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Measuring macromolecular size distributions and
interactions at high concentrations by
sedimentation velocity
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In concentrated macromolecular solutions, weak physical interactions control the solution

behavior including particle size distribution, aggregation, liquid-liquid phase separation, or

crystallization. This is central to many fields ranging from colloid chemistry to cell biology and

pharmaceutical protein engineering. Unfortunately, it is very difficult to determine macro-

molecular assembly states and polydispersity at high concentrations in solution, since all

motion is coupled through long-range hydrodynamic, electrostatic, steric, and other inter-

actions, and scattering techniques report on the solution structure when average interparticle

distances are comparable to macromolecular dimensions. Here we present a sedimentation

velocity technique that, for the first time, can resolve macromolecular size distributions at

high concentrations, by simultaneously accounting for average mutual hydrodynamic and

thermodynamic interactions. It offers high resolution and sensitivity of protein solutions up to

50mg/ml, extending studies of macromolecular solution state closer to the concentration

range of therapeutic formulations, serum, or intracellular conditions.

DOI: 10.1038/s41467-018-06902-x OPEN

1 Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging
and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA. 2Present address: Department of Chemistry, Columbia University, New York,
NY 20017, USA. 3Present address: Division of Training, Workforce Development, and Diversity, National Institute of General Medical Sciences, NIH,
Bethesda, MD 20892, USA. Correspondence and requests for materials should be addressed to P.S. (email: peter.schuck@nih.gov)

NATURE COMMUNICATIONS |  (2018) 9:4415 | DOI: 10.1038/s41467-018-06902-x | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-8859-6966
http://orcid.org/0000-0002-8859-6966
http://orcid.org/0000-0002-8859-6966
http://orcid.org/0000-0002-8859-6966
http://orcid.org/0000-0002-8859-6966
mailto:peter.schuck@nih.gov
www.nature.com/naturecommunications
www.nature.com/naturecommunications


The physical state of macromolecules at high concentration
in solution with regard to their size distribution and phy-
sical interactions are of critical importance in many fields

such as chemical engineering, food science, colloid chemistry,
biochemistry, cell biology, and biotechnology. The state of mac-
romolecules at high concentrations can be governed by a variety
of weak interaction mechanisms, for example, weak self-
association processes, repulsive steric and hydrodynamic inter-
actions, electrostatic interactions, and depletion forces1. The
balance of these forces can control an amazingly wide spectrum of
behavior, which is well illustrated in our current understanding of
cell biology.

With regard to macromolecular interactions, this field has
traditionally been dominated by the paradigm of specific and
high-affinity interactions between well-structured macro-
molecules with conserved mutual binding interfaces leading to
relatively stable and structurally unique macromolecular com-
plexes. However, the importance of physical, “non-specific”
interactions at high intracellular concentrations is increasingly
recognized and intensely studied, well beyond the crowding
effects on thermodynamics and hydrodynamic interactions con-
trolling intracellular motion2,3. For example, weak multi-valent
interactions between different (often at least partially intrinsically
unstructured) protein species mediated by promiscuous binding
interfaces can control the dynamic formation of polymorph
multiprotein assemblies associated with diverse cellular functions,
such as signaling4. Related, liquid–liquid phase separation driven
by weak macromolecular interactions in the crowded intracellular
environment has recently been recognized as a wide-spread
principle of spatial organization, explaining the formation of
membrane-less intracellular organelles confining specific cellular
activities5. These have also been implicated in disease, including
some of the many protein aggregation disorders. On the other
extreme of protein solution behavior are crystallin proteins in the
eye lens. They have evolved to enhance tissue refractive index and
are present at extremely high concentrations in excess of 400 mg/
ml in the nucleus6–8; despite the lack of any cellular metabolic
support they are stable for many decades without forming higher-
order structures, and they thereby avoid scattering from their
aggregation or liquid–liquid phase transition and delay the onset
of cataracts.

A similar problem of protein solution state is encountered in a
different context of the pharmaceutical industry, where the goal is
to engineer stability into protein drug products such that they
remain monodisperse over long periods of time at concentrations
exceeding 100 mg/ml in therapeutic formulations9. An important
aspect of protein drug products is the viscosity of the formulation,
which is modulated by macromolecular proximity and governed
by hydrodynamic and electrostatic forces, as well as weak non-
covalent oligomerization processes10. Furthermore, the detailed
quantitation of oligomeric populations and traces of protein
aggregates is essential to assess immunogenicity and to satisfy
related regulatory requirements11,12. Therefore, understanding
both the protein size distribution and weak interactions in solu-
tion at high concentrations is indispensable for protein ther-
apeutics and biosimilars in biotechnology13, and we emphasize
this application in the present work.

