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Long time-scales in primate amygdala neurons
support aversive learning
Aryeh H. Taub 1, Yosef Shohat1 & Rony Paz1

Associative learning forms when there is temporal relationship between a stimulus and a

reinforcer, yet the inter-trial-interval (ITI), which is usually much longer than the stimulus-

reinforcer-interval, contributes to learning-rate and memory strength. The neural mechan-

isms that enable maintenance of time between trials remain unknown, and it is unclear if the

amygdala can support time scales at the order of dozens of seconds. We show that the ITI

indeed modulates rate and strength of aversive-learning, and that single-units in the primate

amygdala and dorsal-anterior-cingulate-cortex signal confined periods within the ITI,

strengthen this coding during acquisition of aversive-associations, and diminish during

extinction. Additionally, pairs of amygdala-cingulate neurons synchronize during specific

periods suggesting a shared circuit that maintains the long temporal gap. The results extend

the known roles of this circuit and suggest a mechanism that maintains trial-structure and

temporal-contingencies for learning.
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In associative learning, the passage of time between trials—the
inter-trial interval (ITI), can potentially serve as a cue of trial
expectation. The time that passes from the offset of one trial

carries information about the onset of the next trial, and if this
time can be internally represented and kept, it can aid to form
higher-order representations of the environment. Evidence that
the ITI is indeed used for timing and auto-shaping of responses
was first described in a series of classical work1,2. Importantly, the
ITI length affects acquisition rate and memory strength3–5, and
the ratio between the ITI and the inter-stimulus interval (ISI)
predicts acquisition characteristics6,7. This suggests that acquisi-
tion of associative memory involves assessment and integration of
multiple temporal contingencies, and specifically, that temporal
information about the ITI is internally represented even in the
absence of behavioral changes during it.

Because the ITI usually lasts from few seconds to dozens of
seconds, it raises the question where is this temporal lag being
maintained? Neurons in the basolateral complex of the amygdala
(BLA) play a role in acquisition and expression of affective
associations8–10, and show tonic responses and baseline changes
that last after a specific trial or stimulus ends11–13. The amygdala
also plays a role in the acquisition of trace-conditioning, where a
temporal gap between the conditioned stimulus (CS) and the
unconditioned stimulus (US) must be bridged14–17, and even in
longer lags that were traditionally thought to be dependent on the
hippocampus18,19. In addition, the amygdala plays a role in
second-order conditioning20–22, which can be formed between
the ITI itself and the CS23 and even hold abstract representations
of the trial structure beyond the CS-US relationship24,25. Further,
the amygdala can use its bidirectional connectivity with the

anterior cingulate cortex (ACC)26. The ACC is required for trace-
conditioning with long gaps27 likely due to its role in attention27–29.
It forms and integrates representations of task structure29,30, and
exchange information with the amygdala for flexible updating of
contingencies10,16,17,31.

We therefore hypothesized that the BLA together with the
ACC hold a representation of long timescales during the ITI of an
aversive conditioning task, even in the absence of an explicit
external cue. To address this, we recorded the activity of single
neurons in the amygdala and the dorsal ACC (dACC) in non-
human primates during a tone-odor conditioning paradigm with
a relatively long (dozens of seconds) ITI that varies on a trial-by-
trial basis. Our results show that longer ITI duration increases
rate and strength of aversive learning, and that single units in the
primate amygdala and dACC develop and hold a temporal
representation of this long temporal gap, both in single-cell
activity and at the population level. As a result, this circuitry
maintains timescales at the order of dozens of seconds and can
contribute to the formation of trial-structure and modulate
affective learning and memory.

