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microCLIP super learning framework uncovers
functional transcriptome-wide miRNA interactions
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Argonaute crosslinking and immunoprecipitation (CLIP) experiments are the most widely

used high-throughput methodologies for miRNA targetome characterization. The analysis of

Photoactivatable Ribonucleoside-Enhanced (PAR) CLIP methodology focuses on sequence

clusters containing T-to-C conversions. Here, we demonstrate for the first time that the non-

T-to-C clusters, frequently observed in PAR-CLIP experiments, exhibit functional miRNA-

binding events and strong RNA accessibility. This discovery is based on the analysis of an

extensive compendium of bona fide miRNA-binding events, and is further supported by

numerous miRNA perturbation experiments and structural sequencing data. The incorpora-

tion of these previously neglected clusters yields an average of 14% increase in miRNA-target

interactions per PAR-CLIP library. Our findings are integrated in microCLIP (www.microrna.

gr/microCLIP), a cutting-edge framework that combines deep learning classifiers under a

super learning scheme. The increased performance of microCLIP in CLIP-Seq-guided

detection of miRNA interactions, uncovers previously elusive regulatory events and miRNA-

controlled pathways.
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Crosslinking and immunoprecipitation sequencing (CLIP-
Seq) enabled the high-throughput mapping of RNA-
binding protein interactions. microRNAs (miRNAs) are

central post-transcriptional gene expression regulators, actively
researched for their role in most physiological and pathological
conditions, as well as for their potential as biomarkers and/or
therapeutic targets1. They are small single stranded RNA mole-
cules that are loaded into Argonaute (AGO) to induce target
cleavage, degradation, or translational suppression (Fig. 1a).
Photoactivatable Ribonucleoside-Enhanced Crosslinking and
Immunoprecipitation (PAR-CLIP) variant against AGO proteins
is a widely used methodology for miRNA targetome character-
ization. PAR-CLIP experiments have been performed to map
miRNA-gene interactions on a transcriptome-wide scale for
healthy or diseased cell types and have provided valuable insights
into miRNA regulation of pathogen infections and cancer2,3.
They are considered among the most powerful high-throughput
methods for the characterization of miRNA targets.

During the past few years, computational methods devoted to
AGO-PAR-CLIP data analysis have been elaborated by employ-
ing different mathematical models and feature sets. MIRZA4

implementation employs a biophysical model, while PARma5

provides canonical miRNA seed family interactions by processing
significantly overrepresented kmers. microMUMMIE6 is another
state-of-the-art approach based on a six-state hidden Markov
model for characterizing the background, the AGO-bound clus-
ters and their flanking regions. Its core algorithm solely processes
T-to-C enriched clusters determined by PARalyzer7 and recog-
nizes miRNA-binding sites with (im)perfect seed com-
plementarity. These approaches cannot be readily used on
sequencing data, since they require extra pre-processing steps and
the creation of non-standard file types.

Current algorithms made the complex analysis of AGO-CLIP-
Seq datasets accessible to a broader community. However, even
these leading implementations present reduced ability to distin-
guish a large portion of genuine miRNA-targets. To our knowl-
edge, all existing approaches are based on the analysis performed
in the seminal paper of Hafner et al.8 and depend strongly upon
the induced T-to-C conversions (Fig. 1b) to pinpoint miRNA-
binding sites.

Aim of the present study is to revisit, identify, and address
current obstacles in AGO-CLIP analysis, in order to enable the
accurate determination of experimentally supported functional
miRNA targets. We propose microCLIP, an in silico framework
for CLIP-guided identification of miRNA interactions. micro-
CLIP incorporates novel aspects in PAR-CLIP analysis and
increases the experiment’s scope and robustness. Computational
approaches for AGO-CLIP-Seq data analysis incorporate
machine learning techniques and thus rely heavily on training/
validation dataset selection. To this end, we created an extensive
experimental collection of miRNA interactions in order to boost
the proper optimization of microCLIP algorithm and its exposure
to the actual search space complexity.

Our investigation was implemented under a data-driven
approach by: (a) creating a comprehensive collection of PAR-
CLIP experiments, (b) implementing an extensive compendium
of bona fide functional miRNA-binding events from highly spe-
cific techniques, and (c) analyzing 123 high-throughput miRNA
expression perturbation datasets. This unprecedented list of in-
house analyzed experiments enabled us to assess the impact of
every algorithmic choice on the accuracy of the provided results.

The most remarkable finding was that clusters depleted on T-
to-C conversions, which are always filtered out in such analyses,
can aid in the identification of functional miRNA-binding events
(Fig. 1b). Importantly, including only T-to-C enhanced cross-
linked regions led to a significant loss (60–80%) of the AGO-

PAR-CLIP reads across 24 libraries (Supplementary Table 1). We
utilized our collection of datasets to assess non-T-to-C peak
frequency and functional potential, as well as to identify simila-
rities or differences between these loci and those denoted by T-to-
C mutations.

microCLIP integrates our findings and provides a robust
pipeline for the analysis of all AGO-enriched regions (Fig. 2). It
encompasses an approach based on a super learning scheme and
employs combinations of deep learning, random forest, and
gradient boosting classifiers. The super learner approach was
introduced by van der Laan et al. in 2007 and has been shown to
be an asymptotically optimal system for machine learning9. By
using multiple combinations of classifiers, super learning out-
performs a single prediction model.

Gene expression regulation has been shown to be highly
context-specific at both transcriptional and post-transcriptional
levels. In a fashion similar to how transcription factor binding is
controlled not only by the site sequence but also by numerous
epigenomic mechanisms, microRNA binding and function is
dictated by context that can differ significantly among cell types/
conditions10,11. To this end, we paid specific attention to incor-
porate data from different cell types and experiments in our
study.

microCLIP was trained and evaluated against an extensive set
of interactions from hundreds of miRNA specific low/high-
throughput experiments across ~50 different cell types. A high
quality set, composed of direct miRNA-binding events retrieved
from reporter gene assays and chimeric miRNA-target frag-
ments12–16, was incorporated in the algorithm’s development and
evaluation process (Fig. 2a).

To interrogate the accessibility of miRNA-binding sites resid-
ing on (non-)T-to-C clusters and demarcate structural imprints
of AGO-bound regions, we examined sequencing data from
Parallel Analysis of RNA Structure (PARS) experiments for the
first time in such a setting. All enriched regions exhibited strong
structural accessibility in the miRNA seed site. non-T-to-C sites
were also functionally investigated against 17 gene expression
profiling datasets following up/downregulation of individual
miRNAs. They proved to harbor functional miRNA-binding
events and their incorporation in the analysis revealed an average
increase of 14% in identified miRNA-target interactions per PAR-
CLIP library.

We subsequently processed an independent AGO-PAR-CLIP
dataset in MCF7 cells to evaluate the impact of these neglected
sites in downstream analyses. Their inclusion revealed critical
pathway components under miRNA regulation that were pre-
viously undetected. Pathway members under miRNA control that
remained uncovered with conventional pipelines, were validated
in miRNA–mRNA expression profiles retrieved from 271 ductal
breast cancer samples indexed in The Cancer Genome Atlas
(TCGA)17.

microCLIP is the first algorithm for AGO-PAR-CLIP data
providing more than 80% true positive miRNA-target predictions
on a broad test set. Our approach detects 1.6-fold more validated
miRNA-target sites when juxtaposed against state-of-the-art
implementations, ushering in a new era of miRNA-target anno-
tation. Use of microCLIP can unveil uncharted parts of the
miRNA interactome in different physiological/pathological
conditions.

Results
Α reference collection of bona fide miRNA-binding events. We
extracted positive/negative miRNA-target pairs from direct low-
yield techniques and miRNA perturbation high-throughput
experiments to distinguish AGO-CLIP functional clusters
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(Methods). Our downstream evaluations included miRNA-
binding sites residing on AGO-enriched regions derived from
26 AGO-PAR-CLIP libraries (Supplementary Table 1).

These sets correspond to a comprehensive compilation of
miRNA interactions across different experimental methodologies
and were utilized as a reference dataset for the examination of
important AGO-PAR-CLIP peak properties, as well as for
training and evaluation of microCLIP computational framework
(Fig. 2a, Supplementary Tables 2–3).

