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Leveraging heterogeneity across multiple datasets
increases cell-mixture deconvolution accuracy and
reduces biological and technical biases
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Winston Haynes 2, Meia Alsup1,3, Michael Alonso4, Mark Davis1, Edgar Engleman4 & Purvesh Khatri 1,2

In silico quantification of cell proportions from mixed-cell transcriptomics data (deconvolu-

tion) requires a reference expression matrix, called basis matrix. We hypothesize that

matrices created using only healthy samples from a single microarray platform would

introduce biological and technical biases in deconvolution. We show presence of such biases

in two existing matrices, IRIS and LM22, irrespective of deconvolution method. Here, we

present immunoStates, a basis matrix built using 6160 samples with different disease states

across 42 microarray platforms. We find that immunoStates significantly reduces biological

and technical biases. Importantly, we find that different methods have virtually no or minimal

effect once the basis matrix is chosen. We further show that cellular proportion estimates

using immunoStates are consistently more correlated with measured proportions than IRIS

and LM22, across all methods. Our results demonstrate the need and importance of incor-

porating biological and technical heterogeneity in a basis matrix for achieving consistently

high accuracy.
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Cell-mixture deconvolution is an established in silico
approach for quantifying cell subpopulations directly
from bulk gene expression data of mixed cell sam-

ples1–4. Multiple computational methods have been
developed5,6 to estimate the proportions of immune cells in
blood6 and tissue biopsies7, as well as cell-type specific
expression profiles from bulk expression data8,9. The
underlying assumption in virtually every deconvolution
approach to date is that the observed expression of any given
gene in a mixed-tissue sample is a combination of its
expression across each cellular subset1. Based on this
assumption, methods for estimating cellular frequencies
from mixed tissue data use a variant of a regression model,
such as linear regression3, quadratic programming4, robust
regression7, or support vector regression7. Irrespective of the
type of statistical model, each method requires a reference
expression matrix, called a basis matrix, that is composed of
genes specifically expressed in the expected cell subsets found
in the tissue of interest8.

Typically, a basis matrix is constructed from sorted cell
expression data by combining expression profiles of sorted
immune cells from one (e.g., IRIS2,3) or more datasets (e.g.,
LM227), which are profiled using a single microarray platform to
ensure homogeneity in expression data. However, it is possible
that this approach can introduce a technical bias in a basis matrix
towards the microarray platform used for transcriptome profiling,
resulting in lower deconvolution accuracy for samples that are
profiled using different platforms. Furthermore, basis matrices to
date have been created using expression data solely from healthy
subjects2,3,7, which can further introduce biological bias that
could affect deconvolution accuracy and limit their applicability
to samples from patients with disease.

Here, we show that current deconvolution approaches are
significantly affected by technical and biological bias by
measuring accuracy across 5540 human transcriptomes. We
find that the presence of these biases substantially reduces
deconvolution accuracy. We therefore hypothesized that a
basis matrix created by integrating data from multiple inde-
pendent cohorts of healthy and disease samples profiled using
different microarray platforms would reduce biological and
technical biases and improve accuracy of deconvolution. To
test this hypothesis, we present a new basis matrix, immu-
noStates, that leverages biological and technical heterogeneity
across 6160 whole transcriptomes of human sorted blood cells
measured on 42 microarray platforms. We use a multi-cohort
analysis framework that leverages biological and technical
heterogeneity present across multiple independent studies for
this purpose. This approach has been previously shown to
increase reproducibility in gene expression signatures across a
broad spectrum of diseases including organ transplant, sepsis,
infectious diseases, cancer, and systemic sclerosis10–20. We
show that immunoStates allows for more accurate deconvo-
lution with substantially reduced bias across different micro-
array platforms and disease samples. Importantly, our
analyses show that, for any given basis matrix, different
deconvolution methods produce highly correlated results,
demonstrating that the choice of the matrix is more important
than the deconvolution method itself. We also find that the
accuracy of a basis matrix is strongly dependent on its set of
signature genes rather than the expression values of the gene
themselves. Our findings provide strong evidence for the
importance of the basis matrix in determining deconvolution
accuracy. We conclude that incorporation of technical and
biological heterogeneity in the construction of the matrix
reduces bias, which increases accuracy in cell mixture
deconvolution independently of the method.