Results
We recorded neuronal activity during the ITI in a tone (CS)-odor
(US) conditioning task (ndays= 82), where an aversive odor was
paired with a pure-frequency tone (250 ms, randomly chosen
each session from 900 to 2400 Hz). Tones were triggered by
onsets of respiration cycle detected in real-time, and odors were
presented at the onset of the following respiration cycle (mean ISI
duration of 1.6 ± 0.24 s). As shown in our previous studies16,32
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Fig. 1 Conditioning paradigm and behavior during the inter-trial interval (ITI). a A trial scheme: online detection of inhale is used to initiate tone (CS)
presentation that is followed by an aversive odor (US) at the onset of the next inhale. Response to the aversive odor is a decreased inhale (UR), whereas
the conditioned response (CR) is an increased inhale. b The CR increases during learning. Shown is the CR (inhale size during the 350ms post CS onset) as
proportion of the inhale size during habituation (dashed line). Data presented as mean ± S.E.M. c A histogram of ITI duration from one representative
session. Trial occurrences (black vertical line signals US offset) and the initiation of the subsequent trial (black vertical ticks). Dashed red line is the mean
ITI at 42 s. d Inhale traces during the ITI aligned to onset of next trial. Shown are data for one session of learning. No clear modulation can be observed
toward the end of the ITI. e Inhale modulation during the ITI did not change across learning. Shown is mean ± S.E.M across all learning sessions for the 30
learning trials (one-way ANOVA, p > 0.1, df= 11, f= 0.05). Inset presents mean over trials 11–20 and 21–30, computed during 30 s of ITI. f No change in
inhale frequency across learning trials. Shown is mean power across all learning sessions at each frequency (0.2–2 Hz) during the ITI (one-way ANOVA, p
< 0.01, df= 11, f= 0.05). Inset presents inhale frequency (mean over days, ndays= 82) as power during the whole 30 s of ITI preceding the CS, separately
for trials 11–20 and 21–30
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and here (Fig. 1a, b), pairing resulted in a CS-evoked augmented
inhale that preceded the presentation of the odor, and reflects a
learned preparatory conditioned response (CR).

ITI length contributes to learning rate. As might be expected
from the long ITI duration and its trial-by-trial variability (mean
ITI 38.7 ± 4.4 s, Fig. 1c), and from the fact that the following CS
completely predicted the US, we did not observe any preparatory
behavioral response during the ITI (Fig. 1d), neither in the depth
of inhale modulation (Fig. 1e) nor in its frequency (Fig. 1f).

However, when sorting the CR based on the duration of the
previous trial ITI, we found that the length of the ITI induced a
higher CR, both in absolute value compared to habituation
(Fig. 2a, b), and in increased learning rate (Fig. 2c). These results
show that longer ITIs contribute to and enhance the learned
behavioral response.

Neurons modulate their activity during the ITI. We recorded
single-unit activity in the amygdala and the dACC (Fig. 3a,
amygdala: n= 291; dACC: n= 263), and first validated previous
results by comparing pre-CS to post-CS activity (paired t-tests, p
< 0.05). We found that 24% (n= 70) of amygdala and 29% (n=
76) of dACC neurons had CS-evoked activity, confirming
learning-related changes in these regions (p < 0.001, binomial
test)16,33.

We next turned to examine the activity during the ITI. On
average, no specific epoch of the ITI showed modulation of
activity (Fig. 3b). However, close inspection of the data suggested
that many of the neurons do modulate their firing rates during
the ITI, but over specific temporal scales (Fig. 3c). To test this, we
analyzed the neuronal activity between the offset of each trial and
the expected initiation of the next trial, namely the average ITI
length (mean ITI), computed separately for each session. We
omitted the bins where the CS occurred before the mean ITI to
avoid CS-evoked activity in the analyses. Neurons’ discharge
during the ITI was binned into segments, and the strength of the
ITI modulation was assessed by comparing the original ITI firing
rate (ITI-FR) in each bin to shuffled data (Fig. 3d). We found that
the activity of roughly 50% of amygdala and dACC cells differed
from baseline activity for 20% or more of the total duration of the
ITI (Fig. 3e, p < 0.01, binomial test). For robustness, we tested and
observed identical results under different segmentations (6, 12,
20, and 40 bins, Fig. 3d, e). For comparison, a null distribution
derived from shuffled data showed that almost all cells have
significant activity in <5% of ITI duration, as expected from
chance-level modulation (Fig. 3e).

We conclude that in both structures, large and similar
proportions (p > 0.1, binomial tests, Supplementary Fig. 1) of
cells had significant modulation during the ITI.

ITI modulation strengthens during conditioning. If indeed ITI
modulation contributes to the acquisition, then we can expect it
to strengthen during learning. To evaluate the strength of the ITI-
FR modulation we computed the excess in spikes after normal-
ization to the mean and standard deviation of the shuffled data
(Fig. 4a, b). The root mean square (RMS) of 21% (n= 61) of
amygdala neurons and 26% (n= 68) of dACC neurons was
increased compared to habituation in one or more stages of the
acquisition (early, mid, or late, 10 trials each; one-way analysis of
variance (ANOVA), amygdala: df= 60, f= 2.94, p= 0.04 and
ACC: df= 67, f= 2.81, p= 0.046). These acquisition responsive
neurons (23%, 129/554) were further inspected during same-day
extinction that started 15–30 min after the acquisition ended.
Their ITI modulation diminished significantly yet remained
higher than habituation (one-way ANOVA, amygdala: df= 60, f
= 3.66, p= 0.0098 and ACC: df= 67, f= 3.71, p= 0.008, Fig. 4b).
This result suggests that during acquisition of emotional memory,
the activity of neurons in the amygdala and the dACC becomes
locked to cycles of CS-US and the long ITI (dozens of seconds)
between them.