T-to-C and non-T-to-C PAR-CLIP clusters share common
traits. One of the most important steps in PAR-CLIP analysis is

the identification of AGO-bound regions for further investigation.
This process is based on the presence and percentage of reads
harboring T-to-C mutations within a cluster, while all other peaks
are omitted from the analysis. We examined if non-T-to-C
containing regions, i.e., the major portion of detected clusters, can
pinpoint functional miRNA-binding events. Our approach
assessed a random set of 4310 and 1700 miRNA-binding sites,
supported by T-to-C and non-T-to-C clusters, respectively,
located in 3′UTR and CDS regions. More than 65% of miRNA
recognition elements (MREs) were derived from direct experi-
mental techniques, while the rest originated from the analyzed
miRNA high-throughput perturbation datasets (64 microarray

miRNA

mRNA

AGO

RISC complex

Ribosome
Transcript cleavage and degradation

Translation suppression

HEK293 T1RNase A 0 – 3189 0 – 1871

0 – 88

0 – 2034

0 – 327

0 – 1328

0 – 31

0 – 17

0 – 12

Range of reads T-to-C peaks Range of reads Non-T-to-C peaks

chr12

131,361,252 bp 131,361,350 bp 149,826,400 bp 149,826,500 bp

chr5

0 – 92

0 – 505

0 – 37

0 – 513

0 – 10

0

0

Ran

Ran

5′

3′

5′

3′

Rps14

hsa-miR-103a-3phsa-miR-19a-3p

hsa-miR-19a-3p hsa-miR-103a-3p

Rps14

HEK293 T1RNase B

HEK293 Flag/HA-AGO1|1

HEK293 Flag/HA-AGO1|2

HEK293 Flag/HA-AGO2

Chimeric fragments

Non-RBP (FLAG-GFP)-20kD

Non-RBP (FLAG-GFP)-35kD

Non-RBP (FLAG-GFP)-45kD

MRE-containing gene regions

b

a

Fig. 1 Argonaute crosslinking and immunoprecipitation experiments enable the high-throughput capturing of miRNA targets. a Illustration of miRNA
targeting. miRNAs are loaded on AGO2 and guide the RISC complex to target MRE(s). RISC binding to its target genes can either cease their translation or
induce their cleavage and/or degradation. b Peaks derived from 5 AGO-PAR-CLIP libraries on HEK293 cells and from 3 non-RBP background libraries are
presented for T-to-C and non-T-to-C AGO-bound regions. The red-and-blue vertical lines represent T-to-C transition sites. Both types of AGO-enriched
clusters are clearly distinguished from background signal. Chimeric miRNA-target fragments overlap with (non-)T-to-C peaks providing direct validation
for specific miRNA-target pairs (hsa-miR-19a-3p–Ran and hsa-miR-103a-3p–Rps14). microCLIP identifies the aforementioned interactions as a 7-mer
(chr12:131,361,200–131,361,400, Ran gene 3′ UTR) and an 8-mer with a 3′ compensatory site (chr5:149,826,350–149,826,550, Rps14 gene CDS), respectively.
The 3D depictions of AGO2 were based in the PDB structure 5JS1
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and 12 RNA-Seq experiments) in our reference collection (Sup-
plementary Tables 4–6).

Importantly, we observed that ~28% of the positive MREs,
including 1131 chimeric and reporter assay-verified interactions,
were exclusively resolved by non-T-to-C AGO-enriched clusters
(Fig. 1b). Consequently, our downstream evaluations were
initially centered on the comparison of MRE-specific feature
distributions between clusters lacking or containing T-to-C sites.
We calculated known important attributes for miRNA-target
recognition such as the AU flanking content, binding type,

matches per miRNA-target duplex domain, minimum free
energy, GU wobble pairs, and MRE conservation. Evaluated
descriptors of miRNA positive interactions residing on T-to-C
clusters significantly diverge from respective densities observed in
negative MREs (Fig. 3a, range of P values T-to-C: 5.9 × 10−198–4 ×
10−7, two-tailed Wilcoxon rank-sum test, nT-to-C= 4310,
nnegative= 1423). We show for the first time, that features related
to miRNA targeted sites on non-T-to-C clusters also significantly
differentiate from relevant estimates corresponding to negative
miRNA-target instances (Fig. 3a, range of P values non-T-to-C:
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7.8 × 10−139–14 × 10−5, two-tailed Wilcoxon rank-sum test, nnon-
T-to-C= 1700, nnegative= 1423). These findings are consistent with
our hypothesis that previously discarded non-T-to-C targeted
regions display common characteristics with T-to-C sites
regarding properties that are considered decisive for miRNA
function.

We additionally realized a primary exploratory study to
investigate whether non-T-to-C sites exhibit context specificity
as T-to-C sites (Supplementary Note 1). Following the seminal
experiment performed in Erhard et al.10, we analyzed 10 AGO-
PAR-CLIP libraries on virus-infected B-cell lines (Erhard et al.10,
Skalsky et al.2). Both site families exhibited exclusive binding
events for a specific context as well as constitutive sites, common
across experiments (Supplementary Fig. 1). Context specificity of
(non-)T-to-C sites appears to be one more point of concordance
between the two site classes. More context-relevant experiments
can be included in future related studies, to further validate this
initial finding.

Structural sequencing data unveil accessible AGO-bound loci.
In order to demarcate RNA Secondary Structures (RSS) of AGO-
bound regions compared to a set of negative miRNA sites on
mRNA transcripts, we estimated respective PARS scores as
introduced by Wan et al.18 (Methods). In this approach, AGO-
binding efficiency is revealed by RSS signatures observed on
mRNA transcripts, since increased structural accessibility is
expected in functional conformations. To this end, we investi-
gated whether functional miRNA-target pairs residing on non-T-
to-C clusters harbored similar structural properties. We
calculated PARS sequencing profiles around AGO-PAR-CLIP-
derived miRNA-binding sites in 4 EBV transformed lympho-
blastoid cell lines2. The analysis of the respective RNase S1 or V1
nuclease signals/intensities at single base resolution enabled the
assessment of miRNA site accessibilities in both T-to-C and non-
T-to-C clusters. These measurements were juxtaposed against
negative MREs comprising miRNAs expressed in the examined
lymphoblastoid cell types. The per base averaged PARS scores
indicate that strong structural accessibility occurs in the 3′ end of
miRNA-target sites and specifically on 2–4 nt positions of the
miRNA seed region. These results were identified on interactions
residing on (non-)T-to-C clusters and significantly differ from
respective base scores along negative MREs located on AGO-
enriched peaks (Fig. 4 yellow window; Methods, range of P values
T-to-C: 0.03–3.7 × 10−5, P values non-T-to-C: 0.01–2.4 × 10−5, two-
tailed Wilcoxon rank-sum test, 3260 < nT-to-C sites < 9159, 2119 <
nnon-T-to-C sites < 6473, nnegative sites= 3059). The outcome of our
analysis is consistent with previous observations19 and

demonstrates that the highest accessibility segregating functional
from non-functional binding sites resides towards the initiation of
the direct miRNA seed pairing.

A super learning approach for AGO-PAR-CLIP analysis. We
incorporated all the aforementioned observations in an extensive
in silico framework. microCLIP is based on ensemble super
learning and provides a complete pipeline for experimentally
supported miRNA targetome annotation, initiating from aligned
(.sam/.bam) PAR-CLIP-sequencing reads. This algorithm, con-
trary to existing leading implementations, operates on every
AGO-enriched cluster, utilizing the previously neglected non-T-
to-C clusters. We designed a collection of 131 descriptors asso-
ciated with CLIP-Seq attributes and miRNA/MRE hybrid derived
characteristics (Methods; Supplementary Data 1).

microCLIP adopts a multi-layer super learner classification
scheme (Fig. 2b). The first layer incorporates nine different nodes
(base classifiers), specialized for subsets of features. Eight of the
nine base nodes utilize ensemble deep learning models to weigh
the outcomes of seven individual classifiers corresponding to: two
Random Forest (RF), one Generalized Linear Model (GLM), two
Gradient Boosting Models (GBM), and two Deep Learning (DL)
models (Methods). A separate RF base classifier assesses CLIP-
Seq derived attributes as well as descriptors linked to MREs and
their flanking regions. The training set of the base nodes was
composed of 8693 positive and 21,789 negative miRNA-target
sites. A separate set of 3276 positive and 6702 negative MREs was
included for the development of a GBM meta-learner which
aggregates the base classifier outcomes in the second layer of the
classification procedure. microCLIP performance was assessed
against independent test sets comprising ~5495 instances in total.
The composition of respective training/test sets is provided in
Supplementary Table 3. miRNA-target pairs were derived from
direct low-yield techniques and perturbation experiments
described in Supplementary Tables 4–5, 7–9. Training and
testing of microCLIP have been performed on independent sets
of targeted MRE regions.

