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Quantum theory cannot consistently describe the
use of itself
Daniela Frauchiger1 & Renato Renner1

Quantum theory provides an extremely accurate description of fundamental processes in

physics. It thus seems likely that the theory is applicable beyond the, mostly microscopic,

domain in which it has been tested experimentally. Here, we propose a Gedankenexperiment

to investigate the question whether quantum theory can, in principle, have universal validity.

The idea is that, if the answer was yes, it must be possible to employ quantum theory to

model complex systems that include agents who are themselves using quantum theory.

Analysing the experiment under this presumption, we find that one agent, upon observing a

particular measurement outcome, must conclude that another agent has predicted the

opposite outcome with certainty. The agents’ conclusions, although all derived within

quantum theory, are thus inconsistent. This indicates that quantum theory cannot be

extrapolated to complex systems, at least not in a straightforward manner.
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D irect experimental tests of quantum theory are mostly
restricted to microscopic domains. Nevertheless, quantum
theory is commonly regarded as being (almost) uni-

versally valid. It is not only used to describe fundamental pro-
cesses in particle and solid state physics, but also, for instance, to
explain the cosmic microwave background or the radiation of
black holes.

The presumption that the validity of quantum theory extends
to larger scales has remarkable consequences, as noted already in
1935 by Schrödinger1. His famous example consisted of a cat that
is brought into a state corresponding to a superposition of two
macroscopically entirely different states, one in which it is dead
and one in which it is alive. Schrödinger pointed out, however,
that such macroscopic superposition states do not represent
anything contradictory in themselves.

This view was not shared by everyone. In 1967, Wigner pro-
posed an argument, known as the Wigner’s Friend Paradox,
which should show that “quantum mechanics cannot have
unlimited validity”2. His idea was to consider the views of two
different observers in an experiment analogous to the one
depicted in Fig. 1. One observer, called agent F, measures the
vertical polarisation z of a spin one-half particle S, such as a silver
atom. Upon observing the outcome, which is either z ¼ � 1

2 or
z ¼ þ 1

2, agent F would thus say that S is in state

ψS ¼ #j iS or ψS ¼ "j iS; ð1Þ

respectively. The other observer, agent W, has no direct access to
the outcome z observed by his friend F. Agent W could instead
model agent F’s lab as a big quantum system, L≡ S⊗D⊗ F,
which contains the spin S as a subsystem, another subsystem, D,
for the friend’s measurement devices and everything else con-
nected to them, as well as a subsystem F that includes the friend
herself. Suppose that, from agent W’s perspective, the lab L is
initially in a pure state and that it remains isolated during agent
F’s spin measurement experiment. (One may object that these
assumptions are unrealistic3, but, crucially, the laws of quantum
theory do not preclude that they be satisfied to arbitrarily good
approximation4.) Translated to quantum mechanics, this means
that the dependence of the final state of L on the initial state of S
is described by a linear map of the form

US!L ¼
#j if S 7! � 1

2

�� �
L
� #j iS� “z ¼ � 1

2 ”
�� �

D
� “ψS ¼ #j i”�� �

F

"j if S 7! þ 1
2

�� �
L
� "j iS� “z ¼ þ 1

2 ”
�� �

D
� “ψS ¼ "j i”�� �

F

(
:

ð2Þ

Here, |“z ¼ � 1
2”〉D and |“z ¼ þ 1

2”〉D denote states of D depending
on the measurement outcome z shown by the devices within the
lab. Analogously, |“ψS ¼ #j i”〉F and |“ψS ¼ "j i”〉F are states of F,
which we may label by the friend's own knowledge of ψS; cf. (1).
Now, suppose agent W knew that the spin was initialized to
!j iS�

ffiffiffiffiffiffiffiffi
1=2

p #j iSþ "j iS
� �

before agent F measured it. Then, by
linearity, the final state that agent W would assign to L is

ΨL ¼
ffiffi
1
2

q
� 1

2

�� �
L
þ þ 1

2

�� �
L

� �
; ð3Þ

i.e., a linear superposition of the two macroscopically distinct states
defined in (2). To compare this to agent F’s view (1), one must
consider the restriction of (3) to S. The latter is a maximally mixed
state, and thus obviously different from agent F’s pure state
assignment (1). But, crucially, the difference can be explained by the
two agents’ distinct level of knowledge: Agent F has observed z and
hence knows the final spin direction, whereas agent W is ignorant
about it5. Consequently, although the superposition state (3) may
appear “absurd”2, it does not contradict (1). For this reason, the
Wigner’s Friend Paradox cannot be regarded as an argument that
rules out quantum mechanics as a universally valid theory.