Unfortunately, measuring macromolecular size distributions
and macromolecular interactions at high concentrations is a
formidable experimental challenge. In nonideal solutions the
motion of each particle is modulated depending on the position
of all others, due to the combined effect of long-range hydro-
dynamic flow fields, steric and electrostatic forces, pressure
effects, solvent- or co-solute-mediated interactions, and solvent
back-flow in the finite sample volume1,14. This interdependence
invalidates the linearity principle underlying current

polydispersity analysis in methods relying on stochastic or
directed motion, such as dynamic light scattering and sedi-
mentation. Small-angle scattering methods are affected addi-
tionally from interference arising from close macromolecular
proximity at high concentrations. Although there are several
techniques to characterize the solution structure for mono-
disperse particles at high concentrations, none currently allows to
simultaneously resolve the macromolecular size distribution. This
limitation is critical since highly concentrated protein samples
have the propensity to form higher-order structures such as oli-
gomers, aggregates, or microclusters—structures that in the case
of light scattering may dominate the measured signal even at
small weight concentrations.

Among the techniques capable of measuring macromolecular
size distributions and interactions in solution, analytical ultra-
centrifugation (AUC) using sedimentation velocity (SV) stands
out due to its mass-dependent driving force providing a resolu-
tion that surpasses diffusion-based methods15. It also features
exquisite sensitivity to trace populations, and allows gentle
experimental conditions that cause negligible sample dilution,
require no tags, and result in minimal surface interactions. SV has
become an important technique in pharmaceutical industry13,16–
21 complementing as an orthogonal method the more high-
throughput size-exclusion chromatography by avoiding some
potential pitfalls of the latter21–23. Besides the study of therapeutic
proteins in aqueous buffer systems, SV has been applied to serum
and cell lysates24–29. Unfortunately, for reasons outlined above,
the size distribution analysis of SV breaks down at the onset of
solution nonideality. For globular proteins this occurs at con-
centrations exceeding a few mg/ml, and at much lower con-
centrations for non-globular macromolecules due to their higher
hydrodynamic volume; examples include polymers30, unstruc-
tured proteins31, carbohydrates32, mucins33, and many polymer-
conjugated proteins in biotechnology30,32,34.

Nevertheless, as we show here, the mass-dependent separation
in SV offers a unique opportunity to measure polydispersity also
in nonideal solutions, if nonideality can be accounted for. To this
end, we apply a mean-field first-order approximation of non-
ideality of sedimentation and diffusion, expressed through aver-
age interaction parameters kS and kD, incorporated into an
extension of the widely used size distribution analysis c(s). This
makes possible a size distribution analysis method termed cNI(s0)
for polydisperse nonideal systems at high concentrations: It is a
diffusion-deconvoluted sedimentation coefficient distribution
that is approximately corrected for nonideality, and simulta-
neously provides estimates for the average nonideality parameters
for sedimentation and diffusion. We test this method with
experimental data from the highly nonideal solutions of proteins
at high concentrations, including suspensions of the NISTmAb
reference material, and more polydisperse apoferritin and bovine
serum albumin (BSA) samples up to 50 mg/ml. We find cNI(s0)
can provide excellent fits to nonideal sedimentation data, main-
taining excellent resolution and sensitivity at all concentrations
tested, and reveal kS with excellent precision from a single
experiment. This extends high-resolution polydispersity analyses
via SV by 1–2 orders of magnitude in concentration, closing the
gap between methodological concentration limits and conditions
of interest for the study of macromolecules in formulations or
intracellular environment.

Results
Analysis of nearly monodisperse samples. As a first test to
establish that the nonideal sedimentation model can adequately
describe the sedimentation process at high concentration, we
carried out SV experiments with the NISTmAb standard
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reference material at different concentrations. Experiments at low
concentration of 0.1–0.2 mg/ml were used as a reference point,
where the sedimentation data follow very well ideal sedimentation
(Supplementary Fig. 1). The best-fit sedimentation coefficient
distribution c(s) shows a monomer peak at s20w= 6.58 S, trans-
lational frictional ratio of 1.6, and reveals the presence of 2.5%
dimeric aggregate, the latter consistent with certification of the
reference material.

