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Dietary cholesterol promotes steatohepatitis
related hepatocellular carcinoma through
dysregulated metabolism and calcium signaling
Jessie Qiaoyi Liang1, Narcissus Teoh2, Lixia Xu1, Sharon Pok2, Xiangchun Li1, Eagle S.H. Chu1, Jonathan Chiu1,

Ling Dong3, Evi Arfianti 2, W. Geoffrey Haigh4, Matthew M. Yeh5, George N. Ioannou4, Joseph J.Y. Sung1,

Geoffrey Farrell2 & Jun Yu 1

The underlining mechanisms of dietary cholesterol and nonalcoholic steatohepatitis (NASH)

in contributing to hepatocellular carcinoma (HCC) remain undefined. Here we demonstrated

that high-fat-non-cholesterol-fed mice developed simple steatosis, whilst high-fat-high-cho-

lesterol-fed mice developed NASH. Moreover, dietary cholesterol induced larger and more

numerous NASH-HCCs than non-cholesterol-induced steatosis-HCCs in diethylnitrosamine-

treated mice. NASH-HCCs displayed significantly more aberrant gene expression-enriched

signaling pathways and more non-synonymous somatic mutations than steatosis-HCCs (335

± 84/sample vs 43 ± 13/sample). Integrated genetic and expressional alterations in NASH-

HCCs affected distinct genes pertinent to five pathways: calcium, insulin, cell adhesion, axon

guidance and metabolism. Some of the novel aberrant gene expression, mutations and core

oncogenic pathways identified in cholesterol-associated NASH-HCCs in mice were confirmed

in human NASH-HCCs, which included metabolism-related genes (ALDH18A1, CAD, CHKA,

POLD4, PSPH and SQLE) and recurrently mutated genes (RYR1, MTOR, SDK1, CACNA1H and

RYR2). These findings add insights into the link of cholesterol to NASH and NASH-HCC and

provide potential therapeutic targets.
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Hepatocellular carcinoma (HCC) is the second leading
cause of cancer death in men and sixth in women
worldwide1. China alone accounts for about 50% of the

total case burden and deaths worldwide1. While hepatitis B and C
viruses (HBV and HCV) remain the most important risk factors,
virus-related HCC is expected to decrease in the near future due
to widespread adoption of HBV vaccination and curative HCV
treatments. However, the prevalence of obesity and type 2 dia-
betes is increasing. This is associated with an increase in non-
alcoholic fatty liver disease (NAFLD), including its histologically
progressive form, non-alcoholic steatohepatitis (NASH)2. Strong
evidence has emerged that obesity and NASH are major risk
factors for HCC3,4.

NAFLD is the most common liver disease, affecting 20–40% of
adults5,6. The spectrum of liver pathology extends from simple
steatosis, in which the only feature is excessive fat deposition
within hepatocytes, to NASH, in which additional features
include hepatocyte injury, liver inflammation and pericellular
fibrosis. Ten-30% of patients with NAFLD have NASH5; the
accompanying fibrosis may progress to cirrhosis and HCC7.
Further, there is growing evidence from case series that HCC can
occur in patients with non-cirrhotic NASH.

Dietary cholesterol has been shown to play a role in the
development of steatohepatitis in both animal models and
human, and in epidemiological studies cholesterol intake is an
independent risk factor for HCC8–10. However, the mechanism
by which cholesterol promotes NASH and leads to HCC devel-
opment is unclear, and it has also not been established whether
the resultant HCCs harbour a different set of genetic mutations
and other molecular changes that differs from HCCs in other
etiopathogenic settings.

In the present study, we explored the role of dietary cholesterol
in contributing to NASH and NASH-HCC development in mice
fed high-fat diets with or without high cholesterol. We found that
animals fed high-fat with high cholesterol (HFHC) showed
NASH development, whereas animals fed high-fat without cho-
lesterol (HF diet) developed simple steatosis. HCCs were more
numerous and larger in HFHC-fed than in HF-fed mice exposed
to diethylnitrosamine (DEN). Paired tumor and adjacent non-
tumorous liver from mice fed HFHC vs. HF diets were analyzed
by expressional profiling and whole-exome sequencing to seek
aberrant gene expression, genomic mutations and signaling net-
works that could be enriched in the development of dietary
cholesterol-induced liver tumors. Finally, to establish the clinical
relevance of the discoveries in murine models, we searched for
similar, disease-specific gene expression changes and somatic
mutations in human NASH-HCCs.

Results
Dietary cholesterol causes NASH in mice fed high-fat diet. To
explore the effects of dietary cholesterol on fatty liver disease, we
fed mice either normal chow, HF, or HFHC diets (Fig. 1a). HF-
and HFHC-fed mice gained more weight than controls fed nor-
mal chow (both P < 0.001) (Fig. 1b). Likewise, both HF- and
HFHC-fed mice were hyperglycemic (both P < 0.001) and dis-
played impaired glucose tolerance (both P < 0.05) compared to
control mice (Fig. 1c). Although HF- and HFHC-fed mice were
similarly obese, HFHC-fed mice showed significantly higher liver
weight and liver/body weight ratios (both P < 0.001) (Fig. 1d).
Further, HFHC-fed mice showed significantly increased hepatic
triglyceride, free cholesterol and cholesterol ester contents, as well
as serum cholesterol compared to HF-fed mice (Fig. 1e). Histo-
logically, only steatosis was found in the non-tumorous liver of
HF-fed mice, while those from HFHC-fed mice showed steatosis,
hepatocyte ballooning and inflammatory cell infiltration sufficient

to be deemed NASH (Fig. 1f). Accordingly, steatosis and lobular
inflammation scores were significantly higher in HFHC vs. HF
livers, contributing to significantly higher NAFLD activity scores
in HFHC livers (all P < 0.05; Fig. 1g).