In this work we propose a Gedankenexperiment that extends
Wigner’s setup. It consists of agents who are using quantum
theory to reason about other agents who are also using quantum
theory. Our main finding is that such a self-referential use of the
theory yields contradictory claims. This result can be phrased as a
no-go theorem (Theorem 1). It asserts that three natural-sounding
assumptions, (Q), (C), and (S), cannot all be valid. Assumption
(Q) captures the universal validity of quantum theory (or, more
specifically, that an agent can be certain that a given proposition
holds whenever the quantum-mechanical Born rule assigns
probability-1 to it). Assumption (C) demands consistency, in the
sense that the different agents’ predictions are not contradictory.
Finally, (S) is the requirement that, from the viewpoint of an agent
who carries out a particular measurement, this measurement has
one single outcome. The theorem itself is neutral in the sense that
it does not tell us which of these three assumptions is wrong.
However, it implies that any specific interpretation of quantum
theory, when applied to the Gedankenexperiment, will necessarily
conflict with at least one of them. This gives a way to test and
categorise interpretations of quantum theory.

Results
The Gedankenexperiment. In the setup considered by Wigner
(cf. Fig. 1), agent F carries out her measurement of S in a perfectly
isolated lab L, so that the outcome z remains unknown to anyone
else. The basic idea underlying the Gedankenexperiment we
present here is to make some of the information about z available
to the outside—but without lifting the isolation of L. Roughly, this
is achieved by letting the initial state of S depend on a random
value, r, which is known to another agent outside of L.

Box 1 specifies the proposed Gedankenexperiment as a step-
wise procedure. The steps are to be executed by different agents—
four in total. Two of them, the “friends” F and F, are located in
separate labs, denoted by L and L, respectively. The two other
agents, W and W, are at the outside, from where they can apply
measurements to L and L, as shown in Fig. 2. We assume that L
and L are, from the viewpoint of the agents W and W, initially in
a pure state, and that they remain isolated during the experiment
unless the protocol explicitly prescribes a communication step or
a measurement applied to them. Note that the experiment can be
described within standard quantum-mechanical formalism, with
each step corresponding to a fixed evolution map acting on
particular subsystems (cf. the circuit diagram in the Methods
section).

S

L

F W

�S
z

w

ΨL

Fig. 1 Wigner’s and Deutsch’s arguments. Agent F measures the spin S of a
silver atom in the vertical direction, obtaining outcome z. From F’s
perspective, S is then in one of the two pure states ψS given in (1). Agent W,
who is outside of F’s lab, may instead regard that lab, including the agent F,
as a big quantum system L (orange box). Wigner argued that, having no
access to z, he would assign a superposition state ΨL of the form (3) to L2.
Deutsch later noted that agent W could in principle test this state
assignment by applying a carefully designed measurement to L6
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As indicated by the term Gedankenexperiment, we do not
claim that the experiment is technologically feasible, at least
not in the form presented here. Like other thought experi-
ments, its purpose is not to probe nature, but rather to
scrutinise the consistency of our currently best available
theories that describe nature—in this case quantum theory.
(One may compare this to, say, the Gedankenexperiment of
letting an observer cross the event horizon of a black hole.
Although we do not have the technology to carry out this
experiment, reasoning about it provides us with insights on
relativity theory.)

Before proceeding to the analysis of the experiment, a few
comments about its relation to earlier proposals are in order. In
the case where r= tails, agent F receives S prepared in state !j is:
The first part of the experiment, prior to the measurements
carried out by the agents W and W, is then equivalent to Wigner’s
original experiment as described in the section Introduction2.
Furthermore, adding to this the measurement of agent F’s lab by
agent W, one retrieves an extension of Wigner’s experiment
proposed by Deutsch6 (Fig. 1). The particular procedure of how
agent F prepares the spin S in the first step described in Box 1, as
well as the choice of measurements, is motivated by a
construction due to Hardy7,8, known as Hardy’s Paradox. The

setup considered here is also similar to a proposal by Brukner9,
who used a modification of Wigner’s argument to obtain a
strengthening of Bell’s theorem10 (cf. Discussion section).

Analysis of the Gedankenexperiment. We analyse the experi-
ment from the viewpoints of the four agents, F, F, W, and W, who
have access to different pieces of information (cf. Fig. 2). We
assume, however, that all agents are aware of the entire experi-
mental procedure as described in Box 1, and that they all employ
the same theory. One may thus think of the agents as computers
that, in addition to carrying out the steps of Box 1, are pro-
grammed to draw conclusions according to a given set of rules. In
the following, we specify these rules as assumptions (Boxes 2–4).