Novel miRNA interactions from AGO-PAR-CLIP clusters. We
applied microCLIP and revisited the analysis of 10 public datasets
across different experimental conditions (GEO/SRA accessions
GSE28859, GSE59944, GSE41437, SRR1045082, SRR359787), in
order to explore the extent of miRNA-target pairs that remain
uncovered using standard AGO-PAR-CLIP computational
approaches. Processed CLIP-Seq libraries were accompanied by
RNA-Seq and small RNA-Seq (sRNA-Seq) data to determine the
set of expressed transcripts and miRNAs per cell type. By

Fig. 2microCLIP in silico framework. a Dataset collection and methodology for positive and negative MRE identification. More than 6000 interactions were
retrieved from direct techniques and miRNA-target chimeric fragments. Numerous high-throughput experimental data following specific miRNA
perturbations enabled the identification of AGO bound or differentially transcribed/translated genes harboring functional binding sites. In order to resolve
the exact miRNA-binding sites, positive and negative instances were coupled with signal from 24 AGO-PAR-CLIP libraries. The negative set was enhanced
by incorporating background CLIP-Seq clusters. sRNA-Seq datasets were included to determine expressed miRNAs and accurately extract positive/
negative MREs. This dataset collection was processed to form the training/test sets of microCLIP deployment (Supplementary Tables 2-3), while 18
miRNA perturbation experiments were segregated (Supplementary Table 6) and introduced in the analyses of Figs. 5–7. b Separate subsets of the positive/
negative miRNA interactions were used to train the distinct levels of the algorithm’s modeling. 9 base classifiers in the first layer comprise characteristic
feature subsets (Supplementary Data 1) that assemble into the GBM meta-learner of the second layer. A super learning scheme is utilized in 8 of the 9
base nodes, weighing outputs from seven individual models. “Region features” node corresponds to an RF classification scheme and consists of CLIP-
sequencing-derived features. Five base models (2–6) were designed for MRE-specific features: “Binding Vectors” describe the (un)paired positions along
the miRNA/MRE hybrid; “Matches per miRNA/MRE domain” contain attributes of miRNA-target structure and sub-domains; “Duplex Features” include
free energy, secondary structure, and AU base pairing features for miRNA and/or target; “Base pairing” encompasses composition descriptors of (un)
paired nucleotides; “MRE general” incorporates general MRE-related descriptors. Three supplementary classifiers (“Feature Combination Set 1–3”)
comprise unique combinations of features found in base nodes 1–6
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Fig. 3 Downstream evaluations of miRNA-binding sites identified on AGO-PAR-CLIP datasets. a Distributions of MRE-related features corresponding to
positive miRNA interactions in T-to-C and non-T-to-C AGO-bound regions against the relevant densities of negative binding sites. Evaluated descriptors
include AU seed base pairs, AU flanking content, GU wobble pairs, MRE conservation, consecutive matches and mismatches per miRNA-target duplex
domain, and binding type. The latter feature comprises an extended set of (non-)canonical miRNA base pairings where smaller values indicate stronger
seed matches (9mer to 6mer) and greater values correspond to noncanonical and 3′ supplementary sites. Distributions of miRNA-end nucleotides not
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Assessed characteristics of positive miRNA interactions on (non-)T-to-C clusters significantly diverge from respective feature distributions of negative
MREs (two-tailed Wilcoxon rank-sum test). b Bar plots featuring the average miRNA-target interactions supported by non-T-to-C and/or T-to-C peaks per
examined cell type and experimental condition. Mean and standard errors (error bars) of miRNA interactions are shown per library. An average increase of
14% (±8.8%) in the detected interactions was observed across analyzed PAR-CLIP libraries by the incorporation of non-T-to-C clusters
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screening every AGO-enriched region, microCLIP reveals a sig-
nificant portion of targeted genes distinguished only from CLIP
clusters presenting no conversion sites. An average 11 ± 6.4%
increase of detected targets was observed across the analyzed
experiments. Figure 3b summarizes the miRNA-target interac-
tions per library, supported by T-to-C and/or non-T-to-C peaks,
respectively. The retrieved results, consistent with our initial
inquiry, suggest that the miRNA targetome is not sufficiently
covered by inferring targets solely in T-to-C enriched cross-linked
regions. The impact of the unrecognized miRNA interactions is
also reflected in functional analyses.

Non-T-to-C miRNA targets disclose functional significance. To
investigate the functional importance of miRNA sites residing on
AGO-enriched regions presenting insufficient T-to-C substitu-
tions, we utilized 17 public high-throughput gene expression
profiling datasets following transfection or knockdown of specific
miRNAs (GEO accessions GSE60426, GSE52531, GSE68987,
GSE37918, GSE21901, GSE14537, GSE35621, GSE46039,
GSE21577, microarrays from the study of Selbach et al.20; Sup-
plementary Table 6). These experiments were complemented with
AGO-PAR-CLIP datasets conducted in relevant cell types.
microCLIP was applied to detect miRNA-gene interactions on
HEK293, MCF7 and TZMBL PAR-CLIP libraries (Kishore
et al.21, Farazi et al.3, Whisnant et al.22). Response of targeted
mRNAs to miRNA deregulation was evaluated independently per
tested cell type. In the conducted comparisons, we measured

target fold changes in three distinct groups: (i) mRNAs presenting
at least one predicted MRE on T-to-C clusters, (ii) mRNAs
participating in interactions resolved only by non-T-to-C clusters,
(iii) transcripts lacking sites for the examined miRNAs. The
distributions of gene expression fold changes in these subgroups
are presented in Fig. 5 (expression data available in Supplemen-
tary Data 2). In all miRNA perturbation experiments, we
observed that detected targets overlapping (non-)T-to-C clusters
were significantly downregulated or upregulated upon transfec-
tion or knockdown of different miRNAs compared to transcripts
having no miRNA-binding site (range of P values T-to-C: 5.1 ×
10−138–11 × 10−3, P values non-T-to-C: 8.5 × 10−29–37 × 10−3, two-
tailed Wilcoxon rank-sum test, 51 < nT-to-C < 1569, 11 < nnon-T-to-
C < 344, 2677 < nno-site < 12,330). Regardless of the perturbation
type, T-to-C clusters were observed to relate to more responsive
targets at equal numbers of predicted sites (Fig. 5b–f) (range of
P values (b-f): 2.7 × 10−11–3.9 × 10−2, two-tailed Wilcoxon rank-
sum test, 11 < nT-to-C/non-T-to-C < 344). Still, our analysis outcomes
confirm our initial assumption that there are functionally
important non-T-to-C targets.

The definition of T-to-C locations varies in relevant publica-
tions and describes T-to-C loci as those that are covered with
reads having at least 5–25% T-to-C substitutions8,23–26. For the
analyses presented in Figs. 3–5, a minimum 20% T-to-C
incorporation ratio defines T-to-C clusters. The selected T-to-C
percentage threshold is considered of medium stringency to
confidently identify clusters following the experiment’s
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Fig. 4 Average PARS scores of AGO-bound regions deduced from the analysis of 4 EBV transformed lymphoblastoid PAR-CLIP libraries. RSS base signals
were aligned to the start of the miRNA-target binding site. Base 0 corresponds to the 3′-end of the mRNA, at −1 or −2 nt downstream of the initiation of
the direct miRNA seed pairing. Negative PARS scores correspond to single stranded RNA structures, while positive scores to double stranded sites. In the
examined AGO-PAR-CLIP EF3D-AGO2 (a), LCL-BAC-D1 (b), LCL-BAC-D3 (c), and LCL-BAC (d) datasets, strong structural accessibility occurs in miRNA
sites identified on T-to-C (red) and non-T-to-C (green) clusters in the 2–4 nt positions (yellow window) of the miRNA seed pairing. These results
significantly differ from respective base scores along negative MREs (light blue) located on AGO-enriched peaks. Statistical significance of position
structural changes was calculated using two-tailed Wilcoxon rank-sum test
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specifications. The effect of different T-to-C substitution cutoffs
(0–20%) on the average of microCLIP-detected miRNA interac-
tions supported by non-T-to-C peaks as well as on the functional
efficacy of non-T-to-C supported MREs/targets are presented on
Supplementary Figs. 2–3.

Functional enrichment shows importance of non-T-to-C tar-
gets. To demonstrate the ability of detected non-T-to-C

interactions to statistically empower downstream analyses, a
functional enrichment investigation on KEGG pathways was
conducted in highly scored miRNA-target pairs from an inde-
pendent AGO-PAR-CLIP dataset in MCF7 cells (Farazi et al.3).