Results
Single microarray platform basis matrices contain technical
bias. We hypothesized that a basis matrix created using gene
expression data generated from a single microarray platform
would exhibit significant platform-dependent bias (technical bias)
in deconvolution accuracy. To test our hypothesis, we used IRIS
and LM22 as basis matrices, both of which are constructed using
only healthy samples profiled only on Affymetrix microarrays3,7.
We deconvolved 17 independent datasets consisting of 1071
whole transcriptome profiles of human peripheral blood mono-
nuclear cells (PBMCs) measured across eight microarray plat-
forms from two different manufacturers (see Methods and
Supplementary Table 1) using both basis matrices. We defi-
ned this set as a “technical bias evaluation cohort”. Further,
to generalize our findings across multiple methods, we used
five deconvolution algorithms (linear regression, PERT,
quadratic programming, robust regression, and support vector
regression)3,4,7,21. We estimated accuracy of deconvolution across
samples by computing their goodness of fit as previously
described (see Methods section)7. Briefly, if the original mixed-
tissue sample expression could be reconstituted by combining the
estimated proportions of individual cell types with the expression
from basis matrix, we would observe high goodness of fit and
expect good deconvolution accuracy.

We observed significant differences in goodness of fit between
microarray platforms for both matrices, irrespective of the
method used (Fig. 1a, b), demonstrating the presence of
platform-specific bias. We quantified the extent of these
differences for each basis matrix using median absolute deviation
(MAD) of goodness of fit, a measure of heterogeneity robust to
outliers as described before22, across samples from different
platforms. We calculated MAD as difference in goodness of fit for
each sample from mean goodness of fit across all platforms for a
given basis matrix, and estimated its statistical significance against
the null hypothesis that there was no technical variation between
samples (see Methods section). We observed significant hetero-
geneity in goodness of fit between platforms for both IRIS (MAD
= 0.21, p= 2.71e−8) and LM22 (MAD= 0.09, p= 4.4e−2),
irrespective of the method used (Supplementary Fig. 1).

Arguably, support vector regression re-scales expression data
prior to deconvolution, which is not required for other methods
such as linear model and robust regression. Rescaling gene
expression data when using these methods could potentially
reduce their accuracy. Therefore, we compared estimated
proportions for linear model and robust regression with and
without rescaling gene expression data in the technical bias
evaluation cohort using IRIS and LM22 as basis matrices. We
found there was very high correlation in estimated cellular
proportions suggesting rescaling did not adversely affect linear
model and robust regression (Supplementary Fig. 2). Based on
these results, we chose to maintain a uniform preprocessing
strategy across all methods for the rest of the manuscript.

Leveraging heterogeneity reduces technical bias in a basis
matrix. Next, we hypothesized that a basis matrix created using
multiple microarray platforms will reduce platform-dependent
technical bias in cellular deconvolution. We collected 165 publicly
available gene expression datasets from GEO that profiled
6160 samples from 20 sorted human blood cell types using 42
microarray platforms (Supplementary Fig. 3A and Supplementary
Data 1, see Methods section). We did not discard experiments
based on sorting strategy, platform manufacturer, or disease state
of the sample.

Using these data, we created a new basis matrix consisting of
317 cell-type specific genes, called immunoStates, (Supplementary
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Fig. 3B and Supplementary Data 2, see Methods section). A large
fraction of genes in immunoStates (76%) was not shared with
IRIS or LM22 (Supplementary Fig. 3C). We then deconvolved the
technical bias evaluation cohort using immunoStates as a basis
matrix across all five methods. Unlike IRIS and LM22, there was
no heterogeneity in goodness of fit between microarray platforms
for immunoStates (Fig. 1c; MAD= 0.07, p= 0.16; Supplementary
Fig. 1). Importantly, mean goodness of fit using immunoStates
was significantly higher than IRIS and LM22 (p < 2.2e−16)
irrespective of the method used.