The first such assumption, Assumption (Q) is that any agent A
“uses quantum theory.” By this we mean that A may predict the
outcome of a measurement on any system S around him via the
quantum-mechanical Born rule. For our purposes, it suffices to
consider the special case where the state ψj iS that A assigns to S
lies in the image of only one of the measurement operators πt0

x ,
say the one with x= ξ. In this case, the Born rule asserts that the
outcome x equals ξ with certainty; see Box 2.

Crucially, S may be a large and complex system, even one that
itself contains agents. In fact, to start our analysis, we take the

S

n :10 n :20 n :30 n :40 tn :00

L

r = tails

r = tails

w ≠ ok

w = ok

w = ok

L

F

F

W

W

w = ok

w = ok

w = ok

z = + 1
2

z = + 1
2

Fig. 2 Illustration of the Gedankenexperiment. In each round n= 0, 1, 2, … of the experiment, agent F tosses a coin and, depending on the outcome r,
polarises a spin particle S in a particular direction. Agent F then measures the vertical polarisation z of S. Later, agents W and W measure the entire labs L
and L (where the latter includes S) to obtain outcomes w and w, respectively. For the analysis of the experiment, we assume that all agents are aware of the
entire procedure as specified in Box 1, but they are located at different places and therefore make different observations. Agent F, for instance, observes z
but has no direct access to r. She may however use quantum theory to draw conclusions about r

Box 1: Experimental procedure

The steps are repeated in rounds n = 0, 1, 2, … until the halting condition in the last step is satisfied. The numbers on the left indicate the timing of the
steps, and we assume that each step takes at most one unit of time. (For example, in round n= 0, agent F starts her measurement of S at time 0:10 and
completes it before time 0:11.) Definitions of the relevant state and measurement basis vectors are provided in Tables 1 and 2.

At n:00 Agent F invokes a randomness generator (based on the measurement of a quantum system R in state initj iR as defined in Table 1) that
outputs r= heads or r= tails with probabilities 1

3 and
2
3, respectively. She sets the spin S of a particle to #j iS if r= heads and to

!j iS�
ffiffiffiffiffiffiffi
1=2

p #j iSþ "j iS
� �

if r= tails, and sends it to F.
At n:10 Agent F measures S w.r.t. the basis #j iS; "j iS

	 

, recording the outcome z 2 � 1

2 ;þ 1
2

	 

:

At n:20 Agent W measures lab L w.r.t. a basis containing the vector ok
�� �

L
(defined in Table 2). If the outcome associated to this vector occurs he

announces w ¼ ok and else w ¼ fail.
At n:30 Agent W measures lab L w.r.t. a basis containing the vector okj iL (defined in Table 2). If the outcome associated to this vector occurs he

announces w= ok and else w= fail.
At n:40 If w ¼ ok and w= ok then the experiment is halted.
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system S to be the entire lab L, which in any round n of the
experiment is measured with respect to the Heisenberg operators
πn:10
w¼ok and πn:10

w¼fail defined in Table 2. Suppose that agent F wants
to predict the outcome w of this measurement. To this aim, she
may start her reasoning with a statement that describes the
corresponding measurement.

Statement F
n:00

: “The value w is obtained by a measurement of
L w.r.t. πn:10

w¼ok; π
n:10
w¼fail

	 

; which is completed at time n:31.”

Here and in the following, we specify for each statement a time,
denoted as a superscript, indicating when the agent could have
inferred the statement. Agent F’s statement F

n:00
above does not

depend on any observations, so the time n:00 we have assigned to
it is rather arbitrary. This is, however, different for the next
statement, which is based on knowledge of the value r. Suppose
that agent F got r= tails as the output of the random number
generator in round n. According to the experimental instructions,
she will then prepare the spin S in state !j iS: Now, after
completing the preparation, say at time n:01, she may make a
second statement, taking into account that S remains unchanged
until F starts her measurement at time n:10.

Statement F
n:01

: “The spin S is in state !j iS at time n:10.”

Agent F could conclude from this that the later state of the lab

L, U10!20
S!L !j iS¼

ffiffi
1
2

q
� 1

2

�� �
L
þ þ 1

2

�� �
L

� �
, will be orthogonal to

okj iL. An equivalent way to express this is that the state !j iS
has no overlap with the Heisenberg measurement operator
corresponding to outcome w= ok, i.e.,

!h jπn:10
w¼fail !j i ¼ 1� !h jπn:10

w¼ok !j i ¼ 1 : ð4Þ

The two statements F
n:00

and F
n:01

, inserted into (Q), thus imply
that w= fail. We may assume that agent F draws this conclusion
at time n:02 and, for later use, put it down as statement F

n:02
in

Table 3. Similarly, agent F’s reasoning may be based upon a
description of her spin measurement, which is defined by the
operators πn:10z¼�1

2
and πn:10

z¼þ1
2
given in Table 2.