8921 and 846 unique interactions retrieved from T-to-C and
non-T-to-C peaks, respectively, were utilized to form two gene sets:
one containing unique T-to-C targets (n= 396), and one
combining T-to-C and non-T-to-C targets (n= 491). A total of
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391 genes were common between the two. Pathway analysis of T-
to-C targets resulted in 63 significantly enriched terms (P < 0.01,
one-sided Fisher’s exact test, Benjamini–Hochberg adjustment, 6 <
nT-to-C < 51), while the combined set yielded 67 enriched terms
(P < 0.01, one-sided Fisher’s exact test, Benjamini–Hochberg
adjustment, 6 < n(non-)T-to-C < 58). An average of 2.4 more targets
per pathway was observed when non-T-to-C interactions were
included.

In both analyses, top-ranking terms were pathways modulating
endocrine resistance, growth factor receptor signaling and typical
tumor-related processes, like cell growth, migration, and
apoptosis. Numerous cancer pathways occupied top positions
based on P-value scores (Supplementary Fig. 4). This elementary
analysis indicated that non-T-to-C peaks assisted in discovering
more targeted pathway members.

A case in point is presented for Hippo, TGF-beta and FoxO
signaling pathways (details in Supplementary Note 2). In Hippo
signaling (hsa04390, P(non-)T-to-C= 3.5 × 10−7, one-sided Fisher’s
exact test, Benjamini–Hochberg adjustment, n(non-)T-to-C= 34),
among targets derived only from non-T-to-C peaks (Supplemen-
tary Fig. 5), miRNA regulation on BIRC5 (Survivin) was notable,
since this terminal pathway node is upregulated in breast cancer
cells, while its silencing inhibits metastasis and induces
apoptosis27. non-T-to-C clusters in TGF-beta signaling
(hsa04350, P(non-)T-to-C= 5.42 × 10−7, one-sided Fisher’s exact
test, Benjamini–Hochberg adjustment, n(non-)T-to-C= 23) revealed
miRNAs targeting TGIF2, TFDP-1, and EP300, orchestrators of
c-Myc and p15 transcription with involvement in cell cycle
progression (Supplementary Fig. 5). BCL2L11 (Bim), a terminal
FoxO pathway node (hsa04068, P(non-)T-to-C= 1.26 × 10−6, one-
sided Fisher’s exact test, Benjamini–Hochberg adjustment, n(non-)
T-to-C= 30), established as anti-proliferative and apoptotic
marker in breast cancer cells28, was revealed to be regulated by
non-T-to-C peaks (Supplementary Fig. 6).

To further validate pathway-related interactions from (non-)T-
to-C clusters, we investigated miRNA-target expression associations
in 271 breast cancer patient samples indexed in TCGA29. miRNA
and mRNA expression profiles were measured by sRNA-Seq and
RNA-Seq experiments. Correlation analysis of expression across
samples was conducted for each miRNA-target pair contained in
enriched KEGG terms. miRNA-gene expression associations,
evaluated separately for interactions resolved by T-to-C and non-
T-to-C clusters, are depicted in cumulative distribution plots
(Supplementary Fig. 7). The analysis confirmed a significant shift of
pathway-related miRNA-target interactions towards more negative
correlation coefficients, when compared against a randomly selected
subset from all miRNA-gene interacting pairs lacking target sites for
the highly expressed miRNAs (PT-to-C= 6.7 × 10−22, Pnon-T-to-C=
8 × 10−4, two-tailed Wilcoxon rank-sum test, nT-to-C= 2299, nnon-
T-to-C= 494, nno-site= 4000).

The MCF7 dataset case-study exhibited non-T-to-C peaks
yielding breast cancer-related interactions that would be lost

following standard analysis scenarios. Independent processing of
miRNA/mRNA expression profiles from TCGA ductal breast
cancer samples clearly distinguishes non-T-to-C miRNA-target
pairs from randomly selected pairs lacking target sites for highly
expressed miRNAs, validating the previous observations. We
conclude that non-T-to-C targets, lost under conventional PAR-
CLIP analysis practices, are functionally relevant and should be
discerned from experimental noise.

Evaluation of microCLIP against AGO-CLIP-guided models.
To assess microCLIP accuracy and to estimate the information
gain with the incorporation of non-T-to-C AGO-enriched
regions, we compared our model against MIRZA4, micro-
MUMMIE6, and PARma5. In the evaluation process, AGO-CLIP-
guided algorithm performance was also contrasted with
Targetscan v730, a state-of-the-art computational approach that
defines de novo miRNA-target pairs. Targetscan is a strong seed-
based approach and is among the most extensively used target
prediction algorithms with higher discriminative power com-
pared to simple seed matching. The performance evaluation was
initially accomplished against unified sets of four microarray and
two RNA-Seq public datasets in which miRNAs were individually
transfected into HEK293 cells (Methods, Supplementary Table 6).
An extensive list of interactions for each CLIP-guided program
was derived from the analysis of 7 PAR-CLIP HEK293 libraries
(Kishore et al.21, Memczak et al.31; Methods). The retrieved
MREs were juxtaposed with deregulated targets identified in the
gene expression profiling experiments. To determine the ability of
each method to identify the most strongly downregulated targeted
genes, detected interactions were ranked according to their pro-
vided scores. The median fold changes (log2) of the top predicted
targets for the different algorithms were subsequently estimated
and accordingly compared by applying stepwise thresholds of
total predictions. The performance of implementations was
additionally evaluated against median fold-change values of
randomly selected genes. In the examined miRNA perturbation
experiments, microCLIP-detected targets revealed the strongest
repression, compared to all the assessed approaches (range of P
values microarrays: 0–8.2 × 10−74, P values RNA-Seq: 0–8.1 × 10−30,
two-tailed Wilcoxon signed-rank test, 535 < nmicroarrays < 5529,
174 < nRNA-Seq < 3129; Fig. 6) and to randomly selected genes
(Pmicroarrays= 3.3 × 10−165, PRNA-Seq= 3.3 × 10−165, two-tailed
Wilcoxon signed-rank test, nmicroarrays= 1000, nRNA-Seq= 1000;
Fig. 6). microCLIP uncovered interactions with stronger func-
tional impact, when equivalent numbers of top predictions,
ordered from highest to lowest scores, were compared. Impor-
tantly, the predictions of the tested algorithms were significantly
more responsive than expected by chance (range of P values
microarrays: 3.3 × 10−165–2 × 10−89, P values RNA-Seq: 3.3 ×
10−165–1.8 × 10−30, two-tailed Wilcoxon signed-rank test, 535 <
nmicroarrays < 1001, 174 < nRNA-Seq < 1001; Fig. 6).

Fig. 5 Functional efficacy of microCLIP-detected MREs residing on T-to-C and non-T-to-C AGO-bound enriched regions. miRNA-binding sites were
obtained from the analysis of PAR-CLIP libraries (1 HEK293, 1 HeLa and 1 MCF7; GEO accessions: GSM714644, GSM1462574; SRA accession SRA110557)
in 3 different cell types. The functional efficiency of predicted targets was examined in 17 public gene expression profiling datasets following miRNA
transfection or knockdown (Supplementary Table 6). Response of targeted mRNAs to miRNA perturbation experiments was evaluated independently per
tested cell type, experimental technique and conditions (a–g). Cumulative distributions of mRNA fold changes for targets comprising at least one predicted
MRE on T-to-C clusters or supported only by non-T-to-C peaks were compared to those that lack any site of the considered miRNAs. The number of
transcripts included in each category is presented in parentheses. Identified targets supported by T-to-C and non-T-to-C clusters exert a significant
difference in expression changes compared to transcripts lacking any predicted binding site (two-tailed Wilcoxon rank-sum test). At same numbers of T-
to-C and non-T-to-C sites, the former group relates to more responsive targets at miRNA perturbation experiments in b–f. Fold-change values (log2) for
perturbation experiments used to evaluate the functional efficacy of MREs supported by T-to-C and non-T-to-C enriched regions are provided in
Supplementary Data 2
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The performance of microCLIP, MIRZA, microMUMMIE,
PARma, and Targetscan v7 was also tested using 3 HEK293 and 4
HeLa expression profiling datasets following miRNA perturbation
(Supplementary Data 2, Supplementary Table 6). Interactions
were obtained by analyzing HEK293 and HeLa AGO-PAR-CLIP
libraries (GEO accessions: GSM714644, GSM1462574) reported
in studies by Kishore et al.21 and Whisnant et al.22, while each
miRNA-target pair was characterized by its associated miRNA-
binding site with the highest score. To ascertain an impartial
evaluation, cumulative distributions of fold changes were
compared for equivalent sets of top predicted targets, i.e., genes
with one or more predicted MRE, against genes lacking any site
(s) for the considered miRNAs. microCLIP exerted significant
differences in expression changes compared to transcripts lacking
any predicted binding site (range of P values (a–g): 3.2 ×
10−71–1.3 × 10−6, one-sided Kolmogorov–Smirnov test, 6764 <
nno-site < 13,122). Compared to the other CLIP-guided imple-
mentations, microCLIP displayed the greatest site effectiveness in
most cases (range of P values (a-f): 3.1 × 10−13–0.031, one-sided
Kolmogorov–Smirnov test, 70 < n < 321; Fig. 7a–f). In Fig. 7g, it
performed similarly as PARma and better than the rest
implementations (range of P values (g): 0.0005–0.1, one-sided
Kolmogorov–Smirnov test, n= 192). In this evaluation, Targets-
can achieved similar site efficacy as microCLIP in Fig. 7c, d–g.
microCLIP demonstrated overall more robust performance
compared to this sequence-based predictor (range of P values
(a-g): 0.002–0.5, one-sided Kolmogorov–Smirnov test, 70 < n <
321).