Arguably, the higher goodness of fit of immunoStates could be
due to the higher amount of data used to create it. It is possible
that if the same amount of data were used to create one of the
existing basis matrices, it would have higher goodness of fit as
well. We investigated this argument by modifying LM22 such that
it contained the same genes, but their expression values were
computed using the data sets used for creating immunoStates. We
found that despite increasing the amount of data used to estimate
expression values for LM22 genes, it continued to have platform
bias as before with significant heterogeneity in goodness of fit

(MAD= 0.05, p= 0.05, Supplementary Fig. 4). These results
suggest that better estimation of expression values for genes in a
basis matrix using large amount of data is not sufficient to
increase deconvolution accuracy. Further, these results strongly
suggest that selection of genes in a basis matrix from biologically
and technologically heterogeneous data is more important in
reducing bias. Together, our results demonstrate that a basis
matrix created using heterogeneous data from multiple platforms
reduces technical bias.

Including disease samples in a basis matrix reduces biological
bias. Cell quantification technologies, such as FACS and CyTOF,
use a set of predefined phenotypic markers that are not affected
by either disease- or treatment-induced changes23. For instance,
irrespective of whether a sample is from a healthy control or a
patient with or without any treatment, CD14 and CD56 are used
to identify monocytes and natural killer cells, respectively. Simi-
larly, a basis matrix should be unaffected by disease- and
treatment-induced changes to be broadly applicable across a large
number of diseases and conditions.
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Fig. 1 Analysis of platform bias in deconvolution across multiple methods and matrices. a Goodness of fit values across 1071 human PBMC samples as a
function of microarray platform using the IRIS signature matrix. Goodness of fit is displayed as a stacked barplot with color indicating corresponding values
starting from goodness of fit value of 0.5 or lower up to values of 0.9 and above. Barplots are grouped by the method of deconvolution used for the
analysis. b Same as in a for LM22. c Same as in a for immunoStates
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We hypothesized that a basis matrix created using only healthy
samples (e.g., IRIS and LM22) will have lower goodness of fit
when deconvolving a disease sample, and hence, lower deconvo-
lution accuracy, whereas a basis matrix created using both healthy
and disease samples (e.g., immunoStates) will have higher
goodness of fit and accuracy. To test this hypothesis, we used
E-MTAB-62 [https://www.ebi.ac.uk/arrayexpress/experiments/E-
MTAB-62/], a gene expression compendium of 5372 samples
representing primary tissues and cell lines24. For the purpose of
this analysis, we considered only primary samples from human
subjects, consisting of 4067 blood-derived and tissue-derived
samples from either healthy donors or individuals with a disease,
such as leukemia, solid tumors, and neurodegenerative disorders.
For each pair-wise combination of a basis matrix and a
deconvolution method, we determined the effect of disease on
deconvolution accuracy by estimating its ability to distinguish
blood- from tissue-derived samples based on significance of
goodness of fit, as described previously7.

Because each of the three matrices only contained blood cells,
we would expect them to have significantly higher goodness of fit
values for blood-derived samples compared to those for solid
tissue samples as they are not represented in any basis matrix. In
1383 healthy samples in E-MTAB-62, irrespective of the method,
the goodness of fit was higher for blood-derived samples than
tissue-derived samples for all basis matrices (Supplementary
Fig. 5A). This result translated into an accurate distinction of
blood from tissue-derived samples for all matrices and methods
based on significance of deconvolution (AUCs: IRIS 0.9335 ±
0.0001; LM22 0.9589 ± 0.0001; immunoStates 0.9414 ± 0.0001,
Fig. 2a) for healthy samples.