Statement Fn:10: “The value z is obtained by a measurement of

the spin S w.r.t. πn:10z¼�1
2
; πn:10z¼þ1

2

n o
, which is completed at time

n:11.”

Suppose now that agent F observed z ¼ þ 1
2 in round n. Since,

by definition,

#h jπn:10z¼�1
2
#j i ¼ 1 ð5Þ

it follows from (Q) that S was not in state #j i, and hence that the
random value r was not heads. This is statement Fn:12 of Table 3.
We proceed with agent W, who may base his reasoning upon his
knowledge of how the random number generator was initialised.

Statement W
n:21

:“System R is in state initj iR at time n:00.”

Consider the event that w ¼ ok and z ¼ � 1
2, as well as its

complement. The Heisenberg operators of the corresponding
measurement are given in Table 2. It is straightforward to verify

that U00!10
R!LS

initj iR¼
ffiffi
1
3

q
h
�� �

L
� #j iSþ

ffiffi
2
3

q
tj iL� !j iS is orthogonal

to ok
�� �

L
� #j iS, which implies that

inith jπn:00
w;zð Þ≠ ok;�1

2ð Þ initj i ¼ 1� inith jπn:00
w;zð Þ¼ ok;�1

2ð Þ initj i ¼ 1 :
ð6Þ

Agent W, who also uses (Q), can hence be certain that
w; zð Þ≠ ok;� 1

2

� �
. This implies that statement W

n:22
of Table 3

holds whenever w ¼ ok. Furthermore, because agent W
announces w, agent W can be certain about W’s knowledge,
which justifies statement Wn:26 of the table. We have thus
established all statements in the third column of Table 3.

For later use we also note that a simple calculation yields

inith jπn:00
ðw;wÞ¼ðok;okÞ initj i ¼ 1

12
ð7Þ

where πn:00ðw;wÞ¼ðok;okÞ is the Heisenberg operator belonging to the

event that w ¼ ok and w ¼ ok, as defined in Table 2. Hence,
according to quantum mechanics, agent W can be certain that the
outcome ðw;wÞ ¼ ðok; okÞ occurs after finitely many rounds.
This corresponds to the following statement (which can indeed be
derived using (Q), as shown in the Methods section).

Statement W0:00: “I am certain that there exists a round n in
which the halting condition at time n:40 is satisfied.”

The agents may now obtain further statements by reasoning
about how they would reason from the viewpoint of other agents,
as illustrated in Fig. 3. To enable such nested reasoning we need
another assumption, Assumption (C); see Box 3.

Agent F may insert agent F’s statement F
n:02

into Fn:12,
obtaining statement Fn:13 in Table 3. By virtue of (C), she may
then conclude that statement Fn:14 holds, too. Similarly, W may
combine this latter statement with his statement W

n:22
to obtain

W
n:23

. He could then, again using (C), conclude that statement
W

n:24
holds. Finally, agent W can insert this into his statement

Wn:26 to obtain statement Wn:27 and, again with (C), statement
Wn:28. This completes the derivation of all statements in Table 3.

For the last part of our analysis, we take again agent W’s
perspective. According to statement Wn:00, the experiment has a
final round n in which the halting condition will be satisfied,
meaning in particular that agent W announces w ¼ ok. Agent W
infers from this that statement Wn:28 of Table 3 holds in that
round, i.e., he is certain that he will observe w= fail at time n:31.
However, in this final round, he will nevertheless observe w= ok!
We have thus reached a contradiction—unless agent W would

Box 2: Assumption (Q)

Suppose that agent A has established that

Statement A(i): “System S is in state ψj iS at time t0.”

Suppose furthermore that agent A knows that

Statement A(ii): “The value x is obtained by a measurement of S w.r.t. the family fπt0x gx2X of Heisenberg operators relative to time t0, which is
completed at time t.”

If ψh jπt0ξ ψj i ¼ 1 for some ξ 2 X then agent A can conclude that

Statement A(iii): “I am certain that x= ξ at time t.”
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accept that w simultaneously admits multiple values. For our
discussion below, it will be useful to introduce an explicit
assumption, termed Assumption (S), which disallows this; see
Box 4.

No-go theorem. The conclusion of the above analysis may be
phrased as a no-go theorem.

Theorem 1. Any theory that satisfies assumptions (Q), (C), and
(S) yields contradictory statements when applied to the
Gedankenexperiment of Box 1.

To illustrate the theorem, we consider in the following different
interpretations and modifications of quantum theory. Theorem 1
implies that any of them must violate either (Q), (C), or (S). This
yields a natural categorisation as shown in Table 4 and discussed
in the following subsections.