A significant aspect of AGO-CLIP-guided implementations,
aside from their ability to detect functionally relevant miRNA
interactions, is their efficiency to correctly determine bona fide
miRNA-binding sites at a low number of total predictions.
Therefore, an extra evaluation was implemented against a
validation set of experimentally verified direct miRNA-target
pairs to investigate the accuracy of microCLIP-detected interac-
tions compared to existing methods. microCLIP T-to-C model

that disregards non-T-to-C site information was also tested
(Methods). The utilized validation set is composed of 1674
chimeric and reporter assay-verified interactions from 125
miRNAs (Supplementary Table 3, Supplementary Data 3). The
list of predictions for CLIP-guided implementations (Supple-
mentary Data 4) was obtained from an AGO-PAR-CLIP dataset
in HEK293 cells (GEO accession GSM714644), while Targetscan
(all predictions) and Targetscan conserved predicted sites were
utilized. PARma adopts a seed-based approach and identifies
miRNA-families with a perfect k-mer match within the PAR-
CLIP regions. Accordingly, its predictions have been transformed
from miRNA-family sites to miRNA-targeted sites, where every
binding region is assigned to each one of the miRNA-family
members. The number of correctly predicted MREs per tested in
silico method is plotted against the total predictions for different
score thresholds (Supplementary Fig. 8a). MIRZA algorithm
provides the most probable prediction per cluster. Therefore, an
additional evaluation was performed by including only the top
scored miRNA-binding site per AGO-peak region, in order to
ascertain fairness against all implementations (Supplementary
Fig. 8b). Since PARma cannot provide a single top prediction at
the miRNA level, all miRNAs bound at a specific site with the
same score were considered as top predictions. A separate
comparison capturing algorithms’ efficiency to predict correct
miRNA-target interactions at different levels of total predictions
was also conducted (Supplementary Fig. 8c). The validation set
was the same as in the aforementioned evaluations, collapsed into
1527 miRNA-gene interactions. Targetscan operated in the
absence of AGO-CLIP data, while predicted interactions of
CLIP-guided implementations were defined from PAR-CLIP
clusters overlapping full transcript regions. The results demon-
strate that although Targetscan methods perform well, in silico
approaches based on CLIP data, like microCLIP and PARma,
have a significantly better performance. Baseline seed methodol-
ogies with and without conservation only identify a small
proportion of the MREs presented in the positive test set when
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Fig. 6 Assessment of microCLIP prediction efficacy against MIRZA, microMUMMIE, PARma, and Targetscan v7. miRNA-target pairs for each AGO-CLIP in
silico approach were obtained from the analysis of 7 PAR-CLIP HEK293 libraries and functional investigation was performed by measuring mRNA
responses to miRNA perturbations. Unified sets of a 4 microarray and b 2 RNA-Seq datasets, in which miRNAs were individually transfected into HEK293
cells, were included in the evaluation process. Median fold-change values (log2) of the top predicted targets per tested algorithm were plotted and
accordingly compared by applying stepwise cutoffs on total predictions. Performed comparisons additionally incorporate a group comprising mean fold
changes of 1000 randomly selected genes (without replacement) by using 100 re-samplings. The gray shaded area represents the minimum-to-maximum
log2 fold-change range of the re-samplings per number of top predictions. microCLIP significantly outperforms all the juxtaposed implementations,
detecting targets with the strongest median downregulation, from stringent to loose prediction thresholds (two-tailed Wilcoxon signed-rank test)
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Fig. 7 microCLIP performance compared to MIRZA, microMUMMIE, PARma, and Targetscan v7 was examined in seven public gene expression profiling
datasets following miRNA transfection or knockdown in HEK293 and HeLa cell lines. miRNA-target interactions for AGO-CLIP in silico approaches were
obtained from the analysis of PAR-CLIP HEK293 and HeLa libraries reported in the studies of Kishore et al. and Whisnant et al. Response of targeted
mRNAs to miRNA perturbation experiments was evaluated independently per tested cell type, experimental technique and condition (a–g). Cumulative
distributions of mRNA fold changes for targets comprising at least one predicted MRE in the CDS or 3′ UTR regions were compared to those that lacked
any site of the considered miRNAs (one-sided Kolmogorov–Smirnov test). Functional efficacy was assessed for equal numbers of top predictions per
implementation. Implementations that did not support targets with a fold-change in the examined miRNA perturbation experiments were not included in
the relevant cumulative plots. a–f Identified targets by microCLIP revealed greater site effectiveness than the rest AGO-CLIP-guided implementations.
g microCLIP performed similarly as PARma and better than the rest of implementations. Targetscan v7 identifies responsive targets, operating on par with
in silico approaches based on CLIP data such as PARma, while in c, d and g it displays analogous efficacy as microCLIP. The number of transcripts included
in each comparison is denoted in the parentheses. Log2-transformed expression fold-change values of all perturbation experiments used in the
comparisons are provided in Supplementary Data 2
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they operate on AGO-CLIP enriched regions (Supplementary
Fig. 8a, b). microCLIP exhibits a markedly greater ability to
discriminate miRNA interactions at equivalent numbers of
total predictions, providing a significantly higher sensitivity
in the algorithm’s complete predictions set (Supplementary
Fig. 8a–c).

Discussion
miRNA post-transcriptional regulation is critical to numerous
mechanisms and therefore is intensively explored with compu-
tational approaches and novel experimental techniques. Current
limitations of available AGO-CLIP-guided implementations
undermine the central position of these experiments in the sys-
tematic characterization of miRNA targetome. To this end, we
propose microCLIP, a cutting-edge algorithm for the identifica-
tion of transcriptome-wide functional AGO-occupied clusters
and associated miRNA-target pairs. Available in silico approaches
process solely T-to-C containing clusters, while the efficacy of
neglected interactions remains unknown. By revisiting every step
of CLIP-Seq analysis process, we unveiled perspectives that
increase the scope and accuracy of AGO-PAR-CLIP experiments.
Οur findings and observations were incorporated in microCLIP
computational framework.

The backbone of our investigation was a compendium of
positive/negative miRNA interactions deduced by analyzing
numerous low/high-throughput experiments. It was utilized for
training and evaluation of microCLIP algorithm and testing
analysis decisions. Our model circumvents pitfalls and limitations
of existing implementations dedicated to PAR-CLIP data analysis,
with the ability to be generalized to other CLIP-Seq variants.
microCLIP is the first relevant implementation to employ the
innovative super learner ensemble framework. It is also the only
available A-to-Z computational approach for the analysis
of AGO-PAR-CLIP data initiating from aligned sequence reads
(.sam/.bam files).

Following thorough examination of properties underlying
miRNA targeting efficiency, we observed that positive miRNA-
binding sites identified on both T-to-C and non-T-to-C clusters
significantly diverge from respective descriptors derived from
negative MREs (Fig. 3a). On the basis that miRNA interactions
resolved from non-T-to-C clusters may encompass functional
importance, microCLIP operates on every AGO-enriched cluster,
contrary to existing implementations. Notably, the analysis of
PAR-CLIP published datasets with microCLIP revealed miRNA-
target pairs supported from non-T-to-C peaks, corresponding to
a 14% average increase in identified interactions per processed
library. The impact of including non-T-to-C clusters was reflected
in downstream analyses.

In order to further examine the functional significance of non-
T-to-C interactions, we utilized an extensive collection of miRNA
perturbation experiments. microCLIP-predicted MREs supported
from clusters containing or lacking T-to-C mutations exhibited
significantly increased repressive effectiveness compared to
transcripts without miRNA-binding sites (Fig. 5). In accordance
with previous studies4,8,10, the evaluation in Fig. 5 shows that T-
to-C supported sites possess strong functionality and that they
relate to more responsive targets than non-T-to-C sites at equal
numbers of top predictions (Fig. 5b–f).