Although odor exposure can remain in the receptors for few
seconds and even induce prolonged behavioral effect, it cannot
account for the ITI modulation we observe. First, the neural
modulation often occurred during the middle or late segments of
the ITI (see also next sections), yet to completely exclude this
possibility we introduced “catch” trials with un-reinforced CS
during the acquisition (<1/3 of the trials, during half of the
sessions). We found that 11% (29/247; p < 0.05, binomial test) of
the cells had significant modulation in the ITI following un-
reinforced trials (the lower number of cells can stem from the
lower number of trials used for analysis, hence lower statistical
power). Importantly, the ITI response of these cells was highly
similar in reinforced and un-reinforced trials (Fig. 4c, d, t-test, p
> 0.1). Here again, their response diminished during extinction
(Fig. 4d; t-test, p < 0.05). In sessions that included both aversive
and appetitive odors conditioned to two different tones
(discrimination learning), we found that the proportion of ITI-
FR modulation was significant after both types of valence, but
higher following aversive trials (Supplementary Fig. 1).

Overall, the findings are in line with the hypothesis that the FR
modulations during the ITI occur during learning.
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Fig. 2 Length of ITI contributes to learning rate. a The size of the CR in a trial (n) as a function of ITI duration in the previous trial (n− 1), averaged across all
sessions and binned into six percentiles (one-way ANOVA, significant effect for percentile, df= 5, f= 29.85, p < 0.0001). Inset shows the averaged trial
order sorted similarly by ITI duration percentile (n= 171, one-way ANOVA, df= 5, f= 0.74, p= 0.59). b Furthermore, CR size was positively correlated
with the previous ITI duration (Spearman correlation, r= 0.14, p < 0.0001) on a trial-by-trial basis. c Change in CR amplitude between successive trials (CR
in trial (n) minus CR in trial (n− 1) increase with ITI duration (one-way ANOVA, df= 5, f= 81.14, p < 0.0001). ITI duration (x-axis) computed similarly to a.
For control, inset shows the standard expected learning effect i.e. the same change in CR (n)− CR (n− 1) as a function of trials in learning. Data presented
as mean ± S.E.M (ndays= 82)
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Trial-by-trial modulation of ITI signaling. If indeed
expectation is formed based on the mean of the ITI, and
ITI length contributes to learning rate (Fig. 2), one can hypo-
thesize that slight variations in length can induce transient
updates in representation. Specifically, the duration of the ITI
in the previous trial is expected to correlate with the time of
modulation during the following trial. To explore this possi-
bility, correlations were calculated between the center of mass
for the ITI-FR in the current trial and the duration of the ITI of
the previous trial, for all available neurons. Indeed, 15% of the

neurons significantly correlated with the duration of the pre-
vious ITI (Fig. 5a, b). Correlations were significantly more
common in dACC neurons than in amygdala neurons (17.4%
and 10.6%, respectively, p < 0.01, χ2 test for independence), yet
in both regions their prevalence exceeded chance level (p < 0.05,
binomial test). Earlier ITIs (trials n− 2, n− 3, and n− 4)
had only limited effect on the center of mass (7–9% of cells, p >
0.05), and a multiple regression model including n− 1/2/3/
4 suggested that the combined duration affect only few
cells (4%).
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Fig. 3 Neurons in the amygdala and the dACC are modulated during the ITI. a Recording locations were all made within the purple surfaces, shown on top
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top example) but also during different periods in the ITI. Shown are PSTHs for two ITI cycles, before and after the CS-US (CS is marked by black vertical
line upwards, US by light purple wedge, and mean ITI in the session is marked in dashed red lines). The ITI that comes before the CS is on the left half-
circle, and the ITI that comes after the US is on the right half-circle. The instantaneous firing rate is represented by the vector size and the colormap. d ITI-
FR modulation evaluated from trial offset (time 0) to the mean ITI (dashed red line). Shown are four single-cell examples of the actual ITI-FR (black line)
binned into 6, 12, 20, or 40 bins (for robustness) and the shuffled confidence interval (yellow-green shades). Notice that data were shuffled only between
bins that occur before a new trial initiates, and as a result the confidence interval increases toward the end of the ITI. e Histograms of the proportion of cells
(y-axis) that showed significant ITI-FR modulation (ITI-FR > 2 s.t.d. of the shuffled FR) in a proportion of the ITI duration (x-axis). For example, 50% of the
cells had significant modulation in 20% or more of the ITI duration (dashed black line). All binning options are shown for robustness. A null distribution
(obtained from shuffling) is shown for comparison in dashed black line, where most cells had significant modulation at around 5% of the time (as expected
from chance). Single units: amygdala: n= 291; dACC: n= 263
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This result demonstrates that neural activity during the ITI is
constantly modified by the most recent trial.

