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Engineering bacterial vortex lattice via direct laser
lithography
Daiki Nishiguchi 1,2,3, Igor S Aranson4, Alexey Snezhko5 & Andrey Sokolov 5

A suspension of swimming bacteria is possibly the simplest realization of active matter, i.e. a

class of systems transducing stored energy into mechanical motion. Collective swimming of

hydrodynamically interacting bacteria resembles turbulent flow. This seemingly chaotic

motion can be rectified by a geometrical confinement. Here we report on self-organization of

a concentrated suspension of motile bacteria Bacillus subtilis constrained by two-dimensional

(2D) periodic arrays of microscopic vertical pillars. We show that bacteria self-organize into a

lattice of hydrodynamically bound vortices with a long-range antiferromagnetic order con-

trolled by the pillars’ spacing. The patterns attain their highest stability and nearly perfect

order for the pillar spacing comparable with an intrinsic vortex size of an unconstrained

bacterial turbulence. We demonstrate that the emergent antiferromagnetic order can be

further manipulated and turned into a ferromagnetic state by introducing chiral pillars. This

strategy can be used to control a wide class of active 2D systems.

Corrected: Publisher correction

DOI: 10.1038/s41467-018-06842-6 OPEN

1 Pathogenesis of Vascular Infections Unit, Institut Pasteur, 75015 Paris, France. 2 Service de Physique de l’Etat Condensé, CEA, CNRS, Université Paris-Saclay,
CEA-Saclay, 91191 Gif-sur-Yvette, France. 3 Department of Physics, The University of Tokyo, Hongo 7-3-1, Tokyo 113-0033, Japan. 4Department of
Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA. 5Materials Science Division, Argonne National Laboratory, Argonne,
IL 60439, USA. Correspondence and requests for materials should be addressed to I.S.A. (email: isa12@psu.edu) or to A.S. (email: sokolov@anl.gov)

NATURE COMMUNICATIONS |          (2018) 9:4486 | DOI: 10.1038/s41467-018-06842-6 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-6390-5072
http://orcid.org/0000-0002-6390-5072
http://orcid.org/0000-0002-6390-5072
http://orcid.org/0000-0002-6390-5072
http://orcid.org/0000-0002-6390-5072
http://orcid.org/0000-0001-6697-9993
http://orcid.org/0000-0001-6697-9993
http://orcid.org/0000-0001-6697-9993
http://orcid.org/0000-0001-6697-9993
http://orcid.org/0000-0001-6697-9993
https://doi.org/10.1038/s41467-018-07443-z
mailto:isa12@psu.edu
mailto:sokolov@anl.gov
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Hydrodynamic turbulence is associated with high Reynolds
numbers (Re ≥ 5 × 103) and domination of inertia over
viscous forces. Swimming microorganisms, such as

common motile bacteria Bacillus subtilis or Escherichia coli, live
in an exceedingly low Reynolds number world
Re � 10�5 � 10�4ð Þ. In contrast with active systems of crawling
or dividing bacteria1,2, cytoskeletal extracts3,4, motile mammalian
cell cultures5,6, and self-propelled colloids7–10, the collective
motion emerges at relatively dilute bacterial concentrations, of the
order of 3–5% of the volume fraction. The volume fraction
typically measures the relative volume of bacterial bodies. While
the volume of long flagella is negligible compared to the body
volume due to their tiny diameter ’ 20 nm, rotating flagella
increase the effective volume fraction due to active stress dis-
tributed over the body and flagella. Bacterial “turbulent” swim-
ming patterns are manifested by recurring vortices and jets with
the length scales and velocities significantly exceeding the sizes
and swimming speeds of individual bacteria11–16. However, the
underlying physics of bacterial turbulence17–19, the statistical
properties13,20,21, and the energy spectra of the self-organized
bacterial turbulence16,22 are fundamentally different from that of
conventional (Kolmogorov) fluid turbulence.