Dietary cholesterol augments hepatocarcinogenesis. To explore
the role of dietary cholesterol in HCC development, we compared
DEN-induced hepatocarcinogenesis in mice fed normal chow, HF,
or HFHC diets. HCC incidence was numerically higher in HF-fed
mice (90%) and HFHC-fed mice (100%) compared with normal
chow-fed controls (67%). Impressively, HCC multiplicity and size
were markedly increased in HFHC-fed versus HF-fed mice (P <
0.0001; Fig. 1h). Furthermore, 40% of HCCs in HFHC-fed mice but
none in HF-fed mice showed lung metastases (Supplementary
Fig. 1). These findings demonstrate that high dietary cholesterol
augments high-fat diets in promoting hepatocarcinogenesis, in
association with inducing NASH live pathology.

Dietary cholesterol upregulated inflammatory genes. In light of
the effect of cholesterol on NASH development, we compared the
gene expressional profiles of NASH livers from HFHC-fed mice
and steatosis livers from HF-fed mice. We identified 634 upre-
gulated genes and 248 downregulated genes (≥2 or ≤−2 fold, P <
0.05) (Fig. 2a). Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis revealed that, in HFHC-fed
mouse liver, aberrant gene expression was mainly enriched in
inflammation, metabolism and cancer-related pathways (Fig. 2b).
The affected inflammatory pathways ranged from macrophage
infiltration (upregulation of macrophage markers), early inflam-
matory response (signaling of cytokines, chemokines and inter-
leukins), late-phase fibrotic response to NASH, and transforming
growth factor (TGF)-β and Wnt-related signaling (Fig. 2c, d).
Dysregulation of metabolism and cancer-related pathways
(metabolic pathways, pathways in cancer, calcium signaling,
insulin signaling, cell adhesion, axon guidance, etc) could possibly
function in promoting malignant transformation of HFHC-livers
(Supplementary Fig. 2). These findings demonstrate the necro-
inflammatory nature of gene expression changes in liver in
response to HFHC diet that might be associated with NASH and
with accelerated development of HCC.

Aberrant gene expression in murine NASH- and steatosis-
HCCs. To understand the molecular basis for accentuated
hepatocarcinogenesis in HFHC-fed vs. HF-fed mice, we com-
pared gene expression profiles of NASH-HCC with steatosis-
HCC directly. We noted that 4,660 genes were aberrantly
expressed (2-fold or more) in NASH-HCC versus steatosis-HCC.
Because many of these genes could include those pertinent to the
disease process of NASH versus steatosis, we further analyzed the
differential gene expression in HCCs as compared to adjacent
non-tumorous livers, and then compared cancer-related expres-
sional changes between the two groups of HCCs. Similar numbers
of aberrantly expressed genes were identified in NASH-HCCs and
steatosis-HCCs, and more genes were upregulated (315 and 364
respectively) than downregulated (40 and 47, respectively) in both
groups (Fig. 3a). Cancers that developed between the two dietary
groups shared about half (164) of upregulated genes. These were
enriched in 15 pathways (Fig. 3b), including pathways important
in cancer (ErbB signaling, MAPK signaling, PPAR signaling, etc),
necro-inflammation (TGF-β signaling, chemokine signaling, etc)
and cellular metabolism. More pathways were specifically dysre-
gulated in NASH-HCCs, including those previously reported in
NAFLD (calcium, insulin, hedgehog and adipocytokine signal-
ing11,12), and cancer (axon guidance and cell adhesion). Notably,
most of the pathways dysregulated in NASH-HCCs (vs.
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Fig. 1 Cholesterol augmented high-fat (HF) diet in accelerating hepatocarcinogenesis in mice. a Schematic illustration of the treatment of mice. Male
C57BL/6J mice were administered a single injection of the carcinogen diethylnitrosamine (DEN) intraperitoneally at age 15 days and fed normal chow (n=
9), HF (n= 10) or high-fat high-cholesterol (HFHC; n= 10) diets starting from 6 weeks of age till 8 months. b Body weights of mice fed HF or HFHC diets
were similar and both significantly higher than normal chow (NC)-fed mice. c Fasting blood glucose and intraperitoneal glucose tolerance test (IPGTT)
levels in mice fed NC, HF or HFHC diets. *P < 0.05. d Mice fed HFHC diet had significantly higher liver weights and liver-body weight ratios than HF-fed
mice. e Levels of hepatic triglyceride, hepatic free cholesterol and cholesterol ester, and serum cholesterol were measured in HF- and HFHC-fed mice. f, g
Representative H&E staining histological images (f) and NAFLD scores (g) of liver tissues from HF- and HFHC-fed mice. h HCC incidence, number and size
in NC-, HF- and HFHC-fed mice after DEN injection. Tumor number: few < 5; multiple≥ 5. Tumor size: small, all < 5 mm3; large, at least one≥ 5mm3. The
data are shown as means ± SE for IPGTT and means ± SD for others. Data in b-g between each two groups were compared using ANOVA Tukey’s multiple
comparison tests
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surrounding livers) were already dysregulated in NASH (vs.
steatosis) by aberrant gene expression (Figs. 2b, 3b). These
include calcium signaling, pathways in cancer, ErbB signaling,
MAPK signaling, and chemokine signaling, metabolic pathways
etc. Genes commonly upregulated in both NASH- and steatosis-
HCCs when compared to adjacent non-tumorous liver (such as
Cdh1, Pak1, Sqle, and others) may be important in hepatocarci-
nogenesis. We also identified genes aberrantly expressed only in
NASH-HCCs, such as downregulation of Cfd (complement factor
D, encoding adipsin), and upregulation of Ddit3, Itga6 and others
(Fig. 3c). These findings implicate sets of genes and pathways
specifically associated with the acceleration of hepatocarcino-
genesis occasioned by addition of cholesterol to a HF diet through
expressional dysregulation.