To search for a more direct link between representation of time
in neural activity and strength of conditioning, we correlated the
behavioral change in CR (as in Fig. 2c) to the center of mass for
the ITI-FR, for all trials and all neurons. This revealed a
significant positive relationship (Fig. 5c, r= 0.08, p < 0.0001) that
was slightly higher in the amygdala than in the dACC
(Supplementary Fig. 2).

These results demonstrate that neurons adapt their temporal
characteristics during the ITI based on the duration of the
previously encountered period, and that this modulation is likely
related to the behavioral change.

Amygdala and dACC show peak modulations in different
periods. Our results so far suggest that amygdala and dACC neu-
rons modulate their activity during the ITI, but is it a neural
representation that spans the complete ITI duration? To address this
we inspected single-cell peak modulation and found that 35% of
amygdala cells (101/291) and 33% of dACC cells (89/263) exhibited
a significant peak modulation (p < 0.01 for both, binomial tests).

Although the proportion of amygdala and dACC cells with
significant modulation was highly similar (p > 0.1, binomial test),
the distributions of peak locations were different (Fig. 6a, b, p <
0.05, permutation test comparing the regional distributions). Both
regions had early peaks, likely US-related, but whereas amygdala
neurons had an additional density of peaks around the middle of
the ITI, additional dACC peaks occurred later in the ITI (Fig. 6a,
b). Despite this, the mean width of individual tuning was similar
in the amygdala and dACC (Fig. 6c left, p > 0.01, t-test), with no
change in tuning width across conditioning trials (Fig. 6c, d).
These results suggest that the amygdala and the dACC span the
duration of the ITI, potentially enabling maintenance of long time
periods in this shared network.

Synchronized activity communicates temporal information. If
amygdala and dACC represent different types of information and
time during the ITI, it is possible that they transfer and share such
information to aid in the maintenance of long timescales. To
examine this, we computed inter-regional correlations between
pairs of amygdala and dACC neurons that were recorded
simultaneously. The cross-correlations were computed in 3-s
window that advanced in 1-s steps from the end of each trial.
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Evaluation of significance in such cross-correlations requires
two sets of shuffled data to address two different null hypotheses
(Supplementary Fig. 3). First, data were shuffled within-ITI, so
that spikes from a specific ITI were shuffled within itself, thus
maintaining the overall firing rate in each ITI. This shuffle targets
pseudo-correlations that may arise when the overall ITI-FR rate
of the two units covaries. Second, data were shuffled across-ITI,
so that spikes are shuffled between different trials’ ITI—but from
the same period within the ITIs. This addresses pseudo-
correlations that may originate when the ITI-FR is repeatedly
modulated along the ITI (Supplementary Fig. 3). Only cross-
correlations that differed from both were deemed significant. A
total of 41% (344/839) pairs of amygdala-dACC neurons were
found to have a significant cross-correlation. Most correlations
had a zero-lag with no clear physiological direction, suggesting
reciprocal interaction between the amygdala and the dACC
(Fig. 7a). However, the distribution of significant cross-
correlations peaked mainly at early and late periods of the ITI
(Fig. 7a).

We next examined if this double-peaked pattern reflects an
average correlation map of prototypic pairs of neurons, or a
mixture of single-peaked correlations. A principle component
analysis (PCA) on the normalized distribution of correlation
density along the ITI identified three separable clusters (Fig. 7b, c;
k-means clustering). The distribution of cross-correlations of each
cluster strengthens the previous finding and shows that it is
comprised of different pairs that synchronize during a single and
confined segment of time within the ITI. These segments tile the
complete duration on one hand (Fig. 7c), but are much more
dominant early and late during the ITI.

The results suggest that BLA-dACC neurons signal and
potentially transfer temporal information in a pairwise-specific
manner.