Further, if the expression of genes in a basis matrix changed in
a disease sample, we would expect low goodness of fit for both
blood and solid tissue samples, indicating lower deconvolution
accuracy. For 2684 disease samples in E-MTAB-62, when using
IRIS or LM22, the goodness of fit values for blood-derived and
tissue-derived samples were highly similar (Supplementary
Fig. 5B) and resulted in lower discrimination between them
(IRIS: AUC= 0.6908 ± 0.0001, LM22: AUC= 0.6123 ± 0.0001;

Fig. 2b). In contrast, immunoStates had significantly higher
goodness of fit for blood-derived samples than tissue-derived
samples, irrespective of the deconvolution method used, resulting
in high accuracy for distinguishing blood- and tissue-derived
disease samples (AUC= 0.9081 ± 0.0001; Fig. 2b and Supple-
mentary Fig. 5B). Collectively, these results demonstrated that a
basis matrix created using only healthy transcriptome profiles
contains a biological bias against disease samples, which makes it
difficult to distinguish between blood and solid tissue samples,
and results in lower deconvolution accuracy. In contrast, creating
a basis matrix using both healthy and disease samples
significantly reduces the biological bias and increases deconvolu-
tion accuracy.

Different methods produce highly correlated results for a given
matrix. Our results revealed that incorporating biological and
technical heterogeneity by using both healthy and disease samples
profiled across multiple platforms in a basis matrix reduced
platform and disease bias irrespective of the deconvolution
method used. Therefore, we tested whether the basis matrix had a
stronger effect on the deconvolution results than the method used
to estimate cell proportions. For a given basis matrix, all methods
produced highly correlated cell proportion estimates (r= 0.762 ±
0.014 Fig. 3). In contrast, for a given method, we observed sig-
nificantly lower correlations in cell proportion estimates when
using different basis matrices (r= 0.452 ± 0.029, p= 2.7e−15), or
when both matrix and method were different (r= 0.451 ± 0.015,
p < 2.2e−16). We observed these trends irrespective of whether
the sample came from blood or solid tissue biopsies (Supple-
mentary Fig. 6). These results provide a strong evidence that the
basis matrix is the major determinant of deconvolution accuracy,
and demonstrate that virtually no method can overcome biolo-
gical and technical bias present in a basis matrix.

Reducing bias in a basis matrix increases accuracy of decon-
volution. Despite demonstrated utility of goodness of fit in
evaluating accuracy of deconvolution7, cell count data from
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high-resolution technologies such as FACS is the most appro-
priate way to evaluate the performance of deconvolution algo-
rithms. Therefore, we explored whether the reduction in
biological and technical bias in a basis matrix results in increased
accuracy of deconvolution by correlating estimated cell propor-
tions with cell proportions measured using FACS or Coulter
counter for each pair of a basis matrix and a deconvolution
method. We identified five gene expression datasets of 402
human whole blood or PBMC samples with paired cell counts
data available (see Methods section). These datasets were gener-
ated using Illumina HT12 V4.0 or Affymetrix Primeview
microarrays as follows: (1) two independent datasets consisting of
176 healthy human PBMC samples profiled using Illumina HT-
12 V4.0 arrays paired with flow-cytometry data (GSE65133,
GSE59654)7,25, and (2) a whole blood dataset of 226 healthy
samples, a subset of which were profiled over three consecutive
years using Affymetrix PrimeView arrays (see Methods section).

Across the five datasets, estimated cell proportions by IRIS and
LM22 had significantly lower correlations with measured cell
proportions (IRIS: r= 0.10 ± 0.06, p= 1.1e−6; LM22: r= 0.57 ±
0.05, p= 6.1e−3) compared to immunoStates (r= 0.74 ± 0.04)
(Fig. 4a, Supplementary Figs 7–14). In concordance with
a previous report, we found that IRIS and LM22 systematically
over-estimated or under-estimated individual cellular proportions
even for high frequency cell subsets such as Monocytes and CD4
+ T-cells (Supplementary Fig. 15)7. Importantly, across all basis
matrices, no method produced consistently higher correlations
with measured cell proportions (p≥0.25), and provided further
evidence that the accuracy of deconvolution is determined by a
basis matrix instead of a deconvolution method.

