack GSK3 phosphorylation sites is sufficient to
induce apoptosis. Strikingly, these findings suggest that in mutant
KRas-dependent human tumors, GSK3 has pro-survival activity,
whereas β-catenin and c-Myc have pro-apoptotic activity.
Although the roles for GSK3α/β in promoting apoptosis are well
documented, there is also evidence for its pro-survival function.
The reasons for this bi-functional role of GSK3 in survival and
apoptosis have been thus far poorly understood and mainly
explained by context-specific effects regarding cell lineage, sig-
naling circuits, and transformation status19. For example, GSK3α/
β induces apoptosis during DNA damage, hypoxia, and endo-
plasmic reticulum stress19. However, in some cancers GSK3 is
overexpressed20, and promotes survival by several mechanisms,
including activation of the canonical21 and non-canonical22

nuclear factor-kB pathways, inhibition of apoptotic signaling and
caspase activation23, and inhibition of c-Myc-induced apopto-
sis24. Our findings are consistent with a pro-survival role for
GSK3 in mutant KRas-dependent tumors, where GSK3 inhibition
leads to c-Myc- and β-catenin-dependent tumor suppression.

Although c-Myc overexpression is associated with tumorigen-
esis, c-Myc can also induce apoptosis24,25. For example, c-Myc
can induce apoptosis by stabilizing p53 through Foxo/ARF
blockade of Mdm226 and by activating ATM kinase27, TRAIL28,
or the pro-apoptotic protein Bax29. When we inhibited GSK3
with SB treatment, c-Myc levels were substantially increased
within 4 h of treatment, and this coupled with the gene knockout
results of Fig. 6, suggest that c-Myc was necessary for SB to
induce apoptosis in mutant KRas-dependent human cancer cells.

c-Myc is a known transcriptional target of β-catenin; therefore,
SB could induce apoptosis by inhibiting the phosphorylation of β-
catenin, leading to its stabilization and induction of c-Myc
transcription. This is consistent with the data in Fig. 4b, where the
increase in β-catenin is accompanied by modestly increased c-
Myc levels at early time points. Alternatively, SB could directly
induce c-Myc in a β-catenin-independent manner by inhibiting
its GSK3-dependent phosphorylation on T58. The significant
increase in total c-Myc levels at 4 and 8 h, beyond the initial
modest increase at earlier time points (Fig. 4b), coupled with the
fact that T58 phosphorylation promotes c-Myc degradation16,
support this direct mechanism. Further support for this is pro-
vided by the demonstration that the T58A c-Myc mutant is able
to induce apoptosis on its own.

Together, these findings suggest that in mutant KRas-
dependent human cancer cells, inactivating GSK3α/β induces
apoptosis in a β-catenin- and c-Myc-dependent manner. Our
findings also suggest that during progression of some tumors,
mutant KRas may lead to a GSK3α/β-dependent downregulation
of β-catenin and/or c-Myc and that inhibition of GSK3 in these
cells unleashes the pro-apoptotic action of β-catenin and/or c-
Myc. In contrast, GSK3α/β inhibition did not upregulate β-
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catenin and c-Myc and did not induce apoptosis in mutant KRas-
independent human tumors.

In summary, the novel mechanism presented here opens new
avenues to therapeutically target mutant KRas-dependent human
cancers by suppressing GSK3α/β, leading to β-catenin- and/or c-
Myc-dependent tumor abrogation. This significant finding has
the potential to overcome the challenges that mutant KRas poses
as a prevalent driver of human oncogenesis and therapy resis-
tance. The GSK3α/β inhibitor sensitivity of xenografts from pri-
mary and metastatic pancreatic cancer patients who progressed
on chemo- and radiation therapies warrants further clinical
investigation of GSK3α/β inhibitors as single agents or in
combination.