Aberrant gene expression verified in human NASH-HCCs. To
establish whether the present dietary model of NASH-enhanced
hepatocarcinogenesis has relevance to human disease, we deter-
mined whether genes aberrantly expressed in mouse NASH-HCCs
(Fig. 3c) were also differentially expressed in human HCCs obtained
from patients with histologically pedigreed NASH. Among the 17
available human NASH-HCCs, we verified 12 genes to be sig-
nificantly up- or downregulated in NASH-HCCs compared to their
surrounding liver by RNA sequencing (all P < 0.05 by paired t test
and false discovery rate (FDR) < 0.15; Fig. 4a). The adipsin-
encoding gene CFD was significantly downregulated in NASH-

HCCs. Upregulated genes included two cell adhesion molecules
(ALCAM and ITGA6), 3 MAPK signaling genes (DDIT3, MAP3K6
and PAK1) and 6 other metabolic genes (ALDH18A1, CAD, CHKA,
POLD4, PSPH, SQLE). Differential expression of seven of these
genes (CFD, ALDH18A1, CHKA, DDIT3, ITGA6, PSPH and SQLE)
was replicated in another set of 12 paired NASH-HCCs and adja-
cent non-tumor livers by RT-qPCR (all P < 0.05 by paired t test;
Fig. 4b). The generalizability of these particular expressional
changes between species provides evidence of their likely etio-
pathogenic importance in HCC related to NASH.

NASH-HCCs harbor more mutations than steatosis-HCCs in
mice. To identify genomic alterations associated with HCC
development in HFHC- and HF-fed mice, whole-exome
sequencing was performed. The somatic mutation spectra of
both experimental groups were similar, with no observed differ-
ences in nucleotide base changes. However, NASH-HCCs har-
bored significantly more somatic mutations than steatosis-HCCs
(circos illustration in Fig. 5a). The average mutated gene numbers
were 452 ± 119 vs. 58 ± 20 in total somatic mutations, and 335 ±
84 vs. 43 ± 13 in non-synonymous somatic mutations (both P <
0.05; Fig. 5b; Supplementary Data 1). Only 28 mutated genes
overlapped between NASH- and steatosis-associated HCCs.
These findings demonstrate distinct genetic alterations in HCCs
related to NASH produced by HFHC diet vs. HCCs in mice
consuming only a HF diet. Differences between the two groups
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were evident both in the number of genes mutated and the
particular genes affected.

Identification of mutations related to NASH-HCC in mice.
Several of the mutated genes we identified in murine NASH-HCCs
have been reported as drivers in other human cancers, such as
Mtor13, Sdk114, Braf15, Pik3cb16, Ctnnd117, Ctnna318, Akt319, and
Nos220. We identified 82 genes to be recurrently mutated in two or
more NASH-HCCs (Fig. 5c; Supplementary Data 2); these included
two genes mutated in 4/5 NASH-HCCs (Ryr1 and Sdk1); 8 genes
mutated in 3/5 NASH-HCCs (Epha8, Pcdh15, Fat2, Cep152, Ttn,
Rxfp1, Aox3l1 and Pkd1l3) and 71 genes mutated in 2/5 NASH-
HCCs (notably Mtor, Ryr2, Cacna1h, Col7a1, Fcgbp, Adam29,
Gpr98 and Pclo). Only 2 of the 82 genes (Ttn and Obscn) were also
mutated in one HF-associated steatosis-HCC each, and only one
gene (Kif3c) was recurrently mutated in steatosis-HCCs. These
results suggested that mutations of these known or potential cancer

driver genes contribute to the development of cholesterol-associated
NASH-HCC. The recurrent mutations suggest that Mtor and Sdk1
may also function as cancer drivers in NASH-HCC, while other
recurrently mutated genes could represent novel candidates asso-
ciated with NASH-HCC.