Estimating time during the ITI with neural activity. If neurons
have temporal-tuning with peaks in different times during the
ITI, and these are relatively homogenously distributed when
combined across the amygdala and the dACC, then one should be
able to decode time during the ITI (and as a result, its total
length). We used an optimal linear estimator (OLE) with cross-
validation and found that time could be estimated based on the
population activity within a reasonable error (Fig. 8a), that
dropped with the size of the population being used, yet remained
within few (<4) seconds accuracy (Fig. 8b). Notice the true error
is likely larger because we assume independence between neurons
(similar results were obtained with a population vector approach
and a Naïve Bayes classifier). Averaging the estimates showed that
it is unbiased (Fig. 8c), and therefore a downstream network can
use this information reliably to assess ITI duration. Supporting
this, we used a hazard-rate approach and found that a proportion
of the neurons had gradual elevated activity toward the end of the
ITI, one that correlates with the increasing probability for CS
appearance as the time in the ITI progresses (Fig. 9).

Discussion
We show here that neurons in the basolateral complex (BLA) of
the primate amygdala together with neurons in the dACC acquire
temporal-tuning modulations during the ITI. As a result, the
population faithfully represents the time that passes between
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trials, and can potentially represent anticipation of the aversive
event that will be cued by the CS. In addition, because the length
of the ITI contributes to learning rate and the strength of the
memory, as shown here for aversive conditioning, our results
suggest that this is mediated by amygdala-prefrontal networks.
This is the first demonstration of representation of long time-
scales (dozens of seconds) in primate amygdala networks, an
order of magnitude longer than the typical duration used for the
ISIs. Therefore, this network can support formation and main-
tenance of temporal contingencies not only when they are cued
explicitly by external stimuli, but also when embedded in the
temporal structure of the task. Below we discuss the implications
of this finding to valence-based learning.

Our finding of neural representation of time in BLA-dACC
network could support several mechanisms that contribute to the
effect of ITI duration on acquisition (learning) and CR (perfor-
mance), as demonstrated across species and learning tasks34–36.
Accordingly, we show here that the learning rate and size of the
CR were positively correlated with ITI duration3–7. The under-
lying mechanisms for this effect can consist of multiple parallel
processes.

One appealing explanation of ITI-related enhancement stems
from the ratio between the ITI and the ISI (CS-US duration).
Larger ratio is correlated with accelerated learning5,7, in line
with the larger informative power of the CS on the occurrence
of the US37. Here we demonstrate one major component that of

time within the ITI. This is a more challenging aspect for a
neural network and hence the main novelty in our study,
because it requires representation of long timescales beyond
that of persistent activity in single cells (as widely demonstrated
in CS-US trace-conditioning, CS-delayed-response memory
tasks, and interval-reproduction tasks). Nevertheless, full
examination of this specific hypothesis would require longer ISI
to allow the CS response to decay, and it would be intriguing to
explore neural implementation of ratio-dependent acquisition
rate. Here the ISI was short and predictable, and hence our
finding of unbiased decoding error along the ITI can enable a
representation of duration and ratio. Moreover, this inter-
pretation is further supported by the finding that even single
neurons shift the temporal characteristics of their activity based
on the duration of the previous trial, and this shift was corre-
lated with the instantaneous learning rate, hence providing a
direct link between single-cell representation and behavior.
Interestingly, we found a relationship only with the previous
trial, suggesting that neurons use short-term history to update
their expectation about ITI duration. This could be a result of
the statistics used in the current study because the ITIs were
normally distributed, and the mean duration can be computed
additively on a trial-by-trial basis.

Despite the elegance of this temporal account of ITI duration
and/or ITI-to-ISI ratio, several studies suggest that it might be
insufficient. This is based on the observation that the proximity of
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an ITI-interfering event to the preceding38 or consecutive39 trial
increased the effect on learning performance. As alternative, the
opponent process theory postulates that after an aversive US, an
opponent relief-like process is initiated that interferes with the
learning and longer ITI allows for this process to terminate and
for learning to be enhanced34,40. Our finding that a larger pro-
portion of BLA neurons are tuned to the middle of the ITI can
support this, as the relief process evolves after the termination of
the US yet decays toward the following trial, in line with safety
signals reported in BLA neurons41,42. Further, the opponent
process can also be activated by CS presentation alone as learning
progresses, and reduced following extinction40. Accordingly, we
found higher response magnitude during un-reinforced trials that
diminish with extinction.