Although unconstrained bacterial turbulence in the bulk has
been described by a variety of continuum theories16,19,22–24 and
reproduced by discrete numerical models16,25–27, it remains elu-
sive how a geometrical confinement or obstacles modify the
macroscopic behavior of the bacterial turbulence even in 2D.
Swimming bacteria confined inside a small 2D circular chamber
self-organize in a single-stable vortex28,29. It has been shown that
hydrodynamic coupling between chambers with bacterial vortices
can lead to the emergence of self-organized vortex lattices with
short-range ferromagnetic or antiferromagnetic orders30,31. Here,
we show that bacteria swimming around the bottom surface of a
pendant drop self-organize in a lattice with anti-ferromagnetic
order in the presence of periodic arrays of tiny microscopic pil-
lars. While the area fraction occupied by pillars is only ~5%, we
reproducibly observed the emergence of stable vortex arrays with
a long-range order if the period of pillar array, a, is in the range
from 60 to 90 μm. We demonstrate that the direction of bacterial
vortices and the order of the vortex lattice can be controlled by
chiral pillars.

Results
Self-organization of swimming bacteria into a vortex lattice.
While conventional turbulent flows can be suppressed by periodic
structures, honeycombs or square grids32,33, such periodic
structures may reorganize non-steady bacterial motion into a
periodic lattice of vortices. In this work we investigated swim-
ming dynamics of bacteria Bacillus subtilis and the emergence of
horizontal lattices of bacterial vortices in the presence of periodic
arrays of tall and thin vertical pillars, see Methods section for
details. In contrast to the studies by Wioland et al.30 who
investigated bacterial vortex arrays in hydrodynamically coupled
microfluidic chambers, the total area (and volume) fraction of
pillars in our work is much smaller. Thus, we impose significantly
smaller geometric constraints on the bacterial turbulence (Fig. 1d
and Supplementary Movie 1). Furthermore, in our experiments a
bacterial suspension is exposed to air, which not only increases
bacterial motility but also eliminates a solid–liquid interface
unavoidable with microfluidic chamber experiments. We also
simultaniously observe the dynamics of turbulent bacterial
motion thanks to the existence of unconstrained area without
pillars around the lattices, which is absent in the microfluidic
chamber experiments28,30,31. Due to a principally different

experimental set-up, the emerged bacterial vortex lattices
demonstrate only antiferromagnetic order, while a system of
connected chambers30 exhibits the transition to a short-range
ferromagnetic order with the increase of gap sizes. We explain
this apparent discrepancy by a different mechanism of interac-
tions between the vortices in these two systems. Since the pillars
are only 14-μm wide, the bacteria are not able to swim along the
liquid–solid boundaries of the pillars and to self-organize in a
stable circulating loop around each pillar. Correspondingly, the
dynamics of this system cannot be described by dual interacting
vortex lattices, between and around pillars, as in ref. 30. Instead,
an array of tiny pillars creates a periodic set of stationary points
with zero bacterial velocities. The emerged pattern arises from the
continuity of bacterial flow between the pillars, as shown in
Fig. 1c, e.

To examine the role of lattice geometry, we performed similar
experiments on hexagonal lattices of hexagonal pillars (Fig. 1b
and Supplementary Movie 6). We tested the lattice constants
a= 40 μm and a= 45 μm to make the size of a unit cell
comparable with the stable vortex size ≈ 70 μm extracted from
the square lattice experiments. Our experiments reveal that the
spin orientations in a hexagonal lattice are random. These
observations are in agreement with those reported in ref. 30 in
spite of different pillars geometry (see the Supplementary
Notes 1 and 2 for details).