Pathways enriched by gene mutations in NASH-HCC in mice.
To investigate the signaling networks enriched by mutations in
NASH- and steatosis-HCCs, we conducted KEGG pathway analy-
sis. Seven pathways were found to be significantly enriched by gene
mutations in three or more NASH-HCCs, whereas no pathway was
significantly affected in steatosis-HCCs (Fig. 6a and Supplementary
Data 3). Pathways affected in NASH-HCCs include metabolic,
insulin and calcium signaling, cell adhesion and tight junction
molecules, ABC transporters, and axon guidance. It is of particular
interest that gene mutations expected to dysregulate calcium sig-
naling were present in all five dietary cholesterol-associated NASH-
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HCCs (Supplementary Table 1) as calcium signaling has been
reported to be directly affected by cellular cholesterol content21,22

and plays an important role in cancer development23,24. Twenty-
eight calcium signaling genes were mutated in NASH-HCCs, with 6
recurrently mutated (Ryr1, Ryr2, Cacna1d, Cacna1h, P2rx1 and
Itpr1) all encoding calcium channel proteins, and Ryr1 was mutated
in 4/5 samples (Fig. 6b). In NASH-HCCs, the 16 mutated genes
involved in insulin signaling included insulin receptor (Insr) and
some other well-known cancer-related genes (Mtor, Hras1, Akt3,
etc), with Mtor and Hras1 recurrently mutated (Fig. 6c). The 75
mutated genes involving in metabolism would be expected to
dysregulate 15 specific metabolic signaling pathways, including 6
associated with lipid metabolism (Supplementary Fig. 3b and
Supplementary Table 2).

Dysregulated pathways by mutations and aberrant expression.
Only 4.4% of mutated genes were differentially expressed in NASH-
HCCs as compared to adjacent non-tumorous liver (Supplementary
Fig. 4). This result indicates that genetic alteration contributed little
effect to expressional aberration in NASH-HCC. However, five
pathways were commonly and uniquely enriched by mutations and
aberrant gene expression in NASH-HCCs; these include calcium,
insulin signaling, cell adhesion, axon guidance and metabolic
pathways (Fig. 6d). Furthermore, these five pathways were

significantly enriched by aberrant gene expression in HFHC-
induced NASH as compared to HF-induced steatosis (Fig. 2b).
These findings indicate that dysregulation of the five core pathways
is involved in the transition of steatosis to NASH (by aberrant gene
expression) and also in NASH-related hepatocarcinogenesis (by
aberrant gene expression and mutations).

Mutations verified in human NASH-HCCs. Among the 80
recurrently mutated genes identified in mouse NASH-HCCs, 66
have human orthologs (Supplementary Data 2). We investigated
the exome-sequencing data to examine for the presence of these
mutations in 37 human NASH-HCCs (the 17 in-house samples as
mentioned earlier, and 20 from The Cancer Genome Atlas
(TCGA) database). We found 38 of the 66 genes were mutated in
human NASH-HCCs, including 5 calcium signaling genes (Sup-
plementary Data 4). Of note, 21 genes were recurrently mutated
in at least two human NASH-HCCs (Fig. 7a). These included
MTOR (insulin signaling, and mutational cancer driver in kidney
and lung)13, SDK1 (cell adhesion molecule and potential driver of
asbestos-associated cancers)14, and three calcium signaling genes
(RYR1, RYR2 and CACNA1H).

Mutations in calcium signaling pathway in human NASH-
HCCs. As already noted, calcium signaling genes were most
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reproducibly mutated in murine NASH-HCCs, prompting us to
further investigate them in human NASH-HCCs. Of note, we
identified 19 genes in calcium signaling to be recurrently mutated
in at least two of the 37 human NASH-HCCs. Similar to murine
NASH-HCCs, most of these genes mutated in human NASH-
HCCs (11/19) encode calcium channel proteins (RYR1, RYR2,
CACNA1B, CACNA1E, CACNA1H, CACNA1I, GRIN2C,
ATP2A2, ATP2B4, SLC8A1 and ITPR3) (Fig. 7b). Eight genes
showed significantly higher mutation frequencies in NASH-
HCCs (the combined cohort (n= 37) or TCGA cohort (n= 20))
as compared to other HCCs not complicating NASH/NAFLD
(TCGA, n= 353), and two of them encode calcium channel
proteins (RYR1 and CACNA1H) (Fig. 7c). RYR1 was mutated
most frequently in both murine (4/5= 80%) and human (5/37=
13.5%) HCCs associated with NASH pathology, and RYR1 was
less often mutated in other HCCs (7.37%, n= 353, TCGA data)
(Fig. 7c). The 9 RYR1 mutations identified in mouse and human
NASH-HCCs were located across the whole gene, with 3 stop-

gain or truncating mutations inferring likely loss-of-function
mutations (Fig. 7d). These findings suggest that genetic disrup-
tions of calcium channels may alter calcium homeostasis in a way
that contributes to NASH-related carcinogenesis.