Theories that violate Assumption (Q). Assumption (Q) corre-
sponds to the quantum-mechanical Born rule. Since the
assumption is concerned with the special case of probability-1
predictions only, it is largely independent of interpretational
questions, such as the meaning of probabilities in general.
However, the nontrivial aspect of (Q) is that it regards the Born
rule as a universal law. That is, it demands that an agent A can
apply the rule to arbitrary systems S around her, including large
ones that may contain other agents. The specifier “around” is
crucial, though: Assumption (Q) does not demand that agent A

can describe herself as a quantum system. Such a requirement
would indeed be overly restrictive (see ref. 13) for it would
immediately rule out interpretations in the spirit of Copenhagen,
according to which the observed quantum system and the
observer must be distinct from each other14,15.

Assumption (Q) is manifestly violated by theories that
postulate a modification of standard quantum mechanics, such
as spontaneous16–20 and gravity-induced21–23 collapse models (cf.
24 for a review). These deviate from the standard theory already
on microscopic scales, although the effects of the deviation
typically only become noticeable in larger systems.

In some approaches to quantum mechanics, it is simply
postulated that large systems are “classical”, but the physical
mechanism that explains the absence of quantum features
remains unspecified25. In the view described in ref. 3, for
instance, the postulate says that measurement devices are infinite-
dimensional systems whereas observables are finite. This ensures
that coherent and incoherent superpositions in the state of a
measurement device are indistinguishable. Similarly, according to
the “ETH approach”26, the algebra of available observables is
time-dependent and does not allow one to distinguish coherent
from incoherent superpositions once a measurement has been
completed. General measurements on systems that count
themselves as measurement devices are thus ruled out. Another
example is the “CSM ontology”27, according to which measure-
ments must always be carried out in a “context”, which includes
the measurement devices. It is then postulated that this context
cannot itself be treated as a quantum system. Within all these
interpretations, the Born rule still holds “for all practical
purposes”, but is no longer a universally applicable law in the
sense of Assumption (Q) (see the discussion in ref. 4).

Another class of theories that violate (Q), although in a less
obvious manner, are particular “hidden-variable (HV) interpreta-
tions”28, with “Bohmian mechanics” as the most prominent
example29–31. According to the common understanding, Boh-
mian mechanics is a “theory of the universe” rather than a theory
about subsystems32. This means that agents who apply the theory
must in principle always take an outside perspective on the entire
universe, describing themselves as part of it. This outside
perspective is identical for all agents, which ensures consistency
and hence the validity of Assumption (C). However, because (S)
is satisfied, too, it follows from Theorem 1 that (Q) must be
violated (see the Methods section for more details).

Theories that violate Assumption (C). If a theory satisfies (Q)
and (S) then, by Theorem 1, it must violate (C). This conclusion
applies to a wide range of common readings of quantum
mechanics, including most variants of the Copenhagen

Box 4: Assumption (S)

Suppose that agent A has established that
Statement A(i): “I am certain that x= ξ at time t.”

Then agent A must necessarily deny that
Statement A(ii): “I am certain that x≠ ξ at time t.”

(C)

According to T

According to T

AA

A′ According to T

z = + 1
2

z = + 1
2

Fig. 3 Consistent reasoning as required by Assumption (C). If a theory T
(such as quantum theory) enables consistent reasoning (C) then it must
allow any agent A to promote the conclusions drawn by another agent A' to
his own conclusions, provided that A' has the same initial knowledge about
the experiment and reasons within the same theory T. A classical example
of such recursive reasoning is the muddy children puzzle (here T is just
standard logic; see ref. 11 for a detailed account). The idea of using a
physical theory T to describe agents who themselves use T has also
appeared in thermodynamics, notably in discussions around Maxwell's
demon12

Box 3: Assumption (C)

Suppose that agent A has established that
Statement A(i): “I am certain that agent A′, upon reasoning within the same theory as the one I am using, is certain that x= ξ at time t.”

Then agent A can conclude that
Statement A(ii): “I am certain that x= ξ at time t.”
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interpretation. One concrete example is the “consistent histories”
(CH) formalism33–35, which is also similar to the “decoherent
histories” approach36,37. Another class of examples are sub-
jectivistic interpretations, which regard statements about out-
comes of measurements as personal to an agent, such as
“relational quantum mechanics”38, “QBism”39,40, or the approach
proposed in ref. 9 (see Methods section for a discussion of the CH
formalism as well as QBism).

The same conclusion applies to HV interpretations of quantum
mechanics, provided that we use them to describe systems around
us rather than the universe as a whole (contrasting the paradigm
of Bohmian mechanics discussed above). In this case, both (Q)
and (S) hold by construction. This adds another item to the long
list of no-go results for HV interpretations: they cannot be local10,
they must be contextual41,42, and they violate freedom of
choice43,44. Theorem 1 entails that they also violate (C). In
particular, there cannot exist an assignment of values to the HVs
that is consistent with the agents’ conclusions.