As expected, despite the nearly monodisperse size distribution
of the NISTmAb, the ideal sedimentation model is unable to
describe data acquired at the stock concentration of 10 mg/ml
(Fig. 1, symbols and dashed line). Characteristics of nonideal
sedimentation boundaries include significant retardation and
sustained self-sharpening. The self-sharpening occurs due to the
higher sedimentation velocity of molecules in the dilute trailing
part of the boundary compared to those in the leading edge of the
boundary, where high concentrations with repulsive intermole-
cular interactions diminish sedimentation. In fact, at very high
concentrations this differential creates a migrating boundary with
time-independent profile where boundary diffusion is completely
counteracted by self-sharpening35. A less obvious but also
significant deviation from ideal sedimentation is that radial
dilution increases the exponential boundary acceleration15,36.
Therefore, any model assuming ideal sedimentation and
diffusion-based boundary broadening cannot describe the non-
ideal process adequately. It will produce systematic misfits,
initially overestimating and later underestimating boundary
gradients (dashed lines in Fig. 1). This misfit can serve as a flag
to disregard the results, which are characterized by under-
estimated sedimentation coefficients (gray line in Fig. 2),
and grossly overestimated best-fit translational friction coeffi-
cients—in the present case amounting to a value of 3.5.

When fitting next the nonideal distribution model cNI(s0) to the
data, we reduced the number of adjustable parameters by fixing
the frictional ratio to the value of 1.6 measured in dilute
conditions while refining kS and kD in curve-fitting. As shown in
Fig. 1 (solid lines), this led to an excellent fit of the entire
experimental data throughout the sedimentation process. The
corresponding best-fit distribution is highly consistent with that
measured in dilute conditions, with a monomer peak at 6.56 S,

and 2.7% of dimeric aggregate (Fig. 2). The uncertainty of the
dimer fraction was assessed from three replicate experiments
leading to a standard deviation of 0.8%.

In addition to the sedimentation coefficient distribution, the
analysis supplies estimates for interaction parameters. The best-fit
estimates of kS and kD are 19.5 ml/g (19.2–25.5 ml/g, 95% CI) and
45 ml/g (40–56 ml/g, 95% CI), respectively. To assess their
validity, we carried out an independent measurement of kS from
the traditional regression of the weighted-average sedimentation
coefficient as a function of loading concentration across a dilution
series (Supplementary Fig. 2). This resulted in a value of 21.5 ml/g
(19.9–23.1 ml/g, 95% CI), consistent with the value from cNI(s0)
applied to the stock concentration. We also independently
measured B2 by sedimentation equilibrium (SE), arriving at a
value of 28 ml/g in the formulation buffer. Based on Eq. (4), we
would therefore expect kD to be ~35 ml/g, which is in near
agreement with the measured kD-value. Further exploring the
information content with regard to kD, we found that by cNI(s0)
diffusion nonideality is not very well defined, as indicated by a
slight decrease in fit quality when fixing kD to 10 ml/g and
allowing all other parameters to refine (rmsd 0.022 fringes), in
contrast to dramatic changes when applying the same constraint
to kS (rmsd 0.179 fringes). Interestingly, we also observed the
lower kD-value can be compensated entirely by allowing the
frictional ratio parameter to assume an unrealistically low value of
1.3, in a fit associated with false dimer peaks in cNI(s0), and a
slight increase in kS to 25.8 ml/g. This shows a potential
correlation between the polydispersity, the frictional ratio (i.e.,
the scaled ideal diffusion coefficient), and the diffusion interac-
tion parameter. This can be avoided through the initial
measurement in dilute conditions, which provides an indepen-
dent estimate of the frictional ratio to serve as constraint in the
cNI(s) analysis. In this way, the distribution and the interaction
parameter for sedimentation kS can be well defined.

We also carried out an experiment using shorter optical
pathlengths in three-dimensional (3D) printed 1.5 mm center-
pieces to explore the potential of this strategy for extending the
detection range. Again, an excellent fit was achieved with a ratio
of rmsd to loading signal of 0.25%, with a consistent cNI(s0)
distribution exhibiting the monomer peak at 6.66 S, 5.3% dimer
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Fig. 1 Sedimentation velocity analysis of NISTmAb at 10 mg/ml. Interference data of NISTmAb stock solution in 25mM histidine buffer, sedimenting at
45,000 rpm in 3 mm centerpieces, are shown with color temperature gradient indicating the boundary migrating from left to right (circles, for clarity only
every 10th point is shown). The sedimentation model accounting for nonideality, cNI(s0), is shown as solid lines, leading to an rmsd of 0.015 fringes. For
comparison, the best-fit standard ideal model c(s) is shown as dashed lines, leading to an rmsd of 0.098 fringes. In the nonideal model the frictional ratio is
fixed to 1.6, whereas in the standard ideal model the frictional ratio is refined to a best-fit value of 3.5. The lower panel shows residuals of the cNI(s0) fit
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and providing best-fit estimates of kS and kD of 18.4 (17.8–19.0)
and 56 (48–63) ml/g, respectively (Supplementary Fig. 3). The
reasonable consistency of results and the remarkably good fits of
data acquired with either centerpiece excludes Wiener skewing as
a significant factor in this concentration range.