Structural accessibility of miRNA-binding sites designates true
targets and is considered of paramount importance in most
prediction algorithms. RNA structural signatures of AGO-bound
regions were characterized with PARS sequencing experimental
data and assessed for the first time in (non-)T-to-C enriched
regions. microCLIP-detected MREs residing on both non-T-to-C
and T-to-C clusters, shared strong and common accessibility

patterns towards the nucleotides initiating the direct miRNA seed
pairing (Fig. 4). Additionally, re-analysis of PAR-CLIP libraries in
virally infected B-cell lines denoted agreement between T-to-C
and non-T-to-C sites in context specificity (Supplementary
Fig. 1). These results significantly segregate functional miRNA
interactions from negative MREs residing on AGO-enriched
peaks.

An independent pathway enrichment analysis directly showed
that miRNA regulation of important signal transduction mem-
bers may remain elusive using conventional analyses. Enrichment
analysis with T-to-C as well as with (non-)T-to-C targets in
MCF7 AGO-PAR-CLIP data revealed numerous cancer-related
terms to be among the most significantly enriched terms. non-T-
to-C targets increased the number of miRNA-controlled genes
per pathway, offering more candidate genes for examination, as
well as achieving lower statistical significance levels (Supple-
mentary Fig. 4). Pathway-related miRNA-target pairs were
additionally subjected to correlation analysis of expression, uti-
lizing (s)RNA-Seq profiles from a cohort of ductal breast cancer
samples. The resulting cumulative distributions significantly dif-
ferentiated from that of remaining miRNA-target pairs lacking
MREs for highly expressed miRNAs (Supplementary Fig. 7).
Until now, miRNA-gene interactions derived from AGO-bound
regions with inadequate T-to-C substitution rates were excluded
from the target identification pipeline. This analysis indicates that
non-T-to-C targets, accurately retrieved from a robust algorithm,
belong to similar biological contexts as targets with sufficient T-
to-C substitutions (Supplementary Figs. 5–6).

In-between program evaluations delineated the existence of room
for improvement for all algorithms in order to increase accuracy.
microCLIP fills the existing gap by detecting interactions with the
strongest functional efficacy and with its capacity to correctly
identify positive MREs, providing 1.6-fold more validated target
sites when juxtaposed against leading implementations.

The increased accuracy of microCLIP in the multifaceted
problem of miRNA-target identification can be attributed to the
integration of meticulously curated high/low-throughput experi-
mental datasets in an avant-garde super learner framework and to
the inclusion of non-T-to-C sites. The comprehensive construc-
tion of miRNA interactomes can guide downstream investiga-
tions towards the elucidation of unexplored regulatory
mechanisms and key components in different biological
processes.

Methods
Dataset collection. 6724 high confidence MREs were retrieved from direct
experiments, including reporter gene assay techniques indexed in DIANA-TarBase
repository15,16, miRNA-chimeras from CLASH (crosslinking, ligation, and
sequencing of hybrids)13 and CLEAR-CLIP (covalent ligation of endogenous
Argonaute-bound RNAs)14 experiments, as well as additional miRNA-target chi-
meric fragments derived from a previous meta-analysis of published AGO-CLIP
datasets12. In order to quantify miRNA-induced mRNA expression changes and to
identify functional binding sites, 101 miRNA perturbation experiments were
analyzed (89 microarray and 12 RNA-Seq experiments, Supplementary Tables 4–
6). This process enabled the formation of ~3900 and 4000 positive and negative
miRNA-target pairs, respectively. A set of five ribosome profiling sequencing (RPF-
Seq) libraries after miRNA overexpression, capturing differentially ribosome-
bound transcripts, and six pSILAC (quantitative proteomics) experiments were an
additional source for detecting more than 5900 miRNA effects at protein expres-
sion level (Supplementary Tables 7–8). The inclusion of AGO-IP and biotin pull-
down high-throughput experiments upon specific miRNA perturbation yielded
~2600 miRNA-binding events (Supplementary Table 9). The aforementioned
miRNA perturbation experiments enabled the detection of deregulated targets
without specifying the exact binding sites15. miRNA-targeted regions were
extracted from AGO-bound enriched regions present in at least 1 of 24 AGO-PAR-
CLIP-sequencing libraries (Supplementary Table 1). Published background
PAR-CLIP libraries32, stably expressing a commonly utilized non-RBP control
(FLAG-GFP), were incorporated in our pipeline to identify non-specific AGO-
bound transcripts and deduce more than 24,000 negative miRNA-binding sites.
A compendium of 96 AGO-CLIP-Seq experiments was derived from
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DIANA-TarBase and used to further select background-derived MREs displaying
no overlap with AGO-enriched regions (Fig. 2a).

Analysis of high-throughput miRNA perturbation experiments. High-
throughput experiments were collected to measure gene expression alterations after
specific miRNA transfection, silencing, or knockout. Log2 fold-change values as
calculated from differential expression analyses of control versus post-treatment
state enabled the formation of miRNA–mRNA positive and negative interactions.

A total of 44 microarray studies of distinct experimental conditions
(Supplementary Table 4, 6) covering 43 human cell lines and 49 miRNAs were
examined to deduce positive and negative miRNA-target interactions. In-house
analysis was initiated from microarray raw data (Affymetrix.CEL files). Probe set
summarization was implemented using Robust Multi-Array Average (RMA) with
R packages affy33 or oligo34. Annotation of probe sets to Ensembl Gene IDs was
accomplished using the chip-specific annotation R packages hgu133a2.db,
hgu133plus2.db or hugene10sttranscriptcluster.db. miRNA-treated and control
samples in each experiment were analyzed independently of other cell lines or
miRNA treatments. Log2 fold-change ratios and p values were calculated with
limma package35, following package instructions on Single-Channel Designs. Probe
sets mapping to the same gene were averaged to calculate its fold-change. A log2
fold-change cutoff of ±1 ( > 1 or <−1, respectively), depending on the type of
regulation, was applied to determine negative and positive interaction subsets. For
GSE8501 experiment conducted in Rosetta–Merck microarrays, error-weighted
log10 intensity ratios were retrieved and transformed to log2-scale.

Ribosome profiling sequencing (RPF-Seq) and RNA-Seq libraries treated with
specific miRNA overexpression, 12 experimental conditions in total
(Supplementary Tables 5–7), were retrieved from Eichhorn et al.36, Nam et al.11,
Pellegrino et al.37, Zhang et al.38. To identify positive/negative miRNA interactions,
a ±0.5 log2 fold-change threshold was applied to genes presenting > 10 RPKM
expression.

Quantitative proteomics datasets (pSILAC) in HeLa cells following the
individual overexpression of five human miRNAs (let-7b, miR-1, miR-16, miR-30a,
and miR-155) or knockdown of let-7b (Supplementary Table 8) were derived from
Selbach et al.20. Positive/negative miRNA interactions were deduced using a ±1 log2
fold-change threshold, respectively.

Analysis of AGO-PAR-CLIP and (s)RNA-Seq expression datasets. AGO-PAR-
CLIP datasets from nine studies, corresponding to 13 cell lines in human species,
were derived from GEO7,39 and DDBJ40 repositories (Supplementary Table 1).
Fifteen small RNA-Seq and 9 RNA-Seq experiments of similar cell types with PAR-
CLIP libraries were analyzed following methodologies as described by Vlachos
et al.41 to infer expressed miRNAs and transcripts. (s)RNA-Seq datasets were
derived from the ENCODE repository and from a series of studies (Supplementary
Tables 10, 11). Whole transcriptome depleted from ribosomal RNAs and poly-A
selected RNA-Seq libraries were analyzed.

Pre-processing and alignment of PAR-CLIP datasets was realized as described
by Vlachos et al.15. Initially, libraries were quality checked using FastQC (www.
bioinformatics.babraham.ac.uk/projects/fastqc/). Adapter sequences were retrieved
from the original publication or GEO/SRA entries, when available. Contaminants
were detected utilizing in-house developed algorithms and the Kraken suite42. Pre-
processing was performed utilizing Cutadapt43. PAR-CLIP reads were aligned
against human reference genome (GRCh37/hg19) with GMAP/GSNAP44 spliced
aligner, appropriately parameterized to identify known and novel splice junctions.
microRNA expression was quantified using miRDeep245. Ensembl v7546 and
miRBase v1847 were used as annotation for genes and microRNAs, respectively.
Top expressed miRNAs and AGO-PAR-CLIP data in each cell type, were jointly
utilized as input to microCLIP in silico framework for miRNA-target identification.
Specifications on the processed 36 datasets are provided in Supplementary
Tables 1, 10, 11.