We then quantified the extent of over-estimation and under-
estimation of cell proportions across all cohorts and methods by
computing the root mean square error (RMSE) between
measured and estimated proportions (Fig. 4b). We found that

immunoStates generated estimates with significantly lower RMSE
(RMSE= 12.77 ± 0.73) than IRIS (RMSE= 28.17 ± 2.16,
p= 2.6e−5) and LM22 (RMSE= 16.79 ± 1.12, p= 4.1e−3) across
all cohorts and deconvolution methods used. Again, no single
method had significantly lower RMSE than others across all
matrices and cohorts (p≥0.40). Our results provide strong
evidence that accuracy of current deconvolution methods is
affected by biological and technical biases present in a basis
matrix, and no method is able to overcome these biases.

Overall, our results suggest that a one-size-fits-most basis
matrix may be a more robust solution for estimating cellular
proportions than creating a platform-specific basis matrix.
Therefore, we investigated whether a basis matrix created using
multiple datasets from a single microarray platform would be as
accurate as immunoStates. We generated two new basis matrices:
(1) using data only from a specific Illumina microarray
(GPL10558) and (2) using data from all Illumina microarrays.
We deconvolved GSE65133 [https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE65133], which was profiled using
GPL10558, using these two Illumina-specific basis matrices and
immunoStates, and correlated estimated cellular proportions with
those measured by cytometry. Compared to immunoStates, both
Illumina-specific basis matrices had lower correlations, irrespec-
tive of the method used (Supplementary Fig. 16).

Collectively, our results demonstrate that creating a basis
matrix by leveraging biological and technical heterogeneity across
multiple independent cohorts reduces bias, and significantly
improves accuracy of deconvolution irrespective of the statistical
model used.

Discussion
Using whole transcriptome profiles, cell-mixture deconvolution
methods quantify cell subsets within a mixed-tissue sample without
physical separation of its components. We hypothesized that the
current practice of creating a basis matrix for deconvolution using
only healthy samples profiled using the same microarray platform
introduces biological and technical biases that reduce accuracy of
deconvolution. Our analysis of two basis matrices, IRIS and LM22,
both created using only one microarray platform and healthy
samples, showed significant heterogeneity in deconvolution results
between different microarray platforms, and lower discriminatory
power for distinguishing blood and solid tissue samples when
obtained from a patient instead of a healthy control.

There is increased evidence that leveraging biological and
technical heterogeneity across multiple independent datasets
identifies robust and reproducible gene signatures10–20. Here, we
hypothesized that the heterogeneity present in publicly available
datasets can be used to create a basis matrix with significantly
reduced biological and technical bias, and increase accuracy of
deconvolution. We used 165 publicly-available gene expression
datasets that profiled 6160 sorted human immune cell samples
using 42 different microarray platforms to create a 317-gene basis
matrix called immunoStates. Our analysis showed that immu-
noStates substantially reduced technical and biological bias and
resulted in more accurate cell proportion estimates. Unexpect-
edly, we found that the accuracy of all basis matrices was inde-
pendent of the statistical method used for deconvolution. For a
given basis matrix, all methods produced highly correlated cel-
lular proportions. We also found that using more data to estimate
expression values for the same set of genes in a basis matrix
continued to maintain the platform bias, and did not improve
deconvolution accuracy.

These results have important long-term implications as vir-
tually all efforts to date have been focused on developing new
methods to improve deconvolution accuracy rather than the
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design of the basis matrix6. While the choice of a method may be
important in specific use cases, our results argue improvements
on the basis matrix are beneficial across all methods. Improve-
ments in methods are usually demonstrated in particular con-
texts, such as estimating proportions in the presence of
background tissue7 or robustness to expression changes due to
treatments21. The design and execution of these studies typically
involve the application of the same basis matrix, and result in
improvements in accuracy provided by the new method for the
dataset that represent the use case of interest. While the choice of
method is therefore important in such specific cases, our results
strongly support the argument that improvements on the basis
matrix improve accuracy across all methods and datasets.