In a second example we examined a more heterogeneous
protein sample of apoferritin. Using the same strategy of fixing
the diffusion parameter fr to the value measured in dilute
solution, the data from a 12.6 mg/ml sample could be fit with an
rmsd/total signal ratio of 0.11% (Supplementary Fig. 4). The
corresponding sedimentation coefficient distribution is highly
consistent to that at dilute conditions (Fig. 3), and the nonideality
coefficient kS of 8.9 (8.5–9.3) ml/g from cNI(s0) at 12.6 mg/ml is
within error identical to the value of 9.3 (8.9–9.6) ml/g from
linear regression based on the s-value of the major peak in a
concentration series (Supplementary Fig. 5).

Accounting for Johnston–Ogston distortions in mixtures. In
comparison to nonideal sedimentation of a single species, mul-
ticomponent sedimentation presents an additional, significantly
more challenging problem: The same concentration-dependent
molecular migration that produces boundary sharpening of single
components will for multicomponent mixtures produce boundary
anomalies consisting of a concentration maximum for smaller
particles trailing the sedimentation boundary of larger particles.
Known as the Johnston–Ogston effect (JOE)37, this phenomenon
is most apparent when the smaller component is specifically
detected and a signal maximum in the leading edge of the
boundary appears. By contrast, when using non-specific detec-
tion, such as interferometry, JOE cannot be visually discerned.
Nevertheless, independent of detection JOE creates the same
concentration inversion, which appears to magnify the boundary
amplitude of the smaller size particles and partially masks the
boundary of the faster-sedimenting species. Thus, a naïve mea-
surement of sedimentation boundary amplitudes of different size
particles will lead to a skewed distribution underestimating faster-
sedimenting populations. To study the impact of this effect on
estimating oligomeric protein fractions, we simulated nonideal
sedimentation data for an antibody with properties similar to the
NISTmAb, but with dimer fractions from 1 to 20% at total
concentrations of 5, 10, and 20 mg/ml. Simulations were carried
out using a conventional model for two discrete non-ideally

sedimenting species with given parameters, and the resulting
sedimentation patterns were analyzed with either standard c(s) or
the cNI(s0) method allowing for unknown distributions and
interaction parameters in the inverse problem. Even though the
fit quality of the standard model quickly deteriorates at higher
concentrations and reports unreasonable frictional ratios, as
mentioned above (Supplementary Tables 1–3), it still appears to
allow estimate of oligomeric populations as reflected in boundary
amplitudes. However, as shown in Fig. 4, the estimated popula-
tions using the standard model are systematically and sub-
stantially too low, e.g., reflecting only approximately one-third of
the true population at 20 mg/ml—a consequence of JOE. By
contrast, the dimer fractions determined from cNI(s0) analysis of
the same data are close to the true values (Fig. 4). Thus, because
cNI(s0) is designed to model the mutual nonideality interaction
between different species, the JOE is naturally accounted for and
size distributions are unskewed.

In order to demonstrate this effect experimentally, we carried
out SV experiments with BSA at concentrations from 0.4 to 52
mg/ml. Without further purification, BSA is well known to
exhibit significant populations of stable oligomeric species such as
dimers and trimers. As shown in Fig. 5a, even at the highest
concentration of 52 mg/ml the cNI(s0) model described the
sedimentation data remarkably well, with an rmsd corresponding
to only 0.16% of the loading signal. The estimate of kS of 8.4 ml/g
derived from the fit in Fig. 5 is consistent with previously
published data from concentration series38. The sedimentation
coefficient distribution provides baseline-resolved monomer,
dimer, and trimer populations, demonstrating that the deconvo-
lution of diffusional boundary broadening works in the nonideal
case similar to the analysis of ideal solutions (Fig. 5b). Finally, the
oligomer fractions are consistent across the entire concentration
series and with those in dilute solution, which demonstrates that
boundary anomalies from JOE in highly concentrated samples are
overcome in the experimental analysis with cNI(s0) (Fig. 5b, inset).
By contrast, the ideal model c(s) is unable to model the
sedimentation process well (Supplementary Fig. 6), and—to the
extent that the resulting apparent distribution can be considered
meaningful—shows declining apparent dimer fractions (Fig. 5b
inset, open circles) that are a direct result of JOE.
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Discussion
In the present work we have developed a method extending the
measurement of macromolecular size distributions to high con-
centrations. It is based on SV, a widely used method that exploits
the strongly size-dependent migration of particles in the cen-
trifugal field in a configuration that avoids sample sequestration
and leads to minimal dilution. We have introduced a computa-
tional data analysis framework that can account for mutual
hydrodynamic interactions at the onset of nonideality, over-
coming the nonlinearity problem intrinsic to the analysis of
macromolecular size distributions under crowded conditions
where macromolecular motions are correlated. Measurement at
high concentration provides a luxurious signal/noise ratio; thus
the exceptionally good fits we obtained up to 52 mg/ml show both
that the mean-field approximations in the model still capture the
salient aspects of the sedimentation process, including the
boundary anomalies characteristic for SV at high concentrations,
and that the experimental detection does not suffer from sig-
nificant artifacts. We found that the resolution, sensitivity, and
performance of the method for nonideal solutions is comparable
to the widely used c(s) analysis for ideal solutions.