Spatial and temporal properties of emerged lattices. The
emerged dynamical patterns are characterized by the absolute
values of mean vorticity hjhrotvðr; tÞit jir2ROIa and the enstrophy

rotvðr; tÞ½ �2� �
t

D E
r2ROIa

of the bacterial velocity field calculated

over the region of interest (ROI). Here, ROIa denotes a set of
ROIs with the lattice constant a. For small lattice constants, a <
60 μm, the bacteria are not able to develop turbulent motion, and
their collective swimming is suppressed by densely placed pillars.
As the lattice constant a increases, both the mean vorticity and
the mean enstrophy increase, reaching maximum at a= 60–90
μm (Fig. 2a). For these lattice periods, stable antiferromagnetic
vortex lattices were observed. These lattice periods are compar-
able with doubled correlation length or the flow scale observed for
the unconstrained (unbounded) bacterial suspension13,14.
Stability of the bacterial vortex is characterized by temporal

fluctuations of the full and tangential component of the bacterial
velocity in the vortex

σ f ;tðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vf ;tðr; tÞ � hvf ;tðr; tÞit
h i2� �

t

s* +

r2ROIa
. The calcu-

lated values normalized by the root mean square (rms) velocities

vrms
f ;t ðaÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½vf ;tðr; tÞ�2

D E
t

r� �
r2ROIa

are shown in Fig. 2b as a

function of the pillar lattice constant a. Both σ f=v
rms
f and σt=v

rms
t

exhibit minima at a= 70 μm. At this lattice constant value, the
vortices are hydrodynamically stabilized and the bacterial
suspension self-organizes in a most stable coherent vortex lattice.
The vorticity field 〈rotv(r,t)〉t calculated from the PIV clearly
demonstrates the antiferromagnetic order inside the pillar arrays
for the lattice spacing between 60 and 90 μm (Fig. 1a). For larger
periods, a > 100 μm, the bacterial suspension is quasi-turbulent
due to the reduced influence of the pillars. The mean vorticity is
reduced as well due to large temporal fluctuations, while the mean
enstrophy remains almost constant.

The antiferromagnetic order of vortices can be quantified with
a spin–spin correlation, similar to that introduced in ref. 30. A
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spin variable for each ROI in the lattice at time t is defined as

Si;aðtÞ :¼
ẑ � P

r2ROIia ðr� riÞ ´ vðr; tÞ
h i

P
r2ROIia r� rij j ; ð1Þ

where ROIia denotes the i-th ROI in the lattice with period a, ri is the
geometrical center of ROIia, and bz is the unit vector in the vertical
direction. The magnitude of the spin represents the relative strength
of a vortex and the sign of the spin reflects the predominant
direction of rotation, positive for counterclockwise and negative for
clockwise. Signs of the adjacent spins are the same for ferromagnetic
order and alternate for antiferromagnetic order. To introduce the
order parameter, we calculated the adjacent spin correlation χa(t) for
each lattice constant a,

χaðtÞ :¼
P

i�j Si;aðtÞSj;aðtÞP
i�j Si;aðtÞSj;aðtÞ

���
���
; ð2Þ

where the sum
P

i�j runs over all adjacent pairs in a single lattice
structure. For a small lattice period of a= 50 μm, the order
parameter fluctuates near −0.25 and occasionally drops to ≈−0.75.
Densely placed pillars decrease average bacterial swimming velocity
and prevent self-organization into a stable lattice. The observed
antiferromagnetic order for a= 60–90 μm is characterized by strong
anti-correlation between the adjacent vortices, χa ≈−1 (Fig. 2e). For
a > 100 μm, at the quasi-turbulent regime, the average order
parameter 〈χa〉t is relatively small, but temporal fluctuations of
χa(t) are large (Fig. 2c, e and Supplementary Movie 2). For a short

period of time, the swimming bacteria self-organize into a large-scale
coherent structure with a characteristic scale of the order of lattice
period. However, the large vortices quickly break down into smaller
vortices, with a more favorable scale of ~60–80 μm. Importantly, we
did not observe any self-organization into a stable lattice for a= 130
μm, which is roughly the doubled period of the most stable lattice
constant a= 70 μm and intrinsic length scale of vortices. That
emphasizes a high sensitivity of the bacterial vortex pattern to defects
in pillar arrays.