Methods
Cells lines, cell culture, and reagents. Human lung (Calu-6, A549, H460, H661,
H2126, H322, H1299, H522, PC9, and H4006), colon (SW620, DLD-1, and HCT-
8), pancreatic (MiaPaCa2 and L3.6pl), and prostate (DU145) cancer cell lines and
HEK293 cells were obtained from the American Type Culture Collection and
cultured in Dulbecco’s modified Eagle’s medium (DMEM) or RPMI-1640 medium.
Normal/immortalized T80 cells (J. Liu and R. Bast, MD Anderson Cancer Center)
were cultured in Medium 199/MCDB 105. hTERT-immortalized HPNE cells
(Channing Der, University of North Carolina) were grown in medium D (mixture
of M3 medium and DMEM) containing one volume of M3 Base F culture medium
(InCell Corp.), three volumes of glucose-free DMEM, 5.5 mM glucose, 10 ng/mL
EGF, and 50 µg/mL gentamycin. All media were supplemented with 10% heat-
inactivated fetal bovine serum, 10 U/mL penicillin, and 10 µg/mL streptomycin. SB
was synthesized in-house as described previously30 and dissolved in dimethyl
sulfoxide (DMSO; Sigma-Aldrich). Tideglusib, AZD1080, and BIO were purchased
from SelleckChem. The Published Kinase Inhibitor Set 1 (PKIS1) of 304
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compounds was received from GlaxoSmithKline (GSK). All cell lines were myco-
plasma-free, monitored regularly with HEK-blue2 cells and mycoplasma detection
kit from invivogen (cat# rep-pt1).

Screening of PKIS1 library. KRas-dependent (MiaPaCa2) and -independent
(A549) human cancer cell lines were screened with the 304 kinase inhibitor
compounds of PKIS1 library to identify a kinase inhibitor that can selectively
inhibit the viability of MiaPaCa2 over A549 cells using MTT assays. Cells were
cultured in 96-well plates at a density of 3 × 103 cells/well and allowed to adhere
overnight. The medium was then replaced with medium containing vehicle (0.2%
DMSO) or 1 µM of each of 304 compounds for 72 h in one compound-one well
format. After cells were incubated with 1 mg/mL MTT (Sigma), cell viability was
quantified as described previously31.

Western blot analysis. To prepare whole-cell lysates, cells were washed twice with
phosphate-buffered saline (PBS) and lysed on plates in Mammalian Protein
Extraction Reagent (Thermos Scientific, catalog no. 78501) supplemented with
protease inhibitor cocktail, 2 mM phenylmethylsulfonyl fluoride, 2 mM Na3VO4,
and 6.4 mg/mL p-nitrophenylphosphate. Proteins from the lysates were separated
by SDS-polyacrylamide gel electrophoresis and western blotted with the following
antibodies: (a) from Santa Cruz: β-catenin (H-102; catalog no. sc-7199) and c-Myc
(9E10, sc-40); (b) from Abcam: phospho-c-Myc (phospho-T58) (ab185655); (c)
from Cell Signaling: GSK3α (D80E6; catalog no. 4337), GSK3β (27c10; catalog no.
9315), cleaved caspase-3 (catalog no. 9664L), cleaved PARP (catalog no. 5625S),
phospho-β-catenin (Ser 33/37/Thr41; catalog no. 9561); (d) from Calbiochem: anti-
c-KRas (Ab-1; catalog no. OP24); and (e) from Sigma-Aldrich: vinculin (catalog no.
V9131-.2ML) and anti- β-actin (catalog no. A5441).

Vector constructions and lentivirus production. Mutant T58A c-Myc was gen-
erated by mutagenesis PCR using forward primer T58A-F
(TGCTGCCCGCCCCGCCCCTGTCCCCTAGCCGCC) and reverse primer T58A-
R (GGGGCGGGGCGGGCAGCAGCTCGAATTTC) (see Table 1 in the Supple-
mentary Information) and wild-type c-Myc from MiaPaCa2 cells as template. For
overexpression studies, T58A c-Myc was inserted in lentiviral pLEX-3FLAG-T2A-
GFP vector (modified from pLEX-MCS vector from Openbiosystem) between NotI
and BamHI sites. Mutant β-catenin (pcDNA3 deltaN47 β-catenin, Addgene plas-
mid #19287) was amplified by PCR and also constructed in pLEX-3FLAG-T2A-
GFP vector between NotI and BamHI sites.