Another option is the formation of second-order associations
mediated by the amygdala20–22, first between the CS and the
US, and then between the ITI itself and the CS, or between the
US offset and the next CS (via the ITI “filler”23). However, we
did not observe any behavioral changes during the ITI in

expectation of the next trial, and we therefore think it is a less
probable interpretation. Even if such second-order association
indeed takes place, it would require temporal activity as we
report here that tiles and bridges the duration of the interval.
Albeit, the ITI here was of varying random duration and hence
the next CS cannot be faithfully predicted from US offset, yet
the coming CS is a complete predictor for the US. Together
with the lack of preparatory (CR-like) behavior during the ITI,
this supports the interpretation that it is not a mediated asso-
ciation, but rather a representation of trial structure and/or
statistics of the environment that is represented in amygdala
networks24.

In addition, behavioral38 and neural43,44 studies suggest that
rehearsal of memory can occur during the ITI, where additional
processing contributes and consolidates learning45. Although it is
not clear at this point how representation of time and rehearsal
are related and integrated, and evidence for neural rehearsal
processes in the amygdala is still scarce, further characterization
of BLA and dACC contribution to ITI-related processing could
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shed light on these mechanisms and their putative com-
plementary role.

The representation of long timescales on the order of dozens of
seconds, and without an external cue as an anchor, is a new
finding in the primate amygdala. One can consider several brain
regions as candidates to supply this information to the amygdala.
The striatum is one, shown to underlie and pace short timescales
at hundreds of milliseconds46, but also to signal longer
durations47,48, yet mostly in specific dedicated time tasks35,49.
However, the striatum does not project directly to the BLA, yet
the BLA does project to parts of the striatum50,51. In contrast,
temporal information can reach the ACC via cortico and cortico-
striatal loops52–54, and from there to the amygdala26. Paralleling
this, we observed a higher proportion of dACC neurons that scale
their peak ITI modulation with the length of the recent ITI, on a
trial-by-trial basis. Similarly, the representation of time can reach
the amygdala via time-cells and event-integration in the hippo-
campus55–57. Whereas the exact functional role of such loops
remains to be examined, it supports the idea that time perception
is mediated by multiple overlapping neural systems, which are
flexibly engaged depending on the task requirements58. In the
current case, they can play a role in valence/emotional-based
learning and support the demonstrated contribution of the ITI to
memory strength.

An additional interpretation for the differential peaks of
modulation observed in the two regions can come from func-
tional considerations. The amygdala was shown to signal
safety41,42, in accordance with its view as an absolute valence
decoder59,60. ACC neurons signal anxiety, threat, and risk61,62,
and importantly, the ACC plays a major role in error, context,
and attention28,29,63. These functions are higher either right after
or right before a trial. Therefore, the subtle distribution of roles
might underlie the differential preference of ACC neurons to
mediate information early and late in the interval, whereas
amygdala neurons signal its middle.

Here we focused on the reciprocal functional loop between the
BLA and the dACC and found that together they span the
complete ITI duration. Moreover, we observed potential transfer
of temporal information in confined periods, early and late, by
zero-lag synchronization between simultaneously recorded pairs
of neurons. We identified three classes of pairwise interactions
that synchronize early in the ITI, late, and more diffused popu-
lation that spans the middle of it. This is in line with other types
of information that transfer between the amygdala and the dACC
at the single-cell level16,17,31,64–67 and orchestrated by field-
oscillations31,32.

These two seemingly different interpretations for the difference
in peak distributions are not mutually exclusive and can serve
both purposes. Namely, utilizing the tendency of one region to
report a specific state aids to maintain the temporal marker for
that state. This enable the network to use the underlying state of
the animal to maintain additional information about the temporal
structure across the network. Even if the immediate goal of the
network is to represent the overall length of the ITI, it cannot do
so by single-cell sustained activity, because of the high energetic
demands for maintaining firing rates. The temporal-tuning-like
approach allows this, and especially when distributed across
regions.

To conclude, we find here that the activity of amygdala and
dACC neurons hold information about long timescales, and
together support learning rate and memory strength during
aversive learning. The results provide a new role for this network
in maintaining timescales to build the temporal and/or statistical
structure of the environment, and suggests a mechanism to how
longer intervals can promote learning and memory. In turn, it can
also explain why under circumstances of multiple subsequent

experiences, aversive memories are formed faster and exhibit
strong-to-abnormal responses. Hence, in addition to existing
learning models that implicate this specific network in anxiety
and fear-disorders9,10,68,69, our findings suggest a new model for
how deviations in representation and computation in this cir-
cuitry can lead to maladaptive and exaggerated behaviors.