Previous experiments demonstrated that bacteria swimming
in a microfluidic channel exhibits a sharp transition from a
stable directed flow to a turbulent state with the increase in the
channel width over ≈70 μm34. We observed the corresponding
transition at a similar scale in a system with a noticeably
smaller degree of confinement: the volume/area fraction of
pillars is ~4 % for a= 70 μm. This observation highlights the
importance of this characteristic scale for both fully enclosed
and slightly confined systems and suggests a new less-invasive
methodology to control and rectify the bacterial behavior at
microscopic scale.

We investigated temporal properties of the observed patterns.
Since the period of the antiferromagnetic vortex lattice is equal to
the doubled period of the pillar lattice, the stable anti-
ferromagnetic lattice has two possible spatial configurations.
One configuration transforms to another by shifting along the
main axes by a. Although such a transition requires simultaneous
sign flipping of all spins in a lattice and is hardly observable in
experiments, occasionally, a single bacterial vortex may flip the
spin (Fig. 2d). An important question here is how the vortex size
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Fig. 1 Self-organized bacterial vortex lattices. a A snapshot of bacteria swimming between square latices of pillars overlaid with a color plot of the average
vorticity magnitude 〈rotv(r, t)〉t. Pillars are arranged in nine arrays with different lattice constant a increasing from 50 μm to 130 μm (clockwise) in 10 μm
increment. The 40-μm lattice is excluded from analysis due to damaged pillars. Scale bar: 100 μm. b Distribution of the average vorticity magnitude for a
honeycomb lattice. Scale bar: 50 μm. c Close-up of the rectangular area shown in a. Arrows indicate instantaneous velocities. Yellow dashed line depicts a
single ROI area. Scale bar: 50 μm. d An artistic representation of bacteria swimming between 3D-printed micropillars (yellow). e Swimming bacteria self-
organized in a lattice of vortices with antiferromagnetic order due to hydrodynamic interaction between adjacent vortices. Black arrows indicate the
direction of bacterial flow between vortices. f A schematics of the experimental setup. For clarity, only one set of pillars is shown
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and the spin–spin interaction in a lattice of different period affect
the stability of a single vortex. To answer this question, we
measured the mean persistence (or life) time of vortices in arrays
with different periods. Each vortex in a pillar array is bound with
four adjacent vortices, while a vortex on the edge interacts with a
turbulent bacterial bath and therefore is less stable. To minimize
the influence of such fluctuations, we fabricated larger arrays of
pillars (9 × 9 instead of 4 × 4) for periods a= 50–90 μm (Fig. 3a
and Supplementary Movies 3, 4, 5).

By analyzing the spins dynamics, we obtained the probability
Pa(t) of a spin to remain oriented in the same direction for a time
t. This probability drops quickly for a= 60 μm and a= 90 μm,
(Fig. 3b) due to chaotic behavior of the bacterial flow. The
exponential decay of Pa is a manifestation of Poisson random
process: the probability of switching remains the same for any
given period of time. The spin persistence time τa was estimated
by fitting the experimental data with Pa(t)∝ exp(−t/τa). Existence
of stable antiferromagnetic lattice for a= 60–80 μm facilitates the
coherent spin dynamics. Hydrodynamic interaction between
vortices increases the probability of each spin to remain in the
preferable antiferromagnetic state and decreases the probability to
remain in ferromagnetic state (Fig. 3c). Correspondingly, we
observed two intrinsically different persistence times for this
range of lattice constants: τshorta and τlonga . In stable antiferromag-
netic configuration for a= 70 μm, each spin retains its favorable
local antiferromagnetic orientation for τlonga � 40 s, while very
rarely flipping to unfavorable local ferromagnetic orientation for
τshorta � 0:2 s (Fig. 2d). This time τshorta is significantly shorter than
a typical time scale of bacterial dynamics ~1 s. The magnitude of
the spin fluctuates around zero for quasi-turbulent lattices, a ≥
100 μm.