This opens a unique window to study macromolecular poly-
dispersity in solution under nonideal conditions, which may
occur not only at high concentrations in excess of 1 mg/ml, but
already at more moderate concentrations for extended polymers
or unstructured proteins. Besides the size distribution in solution,
the method provides a precise estimate of the nonideality coef-
ficient kS. This parameter is closely related to the second virial
coefficient, which has attracted interest in the search for solution
conditions for crystallization39 and for pharmaceutical formula-
tions9,10. The possibility to obtain kS from a single experiment
will facilitate the application of SV to screen solution conditions,
simultaneous to the determination of protein size distribution.

Measurements at high concentration have been a long-
standing goal in AUC, for example, in view of the impact of

macromolecular crowding in cytosol and serum, in addition to
the interest in pharmacological formulations3,24–28. Previous
experimental work to extend the concentration range of SV
included an improved imaging systems to record steeper fringe
profiles40, short pathlength centerpieces40,41, and confocal fluor-
escence detection to minimize optical skewing29. While these
tools likely become critical when exploring the methodological
limits, we were able to carry out experiments at ~50 mg/ml in
standard commercial equipment using a ProteomeLab AUC
applying interference optics. 3D printed centerpieces with shorter
pathlength, as applied in the present work for comparison, have
the potential to further increase the dynamic range. However, the
dimer fraction of 5.3% measured for the NISTmAb using the 3D
printed centerpieces is slightly elevated compared to the value of
2.7% obtained from samples in commercial Epon 3 mm cen-
terpieces. This may possibly be due to imperfections in the 3D
printed centerpieces causing convective disturbances, reminiscent
of elevated dimer fractions observed in earlier, less precisely
manufactured batches of commercial Epon centerpieces42. Opti-
mized experimental strategies and concentration limits will be
further explored elsewhere.

The most critical previous limitation has been the failure of
standard approaches to correctly interpret SV experiments under
nonideal conditions. Boundary modeling suffers not only from the
retardation of sedimentation and the implausibly small apparent
diffusion coefficients (or high frictional ratios) from boundary
sharpening, but, most importantly, from modulation of boundary
amplitudes as a result of the Johnston–Ogston effect. Thus, as we
have demonstrated here, even analyses that attempt only to extract
minimal information on the populations associated with approx-
imate s-values will suffer from the systematic underestimate of
faster-sedimenting populations. For example, this will further
exacerbate distortions in the dcdt-method to determine an
apparent sedimentation coefficient distribution g(s*)43, rendering
any quantitative interpretation of g(s*) uncertain.
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Previous methods to more rigorously analyze nonideal SV were
limited to discrete models with one or a few species44, and often
could only be applied to data subsets from a small time win-
dow45,46, even then usually exhibiting comparatively poor fit
qualities. We believe the need for a priori knowledge of the
number of species present can be particularly problematic at high
concentrations where many proteins exhibit some degree of
aggregation. By contrast, the cNI(s0) method introduced here
provides a physically sensible model for unknown mixtures of
sedimenting particles with nonideal interactions, and can describe
well the entire sedimentation process.

One theoretical limitation of the model is the mean-field
approximation that reduces the mutual nonideality coefficients to
a single set of average coefficient kS and kD. The most important

parameter in modeling SV is kS44,47. The dominating hydro-
dynamic contribution to kS is dependent not on size but on shape,
specifically the cube power of the friction ratio14,48. In this way,
the description of the entire distribution with a single kS-value is
closely related to the reduction of molecular diffusion constants
to a single, average frictional ratio fr as a scaling parameter for the
distribution. This does not always apply, but is a time-honored
simplification that usually matches well the information content
of SV data sets (as many applications of c(s) in the ideal case
show)14,49, especially when working with samples that are not too
polydisperse and of similar class of hydrodynamic shape50. With
regard to kD, we found this parameter to be much less well
determined, and conversely we can conclude that approximations
in this parameter will not impact the model very much, especially
for minority components.