Methods
Animals. Two male macaca fascicularis (5–7 kg) were implanted with a recording
chamber (27 × 27 mm) above the amygdala and cingulate cortex under deep
anesthesia and aseptic conditions. All surgical and experimental procedures were
approved and conducted in accordance with the regulations of the Weizmann
Institute Animal Care and Use Committee, following National Institutes of Health
regulations and with Association for Assessment and Accreditation of Laboratory
Animal Care (AAALAC) accreditation. Food, water, and enrichments (e.g. fruits
and play instruments) were available ad libitum during the whole period, except
before medical procedures that require deep anesthesia.

Recordings. The monkeys were seated in a dark room and each day 3–6 micro-
electrodes (0.6–1.2 MΩ glass/narylene-coated tungsten, Alpha Omega, Israel or
We-sense, Israel) were lowered inside a metal guide (Gauge 25xxtw, OD: 0.51 mm,
ID: 0.41 mm, Cadence Inc., USA) into the brain using a head-tower and electrode-
positioning system (Alpha Omega, Israel). The guide was lowered to penetrate the
dura and stopped at 2–6 mm in the cortex. The electrodes were then moved
independently further into the amygdala or the dACC. Electrode signals were pre-
amplified, 0.3 Hz–6 kHz band-pass filtered and sampled at 25 kHz; and online
spike sorting was performed using a template-based algorithm (Alpha Lab Pro,
Alpha Omega, Israel). Anatomical magnetic resonance imaging scans were
acquired before, during, and after the recording period and these scans were used
to guide the positioning of the chamber on the skull at the surgery and to calibrate
the positioning of the electrodes in the amygdala and the dACC.

Behavior paradigm and stimuli. Each daily session consisted of tone presentations
(900–2400 Hz) that were triggered by real-time detection of respiration onset and
followed by odor release at the onset of the following respiration cycle (but not
earlier than 1 s from tone presentation). Odors (propionic acid or banana-melon
organic extracts diluted in mineral oil) were actively evacuated from the nasal mask
by a vacuum hose and respirations were constantly monitored with two parallel
connected pressure sensors (1/4″ and 1″ H2O pressure range, AllSensors).

During the habituation phase the tones (novel tones on each day) were
presented 10 times, without any odor to follow. During the acquisition stage, the
tones were presented 30 times each, and paired with aversive odors in all occasions.
In some sessions, aversive and pleasant trials were intermingled in a pseudorandom
order and paired with different tones (discrimination learning). In addition, in half
of the sessions, the acquisition stage also included 10 presentations of unpaired
(catch) trials, i.e. tones that were not followed by an odor.

Behavioral analysis. Learning-dependent changes in the response to the CS were
computed as area under the curve during 350 ms following CS onset compared
with mean inhale volume in response to the same tone during habituation, as in
previous work16.

Behavioral ITI data were aligned to the end of the ITI, namely to the beginning
of the next trial (CS occurrence), because our goal was to examine if any
anticipatory/preparatory behavior develops toward the next trial. To evaluate
changes in inhale power during the ITI across trials we averaged the area under the
curve of breathing data during 30 s of the ITI with a running window of 7 s and
overlap of 2 s. To evaluate changes in inhale frequency (for 0.2–2 Hz, steps of 0.01
Hz) we quantified spectrograms by obtaining the multitaper power spectral density
estimation (Thomson multitaper method) for breathing data during 30 s of the ITI
(7 s windows with and 2 s overlap).

Neural data analysis. Neural activity during the ITI was aligned to the end of each
trial, and taken until the end of the mean ITI in each specific session, with
exclusion of bins from trials with shorter ITI (to avoid sampling bias and CS
response contaminating the dataset). This is because our hypothesis was that neural
activity signals the time during the ITI that passes from the previous trial (as the
reliable way to estimate the duration of the ITI).

ITI-FR modulation: Spikes discharge that occurred between the US offset and
the mean ITI were binned into 6, 12, 20, or 40 bins, and counted to produce an
estimation of the ITI-FR. To assess the strength of modulation, spikes were shuffled
100 times and the mean ITI-FR was compared to the mean and standard deviation
of the shuffled ITI-FR distribution. Data were taken only from bins that occurred
before the ITI-mean, to avoid sampling bias. Up and down modulations were
determined when the original spike count at a specific bin exceed ±2 standard
deviation of the shuffled spike count at the corresponding bin.