Interaction of swimming bacteria inside the same ROI can be
quantified by the spatial correlation function Ca(r) and the

correlation length La of the velocity field v(r,t):

CaðrÞ :¼
vðr′; tÞ � vðr′þ r; tÞh ir′;r′þ r2ROIia

D E
i

D E
t

vðr′; tÞj j2� �
r′2ROIia

D E
i

D E
t

: ð3Þ

As expected, the correlation function Ca(r) decays with r
(Fig. 3d). The presence of a vortex inside each ROI is manifested
by negative values of Ca at large r, which is especially noticeable
for a= 70–90 μm. The increase of Ca(r) for r > 70 μm is observed
in the arrays with large periods a > 100 μm. This is a hint to the
coexistence of two vortices in the same ROI, which leads to
frustration and destabilization of the antiferromagnetic order.
The correlation length La is defined as the distance at which Ca(r)
becomes smaller than 1/e. La increases with a as expected and
approaches the correlation length of unconstrained suspension
L1 ’ 45 μm (Fig. 3d).

Self-organization of swimming bacteria around chiral pillars.
So far the studies were limited to non-chiral pillar arrays. Chir-
ality is an important factor controlling the organization of col-
lective bacterial motion. However, fabrication of chiral obstacles
with controlled shapes used to be prohibitively difficult. Thanks
to a recent progress in a two-photon photolithography, we 3D-
printed arrays of hollow chiral towers, 30 μm in diameter and
100 μm in height. The tip of each tower has holes oriented at 45°
(positive towers) or 135° (negative towers) to the radius of the
tower (Fig. 5a). Bacteria, swimming from and to the center of
each tower through these holes, create a vortex (Fig. 5b). The spin
state of the vortex is prescribed by the “chirality” of the tower.
Depending on the pre-manufactured order of a chiral tower array
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the lattice constant a. Both fluctuations have minima at 70 μm, at which the lattice exhibits stable antiferromagnetic order. Error bars are estimated from
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is observed around a ’ 70 μm. Error bars: standard deviations of time series of χa(t). d Scale bar: 100 μm.
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time. e Examples of temporal dynamics of spins χa(t) for different lattice constants a represented by different colors
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(antiferromagnetic or ferromagnetic), the bacterial suspension
self-organizes into a stable antiferromagnetic state with a period
of the tower lattice, a, or a “double-lattice” state according to
definition in ref. 30 (Fig. 5c). The second state is represented by
two ferromagnetic lattices of opposite spins shifted by a half-
period along both crystallographic axes. By combining positive,
negative, and neutral (not chiral) towers in different patterns, we
can produce various types of vortex lattices and control their
stability.

Discussion
Fluctuations suppress a long-living antiferromagnetic order in
relatively small arrays of pillars. The stability of any finite size

lattice clearly depends on a fraction of vortices located on its
perimeter, exposed to a turbulent bacterial bath. In contrast to the
microfluidic chamber experiments with completely confined
bacterial turbulence28,30,31, the coexistence of the destabilizing
bulk turbulence and the stable vortex lattices in our experiments
enable us to assess such effects in detail. First, we calculated the
persistence time τ as a function of nearest neighbors number k
(Fig. 4a and Supplementary Movie 7–10). Depending on the
position in the lattice, k assumes a value of 2 on the vertices, 3 on
the edges, and 4 in the bulk (Fig. 4b). We also printed an array of
4 pillars (just a single vortex) to attain the value of k= 0. The
dependence of τ vs k shows an exponential increase, consistent
with our theoretical prediction based on the Kramers escape rate
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(Methods section). We measured the order parameter for the
whole lattice, including perimeter, for different array sizes from
n × n= 2 × 2 to 8 × 8, while keeping the lattice constant a= 70
μm (see examples in Fig. 4d). The results are shown in Fig. 4c.
Since the peripheral vortices are more exposed to turbulent bath
fluctuations, in small arrays of n= 2–4, unstable vortices on the
perimeter fluctuate frequently and destabilize the entire lattice.
For larger arrays of n= 5–7, their influence is reduced and
becomes negligible for n ≥ 8. The dependence of the order para-
meter vs n is consistent with the 1/n law. The behavior can be
inferred from the fact that the ratio of less coherent peripheral
vortices to the bulk vortices scales as 1/n (Supplementary Notes 3
and 4).