If the diffusion parameter kD is of interest, one might expect
that SV experiments at higher concentrations be helpful in that
they generate more information on kD. However, boundary
sharpening governed by kS will increasingly dominate boundary
shapes and mask diffusional spread, and in the extreme case
generate time-independent boundary shapes35,51. Potential future
extensions of cNI(s0) to higher concentrations might reveal whe-
ther this leads to an increase or further reduction in information
content regarding the distinction between kD and polydispersity.
Indirect determination of kD via kS and B2, exploiting other
techniques such as SE or light scattering to measure the virial
coefficient may be more promising. In this regard, the informa-
tion on sample homogeneity from the cNI(s0) analysis of SV
experiments should be useful beyond providing a kS-value.

Another limitation intrinsic to the current method is the need
to record signals that reflect weight concentrations of all species
equally. Due to the narrow range of macromolecular refractive
index increments, this is fulfilled in good approximation when
using Rayleigh interference optics. If only selective signals are
available, as in fluorescence-detected SV, the difficulty arises that
the majority of sedimenting particles—the detailed sedimentation
patterns of which locally control nonideality—may remain invi-
sible. This limits the study to single-component solutions. For
example, it renders very problematic the attempt to measure
nonideal cross-coefficients of different species from data based on
selective detection of only one species45. A possible solution could
be the creation of signal boundaries at radial positions in solution
zones without concentration gradients (in the plateau regions of
all species) using photoswitchable tags and structured illumina-
tion techniques introduced recently to SV52. This would also
considerably simplify analysis by eliminating boundary shar-
pening and JOE effects. Alternatively, the extension of the cNI(s0)
method to multi-signal SV53 should be seamless, which would
open the door to study more complex multicomponent systems
exhibiting hetero-associations.

Methods
Nonideal sedimentation coefficient distributions. We describe in the following
the mathematical structure of the sedimentation coefficient distributions cNI(s0),
then summarize the foundation of sedimentation and diffusion in nonideal solu-
tions, and finally show how cNI(s0) and the nonideality parameters are computa-
tionally coupled and calculated.

The basic structure of the model follows the c(s) distribution of ideal particles54.
The goal is to calculate a sedimentation coefficient distribution c(s), reflecting the
concentration c of species with sedimentation coefficients between s and s+ ds,
from experimental signals a(r,t) observed as a function of radius r and time t, by
least-squares fitting a linear superposition of signals of species with sedimentation
coefficient s and diffusion coefficient D,

a r; tð Þ ffi εd
Z smax

smin

c sð Þχ s;D fr; sð Þ; r; tð Þds ð1Þ

where ε is an extinction coefficient and d the optical pathlength, and χ(r,t) denotes
the species spatio-temporal sedimentation pattern at unit concentration. Utilizing
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Fig. 5 Sedimentation analysis of BSA at 52mg/ml in PBS. a Interference
optical data were acquired in a 3 mm centerpiece (circles, showing every
10th data point of every third scan). The best-fit cNI(s0) model (solid lines)
with a fixed frictional ratio of 1.45 results in an rmsd of 0.058 fringes, with
kS= 8.4 ml/g and kD= 10 ml/g. b The associated sedimentation coefficient
distribution at 52 mg/ml (magenta) and, for comparison, the distributions
obtained in analogous analyses at 28mg/ml (cyan), 9.8 mg/ml (blue),
both also acquired in 3mm centerpieces, and 1.6 mg/ml (green) acquired
in a 12 mm centerpiece. The inset shows integrated dimer fractions at ~6.5 S
(solid blue circles) and trimer fractions at ~8 S (solid green triangles) from
these cNI(s0) analysis accounting for nonideality. The open circles are the
apparent dimer fractions from empirical c(s) analyses of the same data
neglecting nonideality contributions (Supplementary Fig. 7)
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the time-honored approximation that s scales with molar mass M as s~M2/3 for
globular particles, as in the majority of c(s) applications, the diffusion coefficient is
estimated from the sedimentation coefficient on the basis of a hydrodynamic
scaling law for an ensemble of globular particles characterized by a common
translational frictional ratio fr. (However, it should be noted that cNI(s0) will be
naturally compatible with other hydrodynamic scaling laws, including those for
random chains54,55.) a(r,t) should comprise all available scans throughout the
sedimentation process, such that evolution of the sedimentation boundaries can
provide information on polydispersity and diffusion, in addition to nonideality. In
this way the residuals offer a stringent criterion for the validity of the model.
Additional computational aspects added to Eq. (1) arising from maximum entropy
or Tikhonov regularization, as well as those related to noise decomposition, follow
standard procedures54 and are suppressed here for clarity.