Discussion
Hepatic free cholesterol has been implicated in hepatic lipotoxicity25,
and may thereby activate inflammatory recruitment to fatty livers of
HFHC-fed mice to induce NASH. In this study, aberrant gene
expression affecting inflammatory signaling pathways (macrophage
markers, cytokine, chemokine, interleukin, TGF-β and Wnt-related
signaling) was identified in HFHC-associated NASH compared with
HF-associated steatosis. This is consistent with a previously report
that aberrant gene expression was involved in abnormal inflam-
mation during NAFLD progression26. Although others have found
that genes involved in Wnt signaling may be downregulated in
NASH27, our study showed upregulated expression of Wnt signaling
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genes in NASH compared to steatosis, including Ctnnb1 and Myc
(Fig. 2). As similar upregulated expression of Wnt signaling genes
has been reported in HCC, our finding supports the hypothesis that
NASH is more prone to malignant transformation than steatosis
through inducing inflammatory pathways, including those pertinent
to Wnt signaling.

One of our important and novel findings is that the aberrantly
expressed genes and pathways accelerated DEN-induced HCC

based on NASH. We further confirmed that some of these genes
were also aberrantly expressed in human NASH-associated HCCs
as compared to their adjacent non-tumorous liver. We demon-
strated for the first time the aberrant expression of cancer-related
genes (ALCAM, ITGA6, DDIT3, MAP3K6 and PAK1) and
metabolism-related genes (ALDH18A1, CAD, CHKA, POLD4,
PSPH, SQLE and CFD) in human NASH-HCCs. These findings
highlight their particular importance in the development of
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NASH-related HCC. Tumor-promoting roles of MAP3K6, PAK1,
ALCAM and ITGA6 have been reported28–31, thus their upre-
gulation may also function in the development of NASH-related
HCC. DDIT3 is a multifunctional transcription factor in endo-
plasmic reticulum stress and is associated with inflammatory
responses, thus upregulated DDIT3 should be involved in the
development of NASH-HCC. Upregulation of the metabolic
genes (ALDH18A1, CAD, CHKA, POLD4, PSPH, SQLE) may
function in accelerating cellular metabolism. Of note, SQLE

(squalene epoxidase) encodes a rate-limiting enzyme in choles-
terol biosynthesis and exerts oncogenic roles in cancers32–34. Our
team has recently revealed that upregulation of SQLE plays an
important oncogenic role in driving NAFLD-HCC32. CFD
encodes human adipsin that functions as an adipokine and reg-
ulates insulin secretion35. Downregulation of CFD expression
may be associated with dysregulation of insulin signaling in
NASH-HCC. Collectively, dietary cholesterol induced hepatic
aberrant expression of genes and their associated necro-
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inflammatory (TGF-β signaling, chemokine signaling, etc),
oncogenic signaling pathways (MAPK signaling, axon guidance
and cell adhesion, etc) and metabolic pathways to contribute to
the development of NASH-HCC.

In contrast to liver cancers in HFHC-fed mice, significantly
fewer genes were mutated during hepatocarcinogenesis in HF-fed
mice. It therefore seems likely that alterations of gene expression
contribute more importantly to hepatocarcinogenesis than do
gene mutations in HF-fed mice. In addition to the anticipated
dysregulated expression of cancer-related and metabolic path-
ways, 13 out of the 16 genes related to cholesterol synthesis were
significantly upregulated (all P < 0.05; Supplementary Fig. 5). We
interpret this phenomenon as indicating that without an aug-
mented level of cholesterol intake, hepatocytes and/or HCC
precursor cells are required to undergo de novo cholesterol
synthesis to promote cancer development. This concept supports
a previous hypothesis that cancer cells need excess cholesterol and
intermediates of the cholesterol biosynthesis pathway to maintain
cell proliferation, presumably because a large quantum of cho-
lesterol is required for the synthesis of cell membrane36. High
levels of dietary cholesterol could therefore accelerate hepato-
carcinogenesis by bypassing the requirement for enhanced
endogenous cholesterol synthesis. Recent data have shown that
major cholesterol metabolites, such as 27-hydroxycholesterol and
6-oxocholestan-3beta,5alpha-diol, display tumor-promoter
properties37,38. Therefore, we further analyzed the expression of
a curated list of 63 oxysterol pathway genes in mus musculus
(Supplementary Data 5) known to be involved in the main oxy-
sterol pathway, oxysterol metabolism, oxysterol pathway genes
regulation and oxysterol transport39. We observed 47 (out of 63)
dysregulated oxysterol pathway genes in dietary cholesterol-
associated NASH-livers compared to non-cholesterol-associated
steatosis-livers, as well as 33 dysregulated oxysterol pathway
genes in cholesterol-associated NASH-HCCs compared to their
adjacent non-tumor livers (Supplementary Fig. 6). We interpret
these findings as supporting the proposal that dysregulated oxy-
sterol metabolism is involved in the development of cholesterol-
associated NASH, and also in accelerated hepatocarcinogenesis
associated with NASH.

Exome-sequencing analysis showed that cholesterol-induced
NASH-HCCs in mice harbored up to 7.8-fold more mutations
compared to steatosis-HCCs. Oxidative DNA damage has been
implicated in hepatocarcinogenesis in human NASH40, and
inflammation has also been associated with DNA lesioning.
Therefore, mutational difference in HCCs between HFHC- and
HF-fed mice might be attributable to cholesterol-associated
NASH development involving more severe inflammation. The
increased number of mutations in HFHC tumors may also be
partially due to more advanced stages of HCC or multiclonality as
spatial genetic divergence has been observed in HCC41.