Theories that violate Assumption (S). Although intuitive, (S) is
not implied by the bare mathematical formalism of quantum
mechanics. Among the theories that abandon the assumption are
the “relative state formulation” and “many-worlds interpreta-
tions”6,45–48. According to the latter, any quantum measurement
results in a branching into different “worlds”, in each of which
one of the possible measurement outcomes occurs. Further
developments and variations include the “many-minds inter-
pretation”49,50 and the “parallel lives theory”51. A related concept
is “quantum Darwinism”52, whose purpose is to explain the
perception of classical measurement outcomes in a unitarily
evolving universe.

While many-worlds interpretations manifestly violate (S), their
compatibility with (Q) and (C) depends on how one defines the
branching. If one regards it as an objective process, (Q) may be
violated (cf. the example in Section 10 of ref. 53). It is also
questionable whether (Q) can be upheld if branches do not persist
over time (cf. the no-histories view described in ref. 54).

Implicit assumptions. Any no-go result, as for example Bell’s
theorem10, is phrased within a particular framework that comes
with a set of built-in assumptions. Hence it is always possible that a
theory evades the conclusions of the no-go result by not fulfilling
these implicit assumptions. Here we briefly discuss how Theorem 1
compares in this respect to other results in the literature.

Bell’s original work10 treats probabilities as a primitive
notion. Similarly, many of the modern arguments in quantum
foundations employ probabilistic frameworks55–62. In contrast,
probabilities are not used in the argument presented here—
although Assumption (Q) is of course motivated by the idea
that a statement can be regarded as “certain” if the Born rule
assigns probability-1 to it. In particular, Theorem 1 does
not depend on how probabilities different from 1 are
interpreted.

Another distinction is that the framework used here treats all
statements about observations as subjective, i.e., they are always
defined relative to an agent. This avoids the a priori assumption that
measurement outcomes obtained by different agents simultaneously
have definite values. (Consider for example Wigner’s original setup
described in section Introduction. Even when Assumptions (C) and
(S) hold, agent W is not forced to assign a definite value to the
outcome z observed by agent F.) The assumption of simultaneous
definiteness is otherwise rather common. It not only enters the
proof of Bell’s theorem10 but also the aforementioned arguments
based on probabilistic frameworks.

Nevertheless, in our considerations, we used concepts such as
that of an “agent” or of “time”. It is conceivable that the
conclusions of Theorem 1 can be avoided by theories that provide
a nonstandard understanding of these concepts. We are, however,
not aware of any concrete examples of such theories.

Discussion
In the Gedankenexperiment proposed in this article, multiple
agents have access to different pieces of information, and draw
conclusions by reasoning about the information held by others. In
the general context of quantum theory, the rules for such nested
reasoning may be ambiguous, for the information held by one
agent can, from the viewpoint of another agent, be in a super-
position of different “classical” states. Crucially, however, in the
argument presented here, the agents’ conclusions are all restricted
to supposedly unproblematic “classical” cases. For example, agent
W only needs to derive a statement about agent F in the case
where, conditioned on his own information �w, the information z
held by F has a well-defined value (Table 3). Nevertheless, as we
have shown, the agents arrive at contradictory statements.

Current interpretations of quantum theory do not agree on the
origin of this contradiction (cf. Table 4). To compare the different
views, it may therefore be useful to rephrase the experiment as a
concrete game-theoretic decision problem. Suppose that a casino
offers the following gambling game. One round of the experiment
of Box 1 is played, with the gambler in the role of agent W, and
the roles of F, F, and W taken by employees of the casino. The
casino promises to pay €1000 to the gambler if F’s random value
was r= heads. Conversely, if r= tails, the gambler must pay €500
to the casino. It could now happen that, at the end of the game, w
= ok and w ¼ ok, and that a judge can convince herself of this
outcome. The gambler and the casino are then likely to end up in
a dispute, putting forward arguments taken from Table 3.

Gambler: “The outcome w= ok proves, due to (4), that S was
not prepared in state !j iS. This means that r= heads and hence
the casino must pay me €1000.”

Casino: “The outcome w ¼ ok implies, due to (6), that our
employee observed z ¼ þ 1

2. This in turn proves that S was not
prepared in state #j iS. But this means that r= tails, so the gam-
bler must pay us €500.”

How should the judge decide on this case? Could it even be
that both assertions must be accepted as two “alternative facts”
about what the value r was? We leave it as a task for further
research to explore what the different interpretations of quantum
mechanics have to say about this game.