To knockout c-Myc and β-catenin in human cancer cell lines, we constructed
gRNAs in LentiCRISPRv2 vector (addgene #52961 and #83480) as described
previously32 and tested their knockout efficiency in MiaPaCa2 cells by western blot.
The most efficient gRNA vector was selected for knocking out c-Myc (gRNA
sequence: CTGCTCGCCCTCCTACGTTG) and β-catenin (gRNA sequence:
TCCCACTAATGTCCAGCGTT) in all cell lines (see Table 1 in the Supplementary
Information). The scramble gRNA (GCACTACCAGAGCTAACTCA) was also
inserted into LentiCRISPRv2 vector and served as negative control for all cell lines.

For lentivirus production, the lentiviral vector (10 µg) and the two packaging
viral vectors, pMD.2G (5 µg) and pspPax2 (5 µg), were co-transfected into
293T cells using polyethylenimine (25 kDa, 1 µg/µL)33,34. The virus supernatant
was collected at 48 h and concentrated at 1:100 ratio using Lenti-X™ Concentrator
(TaKaRa/Clontech, #631231). Viral RNA genome copies/mL were determined
using Lenti-X™ qRT-PCR Titration Kit (TaKaRa/Clontech).

gRNA-mediated knockout of β-catenin and c-Myc and SB rescue experiments.
To generate stable pools, the cells infected with lentivirus containing scrambled
gRNA, c-Myc gRNA, or β-catenin gRNA were selected with antibiotics (puromycin
or blasticidin) for 5 days before pooling together and SB treatments. To determine
whether knocking out c-Myc or β-catenin rescues from SB-induced apoptosis,
these stable pools were seeded into six-well plates at 0.3 × 106 cells/well and treated
with SB for 48 h at 1 μM for MiaPaCa2, 2 μM for Calu-6, L3.6pl, and SW620, and 3
μM for A549 cells. It is important to use early passage (passage 1 or 2 after stable
pool generation) for these experiments. Western blots were performed as described
above to detect phospho-β-catenin (Ser 33/37/Thr41), β-catenin, phospho-c-Myc
(T58), c-Myc, cleaved PARP, cleaved caspase-3, and β-actin.

siRNA-mediated knockdown of KRas and GSK3α/β. After cells were plated onto
6-well plates for western blotting and then 96-well plates for cell viability assays for
24 h, they were transiently transfected using the Lipofectamine RNAiMAX reagent
(catalog no. 13778; Invitrogen, Carlsbad, CA) with 20 nM SMARTpool Human
KRas siRNA (catalog no. M-005069-00; Dharmacon), SMARTpool NT siRNA #2
(catalog no. D-001206-14-05; Dharmacon), SignalSilence® GSK3α/β siRNA (cata-
log no. 6301; Cell Signaling), and SignalSilence® control siRNA (unconjugated;
catalog no. 6568; Cell Signaling). Transfected cells were collected 48 or 72 h after
transfection for western blot analysis as described above, and after 72 h for
CellTiter-Glo® Luminescent Cell Viability Assay (Promega, Madison, WI, USA) as
described below.

Cell viability assay. Cell viability assays were carried out using the CellTiter-Glo®

Luminescent Cell Viability Assay (Promega, Madison, WI). Cells were seeded in
96-well plates at a density of 3 × 103 to 4 × 103 cells/well, allowed to adhere
overnight, and treated with vehicle (DMSO) or drug for 72 h, after which they were
processed for viability using CellTiter-Glo reagent. Each condition was performed
in replicates of 6 wells.

Antitumor studies of human tumor xenografts in nude mice. Female athymic
nude mice were purchased from Charles River Laboratories (Wilmington, MA).
The mice were housed, maintained, and treated in accordance with the Institu-
tional Animal Care and Use Committee procedures and guidelines. Exponentially
growing A549 and MiaPaCa2 cells were harvested via trypsinization, pelleted at
300 × g for 5 min, resuspended in sterile Dulbecco’s PBS (DPBS; Invitrogen) at 5 ×
106 cells (MiaPaCa2) and 10 × 106 (A549) cells per 100 µL, and injected into right
and left flank, respectively, of each mouse. The tumor xenografts were monitored
with an electronic caliper three times per week. Tumor volume was calculated
using the following formula: volume= (L2W)/2, where L is length and W is width,
with width defined as the largest measurement and length is the smallest mea-
surement. When the tumors reached 150–200 mm3, animals were randomized and
treatment schedules (control or SB) were implemented. The vehicle received 10%
DMSO, 50% PEG (MW 300 from MP Biochemicals, LLC, Solon, OH), and 40%
dH2O; the SB group received 50 mg/kg/day of SB-maleic acid salt. Vehicle and SB
(100 µL) were administered by intraperitoneal injections once daily.