For the analyses presented in Figs. 3–5 and Supplementary Figs. 4, 7, enriched
AGO-CLIP peaks covered with reads having at least 20% cross-linked sites in the
same position are defined as T-to-C targeted regions.

Analysis of PARS experimental data. PARS sequencing data on total RNA
isolated from lymphoblastoid cells were obtained from Wan et al. study18 (GEO
accessions GSM1226157, GSM1226158). The identification of single or double
stranded regions, across the human transcriptome, was derived from deeply
sequenced RNA fragments generated from RNase S1 or V1 nuclease treatment of
GM12878 cells, respectively.

Raw reads of 51nt length, accordingly pre-processed for quality control and
contaminant removal, were aligned against human reference genome (GRCh37/
hg19) with GSNAP spliced aligner. This analysis resulted in ~130 M uniquely
mapped PE-sequenced fragments per sample. In order to derive structural signals
in RNase S1 or V1 nuclease experiments at single base resolution, we calculated
single(S1) and double(V1) stranded raw reads initiating on each nucleotide. The
number of PARS tags per sample starting at each base were normalized by
sequencing library depth. These base intensities were subsequently combined into
the formula described by Wan et al. to compute PARS scores.

RSS were defined by estimated PARS scores in the vicinity of PAR-CLIP-
derived miRNA-binding sites in four lymphoblastoid cell lines from the study of
Skalsky et al.2. miRNA-mRNA interactions were identified in both T-to-C and
non-T-to-C PAR-CLIP clusters, corresponding to transcripts with > 1 TPM
expression in GM12878 cells. For expressed miRNAs ( ≥ 50 aligned reads per
miRNA) in respective EFD3-AGO2, LCL-BAC, LCL-BAC-D1, and LCL-BAC-D3
EBV infected lymphoblastoid cells, we included collapsed miRNA-binding sites
residing within the PAR-CLIP clusters. For the performed comparisons, we
incorporated negative MREs extracted from different high-throughput miRNA
perturbation experiments (more detailed description in Methods “Analysis of
miRNA transfection/knockdown high-throughput experiments”). MREs utilized
for the assessment of RSS signatures on AGO-bound clusters and the derivation of
(non-)functional conformations of miRNA-target base pairings, were localized on
coding and 3′UTR regions. The examined sites had to present S1 and V1 signals in
at least half of their occupied bases.

sRNA-Seq and RNA-Seq datasets were retrieved from ENCODE consortium
(GEO accession numbers GSM605625, GSM1020026, GSM1020027, GSM1020028,
GSM1020029, and GSM1020030).

microCLIP in silico framework. Feature set description: A set of 131 descriptors
(Supplementary Data 1) with non-zero variance was included in microCLIP. The
extracted features were retrieved from positive/negative miRNA interactions,
identified on AGO-bound locations in different PAR-CLIP datasets. They com-
prised PAR-CLIP-specific descriptors, such as substitution ratios and distance of
conversions from the MRE start, as well as coverage metrics. Aggregate substitution
ratios, positions, and distances independent of the transition type were also
included. In order to estimate MRE and AGO-peak respective sequencing coverage,
we calculated normalized RPKM values for miRNA-target sites and clusters.

Moreover, single base and dinucleotide contents for miRNA-binding and
respective flanking regions, complexity features for the MRE and proximal
upstream/downstream sequences were introduced to microCLIP model. BLAST’s
DUST score48 and Shannon-Wiener Index49 constituted measurements for
masking sequence complexity. Other descriptors were formed to represent energy-
related variables for the duplex structure, while metrics capturing sequence content
skewness/asymmetry (GC-skew, AT-skew, purine-skew, Ks-skew) and biases of
codon usage were added. Entropy, enthalpy, free energy, and melting temperature
(Tm) thermodynamic properties were calculated for MRE sequences in R.

miRNA-target hybrids were associated with different descriptors such as the
binding type, duplex structure energy calculated with the Vienna package50,
positions and nucleotide composition of (un)paired nucleotides. Distinct features
have been established to model (mis)matches, bulges, loops, and wobble pairs for
miRNA-MRE hybrid structure and sub-domains encountered in the duplex. The
distinct domains for miRNA sequences, as defined by microCLIP, are: (i) seed
region (2–8 positions), (ii) central region (9–12 positions), (iii) 3′ supplementary/
compensatory region (13–16 positions), (iv) tail region (17-3′miRNA end). Similar
regions were designated on the MREs based on the miRNA-binding anchors upon
duplex formation.

Our approach incorporates conservation of the MRE and upflank/downflank-
MRE regions. phastCons pre-computed scores from genome-wide multiple
alignments were downloaded from the UCSC repository51 in bigwig format and
were utilized to deduce respective evolutionary rates. Conservation signals were
computed as mean intensities of the phastCons base-wise scores on miRNA
targeted regions, as well as their flanking regions. The conservation of the 5′ MRE
binding nucleotides was independently modeled. microCLIP integrates additional
features corresponding to the location of the MRE within the AGO-enriched
cluster and binding length ratios of miRNA and/or target regions.

The applied super learning scheme benefits from the incorporation of the
complete array of features, maximizing their contribution through their parallel use
in different classification models in every node. The impact of weaker features and
classifiers in optimal super learner design and behavior is shown in Supplementary
Fig. 9, where microCLIP performance was compared to three different
classification schemes using the independent validation set available in
Supplementary Data 3.

Description of the algorithm: microCLIP operates on AGO-PAR-CLIP-
sequencing reads, requiring a SAM/BAM alignment file and a list of miRNAs as
minimum input. It initially seeks for AGO-enriched regions and resolves coverage
and observed transitions. A sensitive pipeline is adopted to scan read clusters for
putative targeted sites including a wide range of binding types. The algorithm
supports an extended set of (non-)canonical matches including 6mer to 9mer,
offset 6mer, 3′supplementary and compensatory sites as well as (im)perfect
centered bindings. microCLIP extracts features for each candidate MRE and
subsequently scores sites through a super learning scheme.

The adopted framework incorporates two distinct levels of classification. The
first layer comprises a group of 9 different nodes (base classifiers), which are
aggregated in the meta-classifier of the second layer. The learning procedure is
decentralized through the distinct nodes and relevant base classifiers that specialize
in different subsets of features (Fig. 2b). “Region Features” node comprises CLIP-
Seq-derived features, such as RPKM coverage, substitution frequencies, and region-
related descriptors, including nucleotide composition, conservation, sequence
energy, complexity, content asymmetry, and biases of codon usage. A set of five
additional base classifiers were designed for MRE-specific features. Binary binding
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vectors of miRNA/MRE hybrid were separately incorporated in a base classifier
(“Binding Vectors”). Each vector element corresponds to one (un)paired position
in the duplex. Matches per miRNA/MRE sub-domain were added to a distinct base
classifier introducing a group of 13 features regarding total and consecutive
matches in the miRNA-target structure as well as in MRE and miRNA relevant
sub-domains. Another base model consists of miRNA-target duplex descriptors
(“Duplex Features”) including miRNA-target duplex structure energy, bulges,
internal loops, GU wobbles, and AU base pairing features for the specified miRNA
and/or target and relevant sub-domains. The “Base pairing” node encompasses
composition descriptors (A, T, G, C) of the (un)paired nucleotides. An extra base
learner incorporates MRE general descriptors such as the degree of overlap with the
respective cluster, conservation of MRE bound nucleotides, MRE location within
the cluster, MRE binding type as well as metrics for duplex paired nucleotides
content asymmetry/skewness. The latter five base models are dedicated to the
determination of genuine miRNA-binding sites. Non-overlapping feature sets from
the aforementioned base nodes are combined into three supplementary classifiers
also incorporated into microCLIP framework.

Eight of the nine base nodes adopt a super learning scheme that assembles the
output of seven individual Random Forest (RF), Generalized Linear Model (GLM),
Gradient Boosting Model (GBM), Deep Learning (DL) classifiers (2 RF, 2 GBM,
2 DL, 1 GLM models). The “Region features” is analyzed by an RF classification
scheme. The retrieved scores from each node are aggregated in a final GBM meta-
classifier.

Model training: The DL models developed for the microCLIP framework adopt
a feed-forward multi-layer architecture. The input layers match the respective
feature space and values are subsequently propagated within three hidden layers.
We utilized a rectifier activation function to retrieve weighted combinations of the
inputs transmitted to interconnected neuron units. Dropout regularization was
added to achieve model optimization and avoid overfitting. A cross entropy cost-
function was selected to adapt weights during the learning process by minimizing
the loss. Bernoulli distribution function was used along with cross entropy (log-
loss) to model the response variables. The output layer at the end of the network
applies a Softmax activation function so that each neuron (predicted class) results
in a probabilistic interpretation. The DL network depth, width, and topology, as
well as activation functions and learning parameters were modeled with a tuning-in
grid search algorithm using H2O52 R package. The RF, GBM, GLM learning
models were developed, parameterized, and tuned with the caret53 and H2O52 R
packages.