Acquisition of ITI response: ITI-FR was computed separately for habituation,
acquisition, and extinction ITIs. The ITI-FR of the acquisition and extinction was
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further separated into three and two equally sized (10 trials) sub-stages,
respectively. Each ITI-FR was then normalized according to its own shuffled
dataset (as above). This normalization assures that the ITI-FR at all stages will be
on the same scale even in cases that the neurons increase or decrease their firing
rate along the session (i.e. non-stationary). Next, the RMS of the ITI-FR was
derived and compared between the different stages. ANOVA test was employed to
examine whether the RMS scores changed between the habituation and the
acquisition. When the ANOVA test indicated that the RMS was modulated during
the session, we further performed post hoc t-test comparisons between the early,
middle, and late acquisition phases and the habituation. Neurons whose ANOVA
test was significant and with one or more post hoc comparisons that indicate that
their RMS is increased during the acquisition stages were classified as acquisition
responsive neurons.

Peak modulation: Spikes were binned into 40 bins during the ITI, and the bin
with the highest firing rate (averaged over trials) was marked as the peak. This bin
was then gradually joined by surrounding bins if they had a higher-than-baseline
firing rate (with confidence interval > 95%). The number of bins were taken as the
tuning-width (in seconds; units with tuning of 1 bin only were excluded).

ITI correlations: Pearson correlations between the center of mass of the ITI-FR
and the length of the previous ITI (duration) were computed. Correlation at p <
0.05 were considered significant, and binomial test was employed to determine
whether the percentage of units with significant correlation is higher than chance
level (5%). Similarly, Pearson correlations were also computed between the RMS of
individual ITI-FR during the acquisition and the length of the ITI at the previous
trial.

ITI cross-correlation: Cross-correlations were computed between all pairs of
amygdala-dACC that were recorded simultaneously and which firing rate exceed a
mean of 1 Hz during the ITI (to allow sufficient reliable statistical power). Cross-
correlations were computed in a 3-s window that was advanced in 1-s steps from
the offset of the US until 5 s before the mean ITI. In all cases, amygdala spikes were
used as the reference for the occurrence of dACC spikes, and spike that occur up to
750 ms before or after an amygdala’s spike were included in our analysis. Next,
spike times were binned into 20 ms bins and counted. To evaluate whether the
observed cross-correlations were significant we repeated the same procedure but
this time, the dACC spikes were shuffled in two different manners: (1) within-ITI
shuffling, in which we shuffled spikes in each individual ITI, destroying their
temporal resolution, but maintaining the overall firing rate in each individual ITI;
and (2) across-ITI shuffling, in which spikes were shuffled between the different
ITIs, but maintaining the same epoch within the ITI. This procedure changed the
overall firing rate of individual ITIs, but maintains the temporal structure of the
ITI-FR. Cross-correlations were deemed significant only if they exceeded both
criteria, with a further imposed requirement that they maintain significance for at
least 15% of the total ITI duration.

Decoding time from neural activity: We used cross-validation and an OLE. In
each iteration, we pseudorandomly chose 25 trials from the acquisition and derived
the optimal weights given the normalized firing rate in each bin of the actual time
during the ITI (40 bins). These weights were then used to estimate/decode the time
in each of the remaining 5 trials separately by using the real firing rates. We then
averaged across neurons. The process was repeated 100 times, and also as a
function of N neurons pseudorandomly selected from the different sessions (Fig. 8).
A population vector approach gave highly identical results.

Center of mass: Center of mass was expressed in seconds and computed as

Center of mass ¼
P

1:n Firing Rate ið Þ � TimeðiÞ
P

1:n Fring RateðiÞ

Hazard rate: Hazard rate was computed empirically for each session as the
cumulative probability for CS occurrence in each time point, and normalized
(warped) to the maximal ITI in each session for averaging across sessions. To
identify matching neural activity, we correlated the activity of each cell firing rate
with a portion of the hazard function, from the first point that rises from 0 to 0.75
(we used 0.75 because there only few trials that can be used for neural activity
beyond it, inducing unreliable noise in the results). Firing rate was calculated in
spikes/s in windows of 1 s advancing in steps of 0.5 s, normalized to the actual
number of trials per ITI duration, and z-scored for purposes of averaging across
units. Peak location was taken as in Fig. 6.

We repeated the main analyses separately for each monkey to validate the main
results (Supplementary Fig. 5).

Code availability. Custom code for behavioral and electrophysiological tests is
available from the corresponding author upon reasonable request.

Data availability
All data supporting the findings of this study are available from the corresponding
author upon reasonable request.
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