Fig. 1 | Nature Communications

Fig. 1

From: Contactless steam generation and superheating under one sun illumination

Fig. 1

Operating principle of contactless solar evaporation via thermal downconversion. a Bottom panel: photon penetration depth (reciprocal of absorption coefficient) for liquid water. Top panel: flux spectrum for solar radiation and for thermal blackbody sources at 100 and 200 °C. The penetration depth for solar photons is several orders of magnitude higher than that for thermal infrared photons. b In a conventional solar evaporation structure generator, a solar absorber is placed in contact with the water, and transfers heat from the absorbed sunlight to the water via thermal conduction. c In the proposed contactless solar evaporation structure, the absorber is not in contact with the water. As the absorber heats up, it emits thermal radiation to the water, which is absorbed within a very thin layer (<100 μm) beneath the water/vapour interface

Back to article page