Theorem 1 may be compared to earlier no-go results, such
as7–10,41–43, which also use assumptions similar to (Q) and (S)
(although the latter is often implicit). These two assumptions are
usually shown to be in conflict with additional assumptions about
reality, locality, or freedom of choice. For example, the result of
ref. 9, which is as well based on an extension of Wigner’s argument,
asserts that no theory can fulfil all of the following properties: (i) be
compatible with quantum theory on all scales, (ii) simultaneously
assign definite truth values to measurement outcomes of all agents,
(iii) allow agents to freely choose measurement settings, and (iv) be
local. Here, we have shown that Assumptions (Q) and (S) are
already problematic by themselves, in the sense that agents who use
these assumptions to reason about each other as in Fig. 3 will arrive
at inconsistent conclusions.

Another noticeable difference to earlier no-go results is that the
argument presented here does not employ counterfactual rea-
soning. That is, it does not refer to choices that could have been
made but have not actually been made. In fact, in the proposed
experiment, the agents never make any choices (also no delayed
ones, as e.g., in Wheeler’s “delayed choice” experiment63). Also,
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none of the agents’ statements refers to values that are no longer
available at the time when the statement is made (cf. Table 3).

We conclude by suggesting a modified variant of the experi-
ment, which may be technologically feasible. The idea is to sub-
stitute agents F and F by computers. Specifically, one would
program them to carry out the tasks prescribed in Box 1, process
the information accessible to them, and output statements such as
“I am certain that W will observe w= fail at 1:31.” To account for
the requirement that F and F’s labs be isolated, one would need to
ensure that the computers used for their simulation do not leak
any information to their environment—a property which is
necessarily satisfied by quantum computers. Such an experiment
could then be used to verify the statements in Table 3. For
example, aborting the experiment right after 1:13, one could, in
the case when z ¼ þ 1

2, read out statement F1:13 made by agent F
together with statement F

1:02
that agent F has made just before.

This would be a test for the correctness of statement F1:13. Note
that all statements in the fourth column of Table 3 could in the
same way be tested experimentally. In this sense, quantum
computers, motivated usually by applications in computing, may
help us answering questions in fundamental research.

Methods
Information-theoretic description. The experimental protocol described in Box 1
may be represented as a circuit diagram, Fig. 4. The diagram emphasises the
information-theoretic aspects of the experiment. While all agents have full infor-
mation about the overall evolution (the circuit diagram itself), they have access to
different data (corresponding to different wires in the diagram).

Derivation of statement W0:00 using Assumption (Q). In the analysis of the
Gedankenexperiment we argued that the event ðw;wÞ ¼ ðok; okÞ must occur after
finitely many rounds n, which is statement W0:00 described shortly after (7). While
this is a pretty obvious consequence of the Born rule, we now show that it already
follows from Assumption (Q), which corresponds to the special case of the Born
rule when it gives probability-1 predictions.

We consider Heisenberg operators relative to time t0 ¼ 0:00, i.e., right before
the experiment starts. For any round n, let Wn be the isometry from C to �L ⊗ L
that includes the initialisation of system R in state initj iR as well as U00!10

R!LS
and

U10!20
S!L (cf. Table 1), i.e.,

Wn
C!�LL ¼ ð1L � U10!20

S!L ÞU00!10
R!LS

initj i: ð8Þ

The Heisenberg operator of the event ðw;wÞ ¼ ðok; okÞ in round n relative to time
t0 can thus be written as

πðnÞðw;wÞ¼ðok;okÞ ¼ Wn
C!LL

� �y
ok
�� �

ok
� ��

�L
� okj i okh jL

� �
Wn

C!LL

� �
: ð9Þ

We may now specify a Heisenberg operator π0:00halt for the halting condition, i.e., that
the event ðw;wÞ ¼ ðok; okÞ occurs in some round n,

π0:00halt ¼
X1
n¼0

πðnÞðw;wÞ¼ðok;okÞ
Yn�1

m¼0

ð1C � πðmÞ
ðw;wÞ¼ðok;okÞÞ : ð10Þ

Note that these are operators on C, i.e., πðnÞðw;wÞ¼ðok;okÞ ¼ p for some p 2 C. It follows

directly from (7) that p= 1/12 > 0. We thus have

π0:00halt ¼
X1
n¼0

pð1� pÞn ¼ 1C: ð11Þ

Inserting this measurement operator into the corresponding statement of
Assumption (Q) yields statement W0:00.

Analysis within Bohmian mechanics. According to Bohmian mechanics, the state
of a system of particles consists of their quantum-mechanical wave function
together with an additional set of variables that specify the particles’ spatial
positions.