Our results across multiple independent platforms also suggest
that immunoStates may be a one-size-fits-most basis matrix readily
applicable to future deconvolution methods that rely on the use of a
basis matrix to estimate cell proportions. This strategy has a
number of practical advantages. First, researchers could directly
apply immunoStates without having to select a basis matrix most
appropriate for their dataset of interest. Second, the application of a
single basis matrix facilitates comparison and integration of cell
proportions from multiple datasets across multiple platforms and
different centers. Third, we believe that instead of replacing
cytometry-based experimental approaches such as FACS or CyTOF,
statistical deconvolution of mixed-tissue expression profiles will
complement these technologies. Current cytometry approaches are
limited in the number of variables they can profile simultaneously
due to the number of channels available for measurements. a one-
size-fits-most approach such as immunoStates is simpler from a
practical standpoint as a researcher could directly apply without
having to select the matrix most appropriate for their dataset of
interest. The researchers can then design a panel of cell type mar-
kers for a mass cytometry experiment that is focused on the cell
types identified through statistical deconvolution of transcriptome
data. Such a strategy would reduce wasting of channels by allowing
the researchers to eliminate markers unlikely to show any differ-
ences, and better utilize the available channels by including markers
that allow better phenotyping.

Our approach has a few limitations. First, despite more than 1
million human transcriptome profiles in NCBI GEO and EBI
ArrayExpress, more specific and rare cell subsets are less likely to
have sufficient heterogeneous data across multiple platforms and
biological conditions. It is not clear how much data is sufficient to
represent cellular heterogeneity. Our previous work has suggested
that 4–5 datasets consisting of approximately 250 samples may be
enough to represent disease heterogeneity17. However, the het-
erogeneity at cellular level may require more datasets. We expect
that continued accumulation of additional sorted-cell datasets in
public repositories over time will increase both the accuracy and
the breadth of future basis matrices. Furthermore, increased
availability of single cell RNAseq data will further facilitate
creation of better and more refined basis matrices.

Second, we emphasize that immunoStates did not remove these
biases entirely, but reduced them substantially, which in turn
significantly improved accuracy of deconvolution. We expect that
these biases will continue to reduce as more data for sorted cells
becomes available and are used to update immunoStates in the
future.

Third, all basis matrices require a priori knowledge of the
populations within the sample of interest. However, current
cytometry-based methods also require a priori selection of mar-
kers. We expect these limitations will be overcome as more single-
cell transcriptomic data become available. These data will allow
for the discovery of previously unknown cell subsets that can be
included in a basis matrix. These data will also increase hetero-
geneity and the sample size, which based on our analysis pre-
sented here, will further improve accuracy of deconvolution. The
advantage of immunoStates is that through increased accuracy
and reduced technical and biological bias, independent of the
method used, it can leverage existing data in public repositories to
identify cellular subsets that should be further explored using
targeted technologies such as FACS or CyTOF. By avoiding cel-
lular subsets that are not changing in existing data and avoiding
further profiling them, immunoStates can help researchers design
better experiments that increase the probability of identifying
relevant and novel cell subsets.
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Methods
Dataset collection and pre-processing. Unless otherwise noted, we downloaded
all datasets from Gene Expression Omnibus (GEO, www.ncbi.nlm.nih.gov/geo/)
using the MetaIntegrator package from CRAN19. We then normalized each
expression data set using quantile normalization. We computed gene-level
expression for each sample by averaging expression values from probes mapping to
the same genes while excluding individual probes that were promiscuously asso-
ciated to more than one transcript. Datasets used to estimate technical bias are
described in Supplementary Table 1. Dataset E-MTAB-62 [https://www.ebi.ac.uk/
arrayexpress/experiments/E-MTAB-62/] was downloaded, processed, and anno-
tated from Array Express (http://www.ebi.ac.uk/arrayexpress) using the ArrayEx-
press R package. Dataset GSE65133 [https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE65133] and its paired flow-cytometry data were directly downloaded
from the CIBERSORT website (https://cibersort.stanford.edu). Paired flow-
cytometry data for GSE59654 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE59654] was downloaded from ImmPort (https://immport.niaid.nih.gov/;
study ID: SDY404). Data from the Stanford-Ellison cohort from years 2011 to 2013
was collected and processed as previously described26. Dataset E-MTAB-62 was
downloaded, processed, and annotated from Array Express (http://www.ebi.ac.uk/
arrayexpress) using the ArrayExpress R package.