Base classifiers were trained against a collection of 8693 positive and 21,789
negative miRNA interactions (Supplementary Table 3). The final GBM meta-
learner that aggregates the base classifier outcomes was trained against an
independent dataset comprising 3276 and 6702 positive and negative instances,
respectively. Ten-fold cross-validation was performed on the training data to
estimate each model’s accuracy and finalize the algorithm’s learning architecture.
Distribution of base model scores on positive and negative instances and their
respective performance, in terms of sensitivity and specificity in an independent
test set of ~4000 instances (Supplementary Table 3), are depicted in Supplementary
Fig. 10. The individual performance of internal classifiers (DL, RF, GBM, GLM) in
microCLIP base models adopting a super learner approach is shown using the
same set in Supplementary Figs. 11, 12. Additionally, the performance of the super
learner scheme against Random Forest models was tested (Supplementary Fig. 9).
microCLIP training and required computations for model optimizations were
multi-threaded.

A microCLIP model adopting the same super learning scheme, including
information only from T-to-C enriched sites, microCLIP T-to-C, was also
deployed. Clusters from the training set incorporating adequate T-to-C transition
sites were selected as input to re-train the super learning classifier. Additional
support for the robustness of CLIP-guided super learner classification irrespective
of non-T-to-C site inclusion is provided through evaluations of microCLIP T-to-C
algorithm performance (Supplementary Fig. 8), as well as of its prediction efficacy
(Supplementary Fig. 13) using the same test and datasets as in Fig. 6.

Expression correlation analysis on (s)RNA-Seq TCGA samples. 271 TCGA
ductal breast cancer RNA-Seq and sRNA-Seq samples were obtained from Firehose
(http://gdac.broadinstitute.org/runs/stddata__2016_01_28). mRNA and miRNA
pre-computed expression values were RPM and RPKM units, respectively. In
downstream analyses, miRNAs/mRNAs with zero expression value in at least 70%
of the samples were filtered out. miRNAs presenting > 10 RPM in > 10% samples
were included, based on miRBase criteria for defining a high confidence set47. The
mRNA set was specified by applying a threshold of more than 1 RPKM in at least
10% of the processed samples. Zero mRNA expression values were replaced by the
lowest non-zero RPKM value per sample. This pipeline resulted in a set of 13,346
mRNAs and 322 expressed miRNAs. Pearson correlation coefficient was computed
for each miRNA-target pair across samples.

Functional analysis of AGO-PAR-CLIP-derived miRNA targets. miRNA-target
pairs were retrieved from the analysis of MCF7 PAR-CLIP library (Farazi et al.3)
with microCLIP in silico framework. The 100 most highly expressed miRNAs and
their targets in 3′ UTR regions were retained. Gene set enrichment analysis of
AGO-PAR-CLIP-detected miRNA targets was performed for KEGG pathways54

using the R package limma35. Enrichment P values were corrected for multiple
comparisons using Benjamini–Hochberg false discovery rate and a 0.01 p-value
threshold was applied. R package Pathview55 was used to visualize targeted path-
way members in KEGG pathways.

miRNA interactions from in silico implementations. In order to form a complete
list of interactions for MIRZA4, microMUMMIE6, and PARma5 computational
approaches, each algorithm was evaluated on a set of 7 PAR-CLIP HEK293
libraries obtained from Kishore et al.21 and Memczak et al.31 studies (GEO
accessions GSM714644, GSM714645, GSM714646, GSM714647, GSM1065667,
GSM1065668, GSM1065669, and GSM1065670). The proposed settings for each
implementation were retrieved from the relevant publications.

The MIRZA biophysical model was executed in the “noupdate” mode. The
algorithm provides an optional parameterization to introduce miRNA expression
profiles. We realized two different runs of MIRZA, with and without cell type-
specific miRNA expression values that were extracted from the CLIPZ web server
(http://www.clipz.unibas.ch). MIRZA input data were 51nt AGO-bound sequences
centered on T-to-C sites and mature miRNA sequences of 21nt length as reported
in the model’s restrictions. The “target frequency” score was utilized to evaluate the
quality of MIRZA-detected sites.

microMUMMIE algorithm was tested in both Viterbi and posterior decoding
modes. Following microMUMMIE’s constraints, we utilized PARalyzer v1.57 to
define the set of T-to-C AGO-enriched peaks. An extra pre-requisite annotation
step to complement PARalyzer detected clusters was implemented with the
PARpipe tool (https://github.com/ohlerlab/PARpipe). Derived files, comprising
annotated AGO clusters with positions of T-to-C transitions, constituted the input
of the microMUMMIE core algorithm. Predictions with signal-to-noise ratio (SNR,
generally correlated with sensitivity) equal to 9.95 were retained, while posterior
probabilities were utilized for the evaluation of microMUMMIE’s performance.

PARma was applied on AGO-PAR-CLIP aligned data that were prepared
following the algorithm’s described format. The required input files contained
genomic locations of aligned CLIP reads along with positions of observed
conversion sites. PARma predictions are coupled with Cscore and MAscore scores
for the cluster and miRNA seed family activity, respectively. The latter score was
utilized for PARma-detected miRNA-target sites evaluation.

Precompiled (non)conserved miRNA site context++ scores for representative
transcripts were downloaded from the Targetscan v7.2 site (http://www.targetscan.
org/cgi-bin/targetscan/data_download.vert72.cgi). Targetscan v7 algorithm was
additionally executed following the proposed settings in order to cover a greater
transcript collection, as well as the whole spectrum of Targetscan-detected
interactions including 6mer sites. Gene annotation files were retrieved from the
Targetscan v7.2 official download page, and the miRNA seed sequence file that is a
pre-requisite for the execution of the model was provided by Targetscan
developers. The local Targetscan run complements the precompiled data with
miRNA-target interactions on transcripts presenting the longest 3′UTR, in cases
they are not deposited on the online repository.

Median fold changes. The comparison between microCLIP and existing imple-
mentations was performed using six gene expression profiling datasets following
individual transfection of highly expressed miRNAs into HEK293 cells (GEO
accessions GSE60426, GSE52531, GSE21901, GSE14537, GSE35621, Supplemen-
tary Table 6). Genes with unchanged expression levels (zero log2 fold change)
following miRNA transfection and/or knockdown have been filtered out. Sub-
sequent measurements were realized at the gene level. miRNA-gene interactions
retrieved from each implementation were sorted according to their prediction
scores. Each miRNA-target pair was characterized by the highest scored miRNA-
binding site overlapping coding or 3′UTR exons, since utilized algorithms provided
MRE-oriented prediction scores. In cases of multiple transcript-gene associations,
the transcript with the longest 3′UTR was selected. Median expression log2 fold
changes were estimated in consistence with the number of top predicted targets.
Aggregated expression changes of genes were calculated by applying stepwise score
thresholds. Paired comparisons required tested programs to have targets at every
computational cutoff. Lower mean log2 fold changes correspond to stronger
downregulation of the detected targets upon miRNA transfection. The statistical
differences in the mean log2 fold-change values obtained by each implementation
were assessed using two-tailed Wilcoxon signed-rank test. Identified targets by each
algorithm were also juxtaposed against averaged log fold changes of 1000
randomly selected genes (without replacement). The mean log2 fold-change values
of the randomly selected genes in different stepwise thresholds were taken and the
median curve derived from these values was calculated. Genes with zero
fold-change indication were filtered out from the random selection
process.

Statistics. Enrichment analyses were performed using one-sided Fisher’s exact test.
Correlations between quantitative parameters were assessed by calculating Pear-
son’s correlation coefficient. Comparisons between two or more groups were
conducted using Wilcoxon’s rank-sum test and Kruskal-Wallis’ test, respectively.
In the latter, Wilcoxon’s rank-sum test was performed as a post hoc test in order to
assess between-group differences. The one-sided Kolmogorov–Smirnov test was
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used to test for greater functional efficacy. In cases of multiple hypothesis testing,
Benjamini–Hochberg’s false discovery rate was applied to control family-wise error
rate. P values < 0.05 were considered as statistically significant.

Data availability
The source code for microCLIP framework as well as data and scripts for the evaluation
of in silico implementations are available at www.microrna.gr/microCLIP.
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