For numerical solution of Eq. (1) a grid of N species i= 1…N is considered. The
calculation of each species’ sedimentation patterns χi(r,t) harbors the key difficulty
of nonideality. In the limit of ideal sedimentation χi(r,t) follows the Lamm partial
differential equation56

∂χi
∂t

¼ � 1
r
∂

∂r
siω

2r2χi � Di
∂χi
∂r

� �
ð2Þ

with constant si and Di, which can be solved using numerical principles described
previously54. Eq. (2) may also involve time-dependent rotor speeds ω(t) as in
gravitational sweep sedimentation57. In nonideal sedimentation the same transport
Eq. (2) is valid, but sedimentation and diffusion coefficients now become
dependent on the local total macromolecular concentration χtot(r,t),

si r; tð Þ ¼ s0;i 1� kSχtot r; tð Þ� � ¼ s0;i 1� kS
R
c sð Þχj s; r; tð Þds

� �

Di r; tð Þ ¼ D0;i 1þ kDχtot r; tð Þ� � ¼ D0;i 1þ kD
R
c sð Þχj s; r; tð Þds

� � ð3Þ

with parameters at infinite dilution denoted by subscript “0”, and with interaction
parameters (synonymously termed nonideality coefficients) for sedimentation kS
and for diffusion kD expressing a first-order approximation for the concentration
dependence. Equation (3) makes a mean-field approximation that mutual
nonideality coefficients of different species can be described by a single average
coefficient kS, and analogous for kD.

The nonideality coefficients are related by hydrodynamic theory of a single class
of particles44,47,58 to the second virial coefficient B2, which can be written as

2B2 ¼ kS þ kD ð4Þ

and is a function of the macromolecular distance distribution and the interparticle
potential W(r)

B2 ¼ 2π
Z

1� e�W rð Þ=kT
� �

r2dr ð5Þ

for quasi-spherical particles59. Furthermore, Batchelor has shown that

s ¼ s0 1� 6:55� 3:53 1� B2=BHSð Þ½ �Φð Þ; ð6Þ

where BHS is the hard sphere virial coefficient and Φ is the volume fraction
occupied by macromolecules60, establishing a relationship between kS, the
molecular distance distribution, W(r), and B2.

The central difficulty of solving the integral equation Eq. (1) in the nonideal
case is that the transport coefficients in Eq. (3) are dependent already on the
integral in Eq. (1). This prohibits the application of previously used standard
methods for solving Fredholm integral equations of the first kind54, since Eq. (1)
has now become an implicitly defined nonlinear integro-differential equation for
c(s) that is considerably harder to solve. In the present work, we have developed an
iterative procedure: Initially χtot(r,t) is approximated across the time-course of the
experiment to solve Eq. (3). This approximation is used to calculate sedimentation
patterns for each species via Eq. (2), which is followed by a standard linear
decomposition of the integral equation in Eq. (1). The latter yields a better
approximation of χtot(r,t) to repeat these steps. After suitable initialization, the
second iteration for solving Eq. (1) provides only a small improvement, but further
iterations are folded into the optimization of nonlinear adjustable parameters
including kS, kD, the solution meniscus, and optionally fr and baseline signals.
Similarly, signal offsets from sedimenting co-solutes resulting from buffer
composition mis-matches between sample and reference sectors can be included in
the fit. (Modeling the impact on macromolecular sedimentation of dynamic density
and viscosity gradients at high co-solute concentrations61,62 is compatible with the
current model but not yet implemented; this limits the application at present to
sufficiently dilute buffer conditions.) We have implemented this algorithm in
SEDFIT as multi-threaded Windows executable achieving run-times of seconds on
conventional laptop computers in applications to full experimental data sets of
50–100 scans with a number of 100–200 s-values serving as grid points in the
sedimentation coefficient distribution.

The nonideal sedimentation coefficient distribution based on Eqs. (1)–(3) is
designated cNI(s0), the subscript “0” reflecting the fact that it will represent

sedimentation coefficients in units at infinite dilution of the macromolecules at
experimental solvent conditions. For structural and other absolute interpretations
of sedimentation coefficients, buoyancy and viscosity corrections may be applied to
s-values of the final cNI(s0) distributions—if partial-specific volume data are
available—so as to standardize s-value units to water at 20 °C15. Since nonideality
coefficients in Eq. (3) describe fractional reduction of s-values, they are
independent of s-value units. This is in contrast to an approach where kS is
calculated by a linear regression of standardized s-values: Here, buoyancy
corrections may be calculated with solution density or with solvent density,
viewpoints that are ultimately equivalent but result in kS-values that differ by an
amount equaling the partial-specific volume44,47,48,58. The kS-values from cNI(s0)
will naturally correspond to the solvent-density corrected framework, consistent
with the hydrodynamic theory of Batchelor63,64.