Due to the small sample size of human NASH-HCC data avail-
able, it is currently not feasible to use stringent methods such as
MutSigCV, which takes into account of background mutations and
other confounding covariates to identify significantly mutated genes.
Our study took the advantage of cross-species oncogenomics to
identify genetic alterations in mouse models and then validated such
changes in human samples so as to identify the potential key genes
associated with human NASH-HCC. We identified 21 recurrently
mutated genes in mouse NASH-HCC models and further validated
in human NASH-HCC. Key replicated genes included the muta-
tional cancer driversMTOR and SDK1, and three calcium signaling-
related genes RYR1, CACNA1H and RYR2. Of note,MTOR has been
determined to be an HCC driver gene using MutSigCV42, and was
identified to be one of the most important genes associated with
NASH-HCC in this study, suggesting the special significance of
MTOR mutations in this subtype of HCC. Whether other genes

identified in this study are true driver genes in NASH-HCC need
further validation in a larger cohort of samples as well as functional
investigation. One exome analysis of 10 human NAFLD-HCC
patients identified two previously unreported somatic mutations
(FGA and SYNE1) that might contribute to NAFLD-HCC, as well as
other mutations in known HCC-associated genes such as TERT
promoter, CTNNB1, TP53, ARID1A, ARID2, TSC2, ACVR2A,
NFE2L2 and AXIN143. Conversely, another study failed to find
CTNNB1, TERT and TP53 mutations but instead noted frequent
expressional activation of IL-6/JAK/STAT in steatohepatitic HCCs
as compared with non-steatohepatitic HCCs44. Taken together, we
interpret the present data as indicating that dietary cholesterol, either
directly or via the liver pathology of NASH, induces recurrent
mutations and their associated oncogenic pathways in a way that
contributes to accelerated onset and spread of carcinogen-induced
HCC.

Integrated analysis of gene expression and mutations revealed
that mutations exerted little influence on the levels of gene
expression. Nevertheless, aberrant expression and mutations in
NASH-HCCs affected different genes that were commonly enri-
ched in five core pathways of calcium signaling, insulin signaling,
cell adhesion, axon guidance and metabolism. Pertinent to their
importance in the development of NASH-HCC, these pathways
were already dysregulated in NASH liver by aberrant gene
expression. This presumably reflects the involvement of pro-
gressive changes of these pathways during NASH-related liver
carcinogenesis. Dysregulation of such pathways has been reported
in other cancers45–49.

In the present study, the calcium signaling gene RYR1 that was
mutated most frequently in both murine and human NASH-
HCCs appears to be of pathogenic significance. Calcium signaling
plays an important physiological role in metabolism, and its
dysregulation has previously been implicated in cancer develop-
ment23,24. Furthermore, calcium signaling is known to be affected
by cellular cholesterol content21,22. Intracellular calcium ions are
important second messengers that regulate gene transcription,
cell proliferation, migration and death. Thus, altered intracellular
calcium homeostasis is involved in tumor initiation, angiogenesis,
tumor progression and metastasis. Some important calcium
channels, transporters and calcium-ATPases are altered in human
cancer patients50. It is therefore salient to note that most recur-
rently mutated calcium signaling genes identified in NASH-HCCs
(all 6 in mice and 11/19 in human) encode key calcium channels;
genetic disruptions of these channels may alter calcium home-
ostasis and consequently contribute to carcinogenesis. These
findings highlight the potential importance of the dysregulated
calcium signaling during hepatocarcinogenesis in both experi-
mental and clinical NASH. Targeting derailed calcium signaling
by blockers, inhibitors or regulators for calcium channels/trans-
porters/pumps in cancer therapy has become an emerging
research area50. The altered calcium signaling-related genes
identified in this study with available compounds for targeted
therapy include RYR (encoded by RYR1 and RYR2) and IP3R3
(encoded by ITPR3) channels, for which chemotherapeutic agents
include RYR agonists (4-chloro-m-cresol, caffeine and its ana-
logs) and IP3R3 inhibitors (heparin and caffeine). Notably, intake
of two or more cups of coffee each day reduces HCC incidence by
more than 30% in patients with cirrhosis51. Future study to
investigate the efficacy of these compounds targeting RYR and
IP3R channels in inhibiting NASH-HCC is warranted.

In summary, this study provides the first systematic overview
of altered gene expression, gene mutations and the affected sig-
naling networks in HCC developing in the context of NASH
compared to steatosis using appropriate murine models (Fig. 8).
Key findings are that dietary cholesterol causes NASH via dys-
regulating expression of genes involved in inflammation and
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metabolism, and augments the accelerated development of HCC
through induction of oncogenic mutations and gene expression.
In particular, we identified novel aberrant gene expression,
mutations and core oncogenic pathways, most notably those
linked to calcium transport channels that contribute to HCC with
cholesterol-induced NASH, and demonstrated analogous changes
in clinical samples. Further studies should interrogate the func-
tional consequences of such molecular changes and test whether
they can be exploited pharmacologically as chemoprevention or
therapy of NASH-related HCC.