Creation of the immunoStates signature matrix. We collected and processed 165
publicly available gene expression datasets comprising 6160 microarray samples
profiling sorted human leukocytes. Datasets used to build immunoStates are
described in Supplementary Data 1. All datasets were converted to gene-specific
expression matrices using the original probe annotation files available from GEO
and then combined into a single expression matrix using quantile normalization.
Each sample was first annotated following experimental description from the
original study, resulting in 47 different cell types. From these initial annotations,
cells were grouped into more general categories in order to increase the number of
studies and platforms represented in each cell type. We defined 20 different cell
types: CD4+ T cells, CD8+ T cells, gamma-delta T cells, CD14+ monocytes,
CD16+ monocytes, macrophages M0, macrophages M1, macrophages M2, CD56-
high natural killer cells, CD56-dim natural killer cells, naïve B cells, memory
B cells, plasma cells, myeloid dendritic cells, plasmacytoid dendritic cells, hema-
topoietic progenitors, MAST cells, neutrophils, eosinophils, and basophils. We then
grouped cell types using manually defined lineages according to their biological
similarity: T cells, monocytes, macrophages, natural killer cells, B cells, myeloid
dendritic cells, plasmacytoid dendritic cells, hematopoietic progenitors, and gran-
ulocytes (see Supplementary Data 1 for annotation details). For each cell type
within each lineage, we computed Hedge’s g effect sizes to determine differential
expression comparing a given cell type (cases) against all remaining cells within
that lineage (controls). We applied a correction for small sample size bias to
Hedge’s g as needed. For each gene g and cell type i within lineage l, we computed
an effect size as

ΔEgil ¼ minj Egil � Egjl
� �

ð1Þ

where j is any cell type within lineage l such that j ≠ i. A high effect size indicates a
strong separation between our target cell type i and its closest cell type j.

We then ranked genes in decreasing order according to their effect sizes, and
performed a step-wise search to identify the smallest gene signature able to
accurately classify cell type i from every other cell type j in l. We first estimated the
classification accuracy of the first gene of the list by estimating the area under
receiver operating characteristic (AUROC) curve. Next, we incrementally added
one gene at a time following their ranking and recomputed the AUROC
corresponding to the new gene set. We repeated this process until we identified the
minimal gene set that produced an AUROC proximal to the maximum (with ε=
0.005), requiring a minimum of 5 genes per signature. We performed this strategy
on each cell type across each lineage and obtained a signature of 201 genes.

We then applied the same strategy to distinguished lineages from one another.
We excluded all the signature genes that were used to separate cell types due to
their confounding contribution in separating lineages. We performed the same
gene selection strategy described above and obtained a second gene set of 116
genes. Together, these sets make the 317 genes that form immunoStates. To build
the basis matrix with expression values, we computed the mean expression for
every gene in every cell type (317 genes by 20 cell types) from the quantile
normalized expression matrix (Supplementary Data 2). We compared our gene-set
selection strategy with greedy forward-search and ranking by fold-change. We
found using Hedge’s g with our selection strategy to be more accurate in
distinguishing cell types. All code was written and run using the R programming
language.