Analytical ultracentrifugation. AUC experiments were carried out with a Pro-
teomeLab instrument (Beckman Coulter, Indianapolis) following standard meth-
ods15. Briefly, calibration correction factors for the instrument with regard to time,
radius, and temperature were determined as previously described65–67, cumula-
tively amounting to a factor 1.015. NISTmAb (SRM 8671, NIST, Gaithersburg) was
diluted in 25 mM L-histidine buffer, pH 6.0; BSA and apoferritin (Sigma, St. Louis,
cat #A7030 and A3641) were resuspended in phosphate-buffered saline pH 7.4
(PBS). Unless otherwise mentioned, samples were filled in 3 mm or 12 pathlength
Epon double sector centerpieces. For SV experiments, the sample volume was
chosen to create 12 mm long solution columns. After assembly, the AUC cells were
placed in an 8-hole rotor, and temperature equilibrated at 19.8 °C while resting in
vacuum in the rotor chamber. Acceleration to 26,000 rpm for apoferritin, 45,000
rpm for NISTmAb, or 50,000 rpm for BSA, respectively, was immediately followed
by acquisition of radial scans using the Rayleigh interference optical system. SE
experiments were carried out with 6 mm long solution columns, using time-
optimized rotor speed profiles68 to attain SE at 9,000 rpm. SE data were globally
modeled in SEDPHAT using the INVEQ method by Ang and Rowe69 to account
for nonideality with the second virial coefficient.

At high concentrations the data quality will be dominated by systematic
detection errors. The Rayleigh interference optical detection provides the largest
dynamic range but the fringe shift assignment of the Beckman ultracentrifuges fails
if the fringe shift from neighboring camera pixels exceeds half a fringe, which
occurs at gradients above 70 fringes/mm. This results in discontinuities of the
radial fringe profile70. To some extent this may be corrected by data pre-processing
restoring continuity of derivatives in the signal trace, as implemented in SEDFIT70.
A second limitation occurs from high refractive index gradients causing an optical
aberration known as Wiener skewing, which will distort the measured
concentration gradients. Svensson has shown to that the magnitude of skewness is
proportional to d3 × (dn/dr) 2 × (2/3−a), where d is the optical pathlength, dn/dr is
the refractive index gradient, and a is the focal depth relative to the sample
height71. Using a focal depth in the AUC instrument at the 2/3 plane of the optical
pathlength will eliminate this distortion, but it is impractical to adjust for most
users. However, the cube dependence on total pathlength makes skewing much less
problematic for short pathlength cells, and provides a convenient approach to
virtually eliminate this problem. For example, 3 mm cells will lead to 4-fold
reduced signal and 64-fold reduced skew. We have previously shown
experimentally that even with errors in the focal point up to 1.5 mm no detectable
skew occurs at gradients of 10 fringes/cm, such as generated with ≈20 mg/ml BSA
samples in 3 mm pathlength cells at 50,000 rpm70.

Thus, to experimentally minimize both fringe skipping and optical skewing, we
have designed centerpieces with 1.5 mm pathlength, which extend the dynamic
range by a factor of two and reduce skew by a factor of four relative to 3 mm cells.
We have previously introduced 3D printing of AUC centerpieces and shown their
excellent performance when printed in various materials, including Microfine
Green used in the present work (Protolabs, Maple Plain, MN)72. We further
improved this design by adding an embossed rim of 100–150 µm height on both
top and bottom of the centerpiece to serve as a gasket, and added venting holes to
facilitate sample loading. Design files can be downloaded from 3dprint.nih.gov
(model ID 3DPX-009261).

For statistical analysis, unless mentioned otherwise, F-statistics was used to
determine the root-mean-square deviation (rmsd) related to the 95% confidence
level contour of the error surface encompassing the parameters range in this
confidence interval (CI). Plots were created using GUSSI73 or MATLAB
(MathWorks, Natick, MA).

Data availability
The data that support the findings of this study are available from the corre-
sponding author upon reasonable request. C++ code is compiled as part of the
SEDFIT platform, freely available as multi-threaded Windows executable for
download from sedfitsedphat.nibib.nih.gov/software.
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