Methods
Animals and diets. From 6 weeks of age, male C57BL/6 J mice were randomly fed
one of three diets (Specialty Feeds, Glenn Forrest, Western Australia) for 26 weeks: 1)
normal chow (n= 9), 2) high saturated-fat ([HF], 23% fat, 45% carbohydrate, 20%
protein, 0% cholesterol w/w) (n= 10), and 3) combined high saturated-fat and high
cholesterol ([HFHC], 23% fat, 45% carbohydrate, 20% protein, 0.19% cholesterol w/w)
(n= 10). To accelerate HCC development in mice, a single injection of chemical
carcinogen DEN (10mg/kg, Sigma-Aldrich, St. Louis, MO) intraperitoneally was
applied at age 15 days (0.9% saline to controls) to induce HCC. This is the most widely
used chemical to induce liver cancer in mice52–54. At 32 weeks of age, mice were
euthanized, and serum and liver were collected for analyses. Tumors and non-
tumorous liver tissues were fixed in 10% neutral-buffered formalin or snap-frozen in
liquid nitrogen. All animal experiments adhered to protocols approved by Australian
National University’s Animal Experimentation Ethics Committee.

Assessment of metabolic phenotypes and liver histology. Blood glucose and
lipids were measured using automated techniques for clinical pathology at the
Canberra Hospital. To evaluate insulin sensitivity, we performed intraperitoneal
glucose tolerance tests (IPGTT) 2 weeks prior to sacrifice. Hepatic triglyceride, free

cholesterol, cholesterol ester fractions were quantified using high-performance
liquid chromatography and results normalized to liver wet weight (g), as described
previously8. Liver sections (5 µm) were stained with hematoxylin and eosin and
assessed blind by an expert liver pathologist (Matthew M Yeh) according to the
NAFLD activity score55.

Whole-exome sequencing. DNA samples of paired tumor and adjacent non-
tumorous livers of 3 HF-fed mice and 5 HFHC-fed mice were subjected to whole-
exome sequencing. Exome capture was performed using the SureSelect Target
Enrichment System (Agilent, Santa Clara, CA). Captured libraries were sequenced by
HiSeq2000 (Illumina, San Diego, CA). Sequencing mean depths were > 100-fold and
coverages of the targeted exome were > 99% for all samples (Supplementary Table 3).

Mouse genome alignment. The whole-exome sequencing reads were mapped to
the UCSC mm10 reference genome (http://genome.ucsc.edu/) using the Burrows-
Wheeler Aligner56. The likely PCR duplications with the same match interval on
the genomic sequence duplications were removed by Samtools57. Local realignment
around small insertions and deletions (Indels) were performed using GATK to
improve alignment quality and help reduce the false discovery rate in the following
mutation detection analysis58.

Single-nucleotide variants (SNVs) calling. Candidate SNVs with mutated allele
frequencies > 15% in cancer tissue and no more than 2% in paired normal tissue
(Fisher’s exact test, P < 0.05) were filtered by the following thresholds: high-quality
(Q > 10) coverage ≥ 10X for each sample; reads supporting the mutated allele not a
result of sequencing error (Binomial test, f= 0.1, P > 0.01); sequencing quality
scores for mutated alleles not lower than normal alleles (Wilcoxon rank sum test, P
> 0.01); mutated alleles not come from repeatedly aligned reads (Fisher’s exact test,
P > 0.01). Mutant alleles should not be enriched in 10 bps of 5’ or 3’ ends of reads
(Fisher’s exact test, P > 0.01). Annotation was performed by ANNOVAR59.

HF

NC

HFHC

NASH

Recurrently mutated genes

Core pathways & related genes in
human NASH-HCCs

Aberrant expression in
human NASH-HCCs

Mut. in mice
Ryr1 (80%) RYR1 (13.5%)

Ryr2 (40%)

Sdk1 (80%) SDK1 (8.1%)
MTOR (5.4%)

CACNA1H (8.1%)
RYR2 (5.4%)

Mtor (40%)
Cacna1h (40%)

Mut. in human

Steatosis

Steatosis
-HCC NASH-HCC

Calcium signaling (RYR1, RYR2, ITPR3,
CACNA1H, CACNA1B, CACNA1I, NOS3···)
Metabolism (ALDH18A1, CAD, CHKA,
POLD4, PSPH, SQLE; CFD)
Insulin signaling (MTOR)
Cell adhesion (SDK1, VCAN; ALCAM,
ITGA6 )

Up: ALCAM, ITGA6, DDIT3, MAP3K6,
PAK1, ALDH18A1, CAD, CHKA, POLD4,
PSPH, SQLE
Down: CFD

Axon guidance (EPHA8)

More numerous,
larger, more prone
to metastasis

Inflammation, dysregulated
metabolic and cancer pathways

Cholesterol

C
arcinogen

C
arcinogen

Common cancer
pathways

Pathways in cancer
ErbB signaling
MAPK signaling

PPAR signaling
TGF-beta signaling
p53 signaling

······

······ ······
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expression

Aberrant
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Mutations Mutations