Our study provides an insight into self-organization of con-
centrated bacterial suspension under seemingly insignificant
geometrical constraints. Indeed, a periodic array of tiny pillars,
taking only 3–5% of total suspension volume, drastically alters
chaotic bacterial swimming pattern and turns it into a periodic
vortex array. The emerged square vortex lattice reveals several
surprising observations. First, in contrast with previous micro-
fluidic experiments30, the apparent antiferromagnetic order at
large distances between pillars suggests a different mechanism for
the bacterial vortices interactions. The concept of the double-
lattice model30 cannot be applied due to the small pillar sizes.
Antiferromagnetic order arises from direct hydrodynamic inter-
action between the adjacent vortices. Second, the observed pat-
terns demonstrated significantly higher persistence and much
larger magnitude of the order parameter in spite of small volume/
area of pillars: Adjacent spin–spin correlation achieves the value
close to −1 for a= 70 μm. This high vortex lattice robustness
prevents penetration of defects from the perimeter of the lattice to
the bulk. For the lattices with the a= 70 μm, the spins can only
flip near the border of the lattice, while the lattice remains anti-
ferromagnetic in the bulk. Our work provides novel strategies for
minimally invasive control of active matter that may be applicable
to other experimental systems exhibiting vortex formation under
geometrical confinement such as active colloids35,36, cytoskeletal
extracts3,4, and vibrated grains37. Self-organization of bacteria in
nearly perfect vortex lattices can be used as a tool for more
efficient energy extraction by an array of gears driven by swim-
ming bacteria38,39 or control of turbulent active motion of bac-
teria in Newtonian11,14 or anisotropic fluids40,41.

Methods
Pillars manufacturing. The pillars consist of a photopolymer resist (IP-Dip) and
are 3D-printed on a glass slide by direct laser lithography42, Photonic Professional
GT system, Nanoscribe GmbH. Being 150-μm tall and 14-μm wide, the pillars are
arranged in square lattices of the period a ranging from 50 μm to 130 μm with
10 μm increment (Fig. 1a). The central part of the experimental cell is left pillar-
free so that parameters of the unconstrained bacterial motion can be monitored

simultaneously. In addition, we made honeycomb lattices with lattice constants
a= 40 μm and a= 45 μm.

Bacteria preparation. The bacteria Bacillus subtilis (strain 1085) were inoculated
on an LB agar plate (Sigma-Aldrich) and stored in a refrigerator at temperature
4 °C. A night before the experiment a small amount of bacteria from the agar plate
was transferred to liquid growth medium Terrific Broth (TB) and incubated at
30 °C overnight. Next morning bacteria were washed, concentrated by cen-
trifugation, and placed in fresh TB medium at the final concentration of 1010 cm−3.
The average length of bacteria is 5–8 μm (not including 10–15-μm-long flagella
with a diameter of ’ 20 nm) with a diameter of 0.8 μm. Correspondingly, the final
volume fraction of bacteria is ≈ 3–4%. At this packing fraction the bacteria swim
collectively with a typical speed ≈ 50–60 μm s−1 13.

Experimental procedure. A droplet of a concentrated suspension was placed on a
glass slide with the printed arrays of microscopic pillars. The thickness of the
droplet was slightly smaller than the pillar’s height to ensure that the pillars pierce
the droplet. The droplet was enclosed by a plastic spacer and by a coverslip with an
air gap of about 0.5 mm. The enclosure minimized evaporation of water from the
droplet while providing oxygen to bacteria. Subsequently, the experimental cell was
flipped so that the bacteria accumulate at the bottom of the droplet due to the
gravity and aerotaxis (Fig. 1f). The dynamics of bacteria were captured by an
Olympus IX71 inverted microscope and a high-resolution (5120 × 3840)
HS20000C camera at ×10 magnification at 30.0–52.7 fps depending on the
experiments.