To determine the effects of depleting KRas and GSK3α/β on the growth of
MiaPaCa2 and A549 cells, these cells were transiently transfected with 20 nM of
SMARTpool siGENOME human KRas, GSK3α/β, and NT siRNA as described
above for 48 h, then harvested, washed twice in ice-cold sterile DPBS (Invitrogen),
counted for viable cells by trypan blue exclusion, resuspended in sterile DPBS at
5 × 106 cells (MiaPaCa2) and 10 × 106 (A549) cells/100 µL, and injected into right
and left flanks, respectively, of each mouse. A portion of these transiently
transfected cells were collected to run for western blot analysis to confirm the
knockdown of target genes by siRNA. The tumor xenografts were monitored, and
the volumes were determined three times a week as described above.

Antitumor efficacy studies of PDXs of tumors from pancreatic cancer
patients. To determine whether pharmacological inhibition of GSK3 can inhibit
the growth of PDXs, we obtained fresh tumor biopsies from three pancreatic cancer
patients (University of Florida, IRB protocol # 201600873). Patient 1 (G64) (G12C
KRas mutation), who showed poorly differentiated T3N1 pancreatic cancer (stage
IIB), completed 6 weeks of neoadjuvant FOLFIRINOX with 1 week of radiation.
Therapy was concluded 5 weeks before surgery. CA 19-9 biomarker levels declined
from 500 to 74 during this time, but final pathology demonstrated no tumor
necrosis (poor histopathologic response). Patient 2 (G80) (G12V KRas mutation),
who also showed poorly differentiated T3N1 pancreatic cancer (stage IIB), received
no neoadjuvant therapy. Patient 3 (LM3) (G12D KRas mutation), who had hepatic
metastatic pancreatic cancer (stage IV), progressed after neoadjuvant therapy with
gemcitabine, abraxane, and xeloda with radiation. Therapy duration was 6 weeks
and was completed 6 weeks before surgery.

Upon pancreatic tumor resection, fresh 2-mm tumor pieces were obtained and
transported on ice to the animal surgery suite for subcutaneous implantation into
NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice. The mice were housed,
maintained, and treated in accordance with the Institutional Animal Care and Use
Committee procedures and guidelines (protocol # 201406590). Incisions of 1 cm
were made on right flanks of anesthetized NSG mice, and blunt dissection of the
subcutaneous layer was performed. A viable tumor piece was placed in the flank
subcutaneous tissue, and the skin was closed with surgical clips (generation 1).
Once engrafted and tumors reached end point (1.5 cm in diameter), tumors were
divided evenly into 2-mm pieces and re-implanted into NSG mice as above
(generation 2). Generation 3 was generated similarly (details as described in ref. 15).
When the tumors from early-passage (generation 2 or 3) mice reached
approximately 100–200 mm3, the animals were randomized into vehicle and SB
treatment groups as described above for the cell line xenograft models.

Ectopic expression of β-catenin and c-Myc. The day before infection, 2 × 105

cells were seeded per well of six-well plates. Cells were plated overnight to reach
70–80% confluence and were then infected with concentrated lentiviral (200 × 108

copies total) GFP-EV, GFP mutant β-catenin35, and mutant GFP-T58A c-Myc25,36.
Infected cells were harvested after 96 h and processed for western blot analysis.

Statistical tests. All P values in this manuscript were determined by Student’s t-
test. All error bars in figures represent standard errors.

Data availability
All data generated or analyzed during this study are included in this published
article (and its Supplementary Information files).
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