Fig. 8 Schematic summary of this study. NASH development promoted by dietary cholesterol is associated with aberrant gene expression linked with
activated inflammatory signaling, dysregulated metabolic and cancer-related pathways. Dietary cholesterol-induced NASH-HCC development in mice is
associated with aberrant gene expression, genomic mutations and the associated core pathways. The identified aberrant gene expression and mutations
were verified in human NASH-HCCs. NC, normal chow; HF, high-fat diet; HFHC, high-fat high-cholesterol diet
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Indels calling. Candidate somatic indels were firstly predicted by GATK Somati-
cIndelDetector with default parameters58. Predicted indels were then filtered if (1)
total coverage at the site < 30×; (2) average mapping qualities of consensus indel-
supporting reads < 30; (3) average number of mismatches per consensus indel-
supporting read ≥ 2; (4) average quality of bases from consensus indel-supporting
reads < 20; (5) median of indel offsets from the ends/starts of the reads within 10
bp, or (6) percentage of forward- or reverse-aligned indel-supporting reads < 20%.
Resulting somatic indels were filtered against dbSNP128. Annotation was per-
formed by ANNOVAR59.

Identification of known or potential cancer driver genes. Mutated genes
identified in mouse models were cross-checked using the Catalog of Cancer Driver
Mutations60 (version 2016.5; https://www.intogen.org/analysis/home).

Genome-wide expression analysis using microarray. Gene expression profiles of
tumors and adjacent non-tumor liver tissues from 3 HF- and 5 HFHC-fed mice
(same samples as for exome sequencing) were analyzed using the SurePrint G3
Mouse GE 8 × 60 K Microarray Kit (Agilent Technologies, Palo Alto, CA), which
contained 39,430 Entrez Gene RNAs. In brief, RNA was extracted using Qiazol
reagent (Qiagen, Valencia, CA). The cDNA probes were prepared from 5 μg of
total RNA labeled with Cy5-dUTP (red) or Cy3-dUTP (green) by reverse tran-
scription (Amersham Biosciences, Piscataway, NJ). Two labeled cDNAs were
competitively hybridized to the microarray. Signal intensities were analyzed using a
SureScan microarray scanner (Agilent Technologies). Array data were presented as
log base 2 ratio of the Cy5/Cy3 signals. Gene expression patterns between HF and
HFHC groups were compared using unsupervised hierarchical clustering.

Pathway enrichment analyses. Mutated genes or differentially expressed genes
were subjected to KEGG pathway enrichment analysis using Gene Set Analysis
Toolkit V2 (http://bioinfo.vanderbilt.edu/webgestalt/)61,62. The hypergeometric test
statistical method and the BH multiple test adjustment method were used. All
mouse genes were used as reference. Pathways with at least 4 aberrantly expressed
genes/3 mutated genes and adjusted P < 0.05 were considered as significantly
enriched. WikiPathways analysis was also used for pathway identification and data
visualization (http://www.wikipathways.org)63.

Human samples, gene expression and mutation analyses. Recurrently mutated
genes identified in tumors of HFHC-fed mice were further investigated in human
NASH-HCC samples. Tumors and paired non-tumorous liver tissues from 17
patients diagnosed with HCC complicating NASH were obtained from Prince of
Wales Hospital, The Chinese University of Hong Kong and Zhongshan Hospital of
Fudan University. All patients gave informed consent for participation in this
study. This study was approved by the ethics committee of the Chinese University
of Hong Kong and the clinical research ethics committee of Zhongshan Hospital of
Fudan University. Tumor and paired non-tumorous liver tissues were subjected to
RNA sequencing and whole-exome sequencing. Gene expression was analyzed and
compared between tumors and adjacent non-tumorous liver as our previous
description47. Somatic mutations were called as our previous description64.
Expression and somatic mutations in the genes of interest were then checked in the
17 cases. RT-qPCR was performed to verify the expression of selected genes in 12
cases, with primers listed in Supplementary Table 4.

To further increase the sample size, we also checked mutations in the genes of
interest in the 20 human HCCs associated with NAFLD that had been analyzed by
exome sequencing in TCGA project. Mutation data were downloaded from TCGA
database at cBioPortal Cancer Genomics (http://www.cbioportal.org/public-portal/
index.do).

Statistical analyses. All measurements are shown as means ± SD or means ± SEM
where appropriate. ANOVA corrected for multiple comparisons using Tukey’s test
was used to compare data of each two groups when multiple groups were involved,
and multiplicity adjusted P values were reported for each comparison. Unpaired t
tests were used for comparison of data involving only HF- and HFHC-fed groups.
Paired t tests were used for comparison of expression levels between paired tumor
and adjacent non-tumorous livers from mice and human. FDR was adjusted using
the Benjamini–Hochberg method for RNA seq data. Mutation frequencies were
compared by chi-square test. All statistical tests, except FDR, were performed using
Graphpad Prism 5.0 (Graphpad Software Inc., San Diego, CA), and a two-tailed P
value of < 0.05 was considered statistically significant.

Data availability
Exome sequencing data are deposited in NCBI Sequence Read Archive (http://www.ncbi.
nlm.nih.gov/sra) under the accession number SRP115597 (https://www.ncbi.nlm.nih.
gov/Traces/study/?acc= PRJNA398450). Microarray data are deposited in EMBL-EBI
ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) under accession number E-MTAB-
6002 (https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-6002/).
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