Image processing. The velocity field v(r,t) of bacterial motion was calculated by
custom particle image velocimetry (PIV) MATLAB scripts (Fig. 1b). The PIV
subwindows were 20 × 20 μm and separated by every 5 μm (75% overlap), the
spatial resolution being smaller than any characteristic scales of the observed
collective motion. Estimation of the bacterial velocity in the proximity of a pillar is
challenging due to several factors: A meniscus creates an optical distortion in the
vicinity of each pillars complicating bacteria tracking; the imposed geometrical
confinements on bacterial motion near the pillars lead to a significant vertical
motion and reduces the accuracy of spatial tracking. To avoid this problem, we
excluded areas around each pillar from our analysis and measured the bacterial
swimming parameters only in square regions of interest (ROI) between pillars
(Fig. 1b). We used only the red pixels of this RGB color camera for analysis because
the images acquired by the red pixels (longer wavelength) had the highest spatial
resolution due to a smaller amount of scattering and diffraction of transmitted
light.

Analytical estimate of the persistence time. To estimate the persistence time as
a function of the number of neighbors, we use a coarse-grained approach where
individual spins are described by an angle variable ϕ with the corresponding spin
value V= cos(ϕ). The angle ϕ is governed by the following equation

dϕ
dt

¼ � γsinð2ϕÞ þ ξðtÞ; ð4Þ

where γ is the relaxation rate, and ξ(t) is a Gaussian white noise approximating
interaction with the turbulent bacterial bath, 〈ξ(t)〉= 0, 〈ξ(t)ξ(0)〉= 2Dδ(t), D is the
noise intensity. Obviously, the choice of the sin function in Eq. (4) is not unique.
Qualitatively similar results can be obtained for arbitrary symmetric bi-stable
function.

In the absence of noise, a solution to Eq. (4) relaxes to either 0 or π.
Correspondingly, the spin variable tends to V= ±1, representing clockwise/
counterclockwise rotating vortices (compare to the approach in ref. 30). With the
noise, the system switches between these symmetric steady states. The persistence
time τ0 of an isolated spin can be estimated from the Kramers escape rate43 (since

1

–0.5

0.5

–1
(s–1)

0

a b c

Fig. 5 Bacterial vortex lattices in the presence of chiral towers. a 3D model of chiral tower. The top part consists of five 3-μm thick hollow disks spaced at
3-μm vertical distance from each other. These disks are supported by 1-μm thin vertical walls oriented at 45° relative to the radius. b Chiral towers create
internal and external hydrodynamical bacterial vortices due to specially oriented holes in their tips. c Vorticity map of bacterial flow between
antiferromagnetic (left) and ferromagnetic (right) chiral tower arrays. Scale bar: 100 μm
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the system needs to overcome the energy barrier γ to switch from the state 0 to π
and vise verse)

τ0 � expðγ=DÞ ð5Þ

Interacting spins ϕij on square lattice can be described similarly,

dϕij
dt

¼ � dH
dϕij

þ ξijðtÞ ð6Þ

where the free energy functional H is of the form

H ¼ � 1
2
γ
X
ij

cosð2ϕijÞ þ η
X
ij

X
lm

cosðϕij � ϕlmÞ: ð7Þ

Here η > 0 is the interaction parameter, and the sum
P

lm is taken with respect
to all nearest neighboring sites on a square lattice.

In the absence of noise, Eq. (6) favors a stable antiferromagnetic lattice
corresponding to the minimum of the free energy H. With fluctuations, the spins
flip, and the persistence time depends on the number of nearest neighbors k. One
can find an upper bound for the energy barrier E vs k (k= 0 for an isolated spin, k
= 2 for vertices, k= 3 for edges, and k= 4 inside the lattice):

E � γþ 2ηk ð8Þ

It gives the following estimate for the persistence time τk

τk � τ0expð2ηk=DÞ ð9Þ

The exponential dependence for the persistence time τk given by Eq. (9) is in
excellent agreement with the experiment (Fig. 4a).

Data availability
The data in support of the reported findings and computer code are available from the
corresponding author upon request (sokolov@anl.gov).
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