Cell-mixture deconvolution. We performed deconvolution with support vector
regression using the CIBERSORT algorithm (v1.03)7. We implemented linear
model, quadratic programming, and robust regression methods using existing R
programs and packages (lm, quadprog, and MASS)3,4,7. We used PERT as is from
its source code in Octave21. We replicated all the pre-processing steps that
CIBESORT performed on both the expression sample and basis matrix (quantile
normalization and re-scaling of the matrix) in order not to be confounded when we

compared different methods. We assessed the effect of re-scaling for the linear
model and robust regression, two methods that did not require re-scaling in their
original implementation, by computing the pairwise correlation of estimated cell
proportions with and without re-scaling (Supplementary Fig. 2). We observed high
correlations for both methods, indicating that the effect of re-scaling was negligible.
We therefore chose to maintain the same preprocessing strategy across all methods.
We downloaded the LM22 basis matrix from the CIBERSORT website (https://
cibersort.stanford.edu) and the IRIS matrix from the CellMix R package. Statistical
comparisons were performed using the Wilcoxon’s rank sum test. Analysis and
plots were generated using the R programming language.

Analysis of platform-dependent technical bias in deconvolution. To quantify
the extent of platform-dependent technical bias in deconvolution, we analyzed a
collection of 1071 microarray samples profiling human PBMCs in diseased and
healthy individuals profiled on platforms GPL96, GPL571, GPL570, GPL5715,
GPL6244, GPL6104, GPL6947, GPL6102, and GPL6480 (Supplementary Table 1).
We measured deconvolution performance using the goodness of fit score7. Briefly,
for a given basis matrix M and a mixture sample gene expression vector s,
deconvolution estimates the known cell proportion vector p such that

sαM ´ p ð2Þ

Goodness of fit of the basis matrix M is defined as the Pearson correlation
coefficient between s and the reconstituted expression vector ŝ defined as M × p.
This value is indicative of how well a particular basis matrix M fits s. Tests
comparing goodness of fits of individual platform/manufacturer were performed
for each method using the Wilcoxon’s rank sum test and were then integrated into
a final p-value using Fisher’s log sum rule. We calculated heterogeneity for a given
matrix by computing the median absolute deviation (MAD) of the median
goodness of fit across every platform and deconvolution method. We chose MAD
because of its robustness to outliers in estimating the heterogeneity of the
distribution of interest. To estimate significance of our MAD scores, we generated a
background distribution of MAD scores for each platform, which represent an
expected distribution of homogenous MAD values, and then performed a Z-test,
asking whether the observed MAD was significantly higher than expected. All
analysis and plots were generated using the R programming language.

Analysis of the effect of disease state on deconvolution accuracy. To estimate
the effect of disease to sample deconvolution, we analyzed dataset E-MTAB-62
[https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-62/] which contains
samples profiled on Affymetrix HG-U133A arrays (GPL96). For the purpose of this
analysis, we excluded all cell line samples and removed samples that had been used
to generate immunoStates. Briefly, we deconvolved each sample across every
matrix and method combination, and estimated a p-value indicative of the sig-
nificance of its goodness of fit7. We then grouped all samples based on whether
they originated from a healthy or a disease affected donor. Within each group, we
compared the significance of goodness of fit between samples originating from
blood and those originating from solid-tissue biopsies. Using the p-values as scores,
we measured their accuracy in distinguishing blood-derived samples from solid
tissue biopsies by computing an area under the receiver operating characteristic
curve (AUROC), as previously described7, for all combinations of basis matrices
and deconvolution methods. Analysis and visualization was performed using the R
programming language.

Code availability. Code for all the analysis can be found at https://khatrilab.
stanford.edu/immunostates. All analyses and visualization were performed using
the R programming language.

Data availability
The data that support the findings of this study is either publicly available from
GEO and Array Express, available from the authors of the original study, or
provided as an archive file as indicated in the methods section, and can be provided
by the author upon reasonable request.
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