While the wave function evolves according to the Schrödinger equation, the
time evolution of the additional position variables is governed by another equation
of motion, sometimes referred to as the “guiding equation”. The general
understanding is that these equations of motion must always be applied to the
universe as a whole. As noted in ref. 32, “if we postulate that subsystems [rather
than the universe] must obey Bohmian mechanics, we ‘commit redundancy and
risk inconsistency.ʼ”

Table 1 Time evolution

Time interval
within round n

Time evolution of
F’s lab L

Time evolution of
F’s lab L

Before n:00
set R to
initj iR¼

ffiffiffiffiffiffiffi
1=3

p
headsj iRþ

ffiffiffiffiffiffiffiffi
2=3

p
tailsj iR [Irrelevant]

From n:00
to n:10

U00!10
R!LS

¼ headsj iR 7! h
�� �

L� #j iS
tailsj iR 7! t

�� �
L
� !j iS

(
[Irrelevant]

From n:10
to n:20

U10!20
L!L

¼ 1L U10!20
S!L ¼ #j iS 7! � 1

2

�� �
L

"j iS 7! þ 1
2

�� �
L

�

From n:20
to n:30

[Irrelevant] U20!30
L!L ¼ 1L

The two labs, L and L, are assumed to be isolated quantum systems. Technically, this means that
their time evolution is described by norm-preserving linear maps, i.e., isometries. The second
protocol step, for instance, in which F measures S, induces an isometry U10!20

S!L from S to L. The
vectors � 1

2

�� �
L
and þ 1

2

�� �
L
are defined as the outputs of this isometry, i.e., as the states of lab L at

the end of the protocol step depending on whether the incoming spin was #j iS or "j iS,
respectively. For concreteness, one may think of them as states of the form (2)—although their
structure is irrelevant for the argument. Analogously, h

�� �
L
and t

�� �
L
are defined as the states of lab

L at the end of the first protocol step, depending on whether r= heads or r= tails, respectively

Table 2 Measurements carried out by the agents

Agent Value Measured
system

Measurement
completed at

Relevant vectors of measurement
basis

Heisenberg projectors used for reasoning via (Q)

F r R n:01 headsj iR tailsj iR πn:10w¼ok ¼ ðU10!20
S!L Þy okj iL

h i
�½ �y

πn:10w¼fail ¼ 1� πn:10w¼ok

F z S n:11 #j iS "j iS πn:10
z¼�1

2
¼ #j i #h jS

πn:10
z¼þ1

2
¼ "j i "h jS

W w L n:21 ok
�� �

L¼
ffiffiffiffiffiffiffi
1=2

p
h
�� �

L� t
�� �

L

� �
πn:00
ðw;zÞ¼ðok;�1

2Þ
¼ ðU00!10

R!LS
Þy ok�� �

L #j iS
h i

�½ �y

πn:00
ðw;zÞ≠ðok;�1

2Þ
¼ 1� πn:00

ðw;zÞ¼ðok;�1
2Þ

W w L n:31 okj iL¼
ffiffiffiffiffiffiffi
1=2

p � 1
2

�� �
L
� þ 1

2

�� �
L

� �
πn:00ðw;wÞ¼ðok;okÞ ¼ ðU00!10

R!LS
ÞyðU10!20

S!L Þy ok�� �
L
okj iL

h i
�½ �y

Each of the four agents observes a value, defined as the outcome of a measurement on a particular system at a particular time. The measurement basis vectors ok
�� �

L
and okj iL shown in the last two rows

are expressed in terms of states, such as � 1
2

�� �
L
and þ 1

2

�� �
L
, which are defined in Table 1. The last column shows the measurement operators that the agents insert into statement A(ii) when reasoning

according to Assumption (Q). These operators are given in the Heisenberg picture, referring to the system’s state at a particular time, which is specied by a superscript. The bracket �½ �y stands for the
adjoint of the preceding expression
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The Gedankenexperiment presented in this work shows that this risk is real.
Indeed, if the agents applied the Bohmian equations of motion directly to the
relevant systems around them, rather than to the universe as a whole, their
reasoning would be the same as the one prescribed by (Q). But since Bohmian
mechanics also satisfies (S), this would, by virtue of Theorem 1, imply a violation of
(C), i.e., the agents’ conclusions would contradict each other. (This finding should
not be confused with the known fact that, if the spatial position of a particle is
measured, the Bohmian position of the measurement device’s pointer is sometimes
incompatible with the Bohmian position of the measured particle64–68.)

The directive in ref. 32 that Bohmian mechanics should be applied to the entire
universe means that the agents must model themselves from an outside
perspective. This ensures that they all have the same view, so that reasoning
according to (C) is unproblematic. But then, because of Theorem 1, (Q) is
necessarily violated. This is indeed confirmed by an explicit calculation in Bohmian
mechanics, which reveals that statement F

n:02
of Table 3 does not hold there.

Furthermore, the time order of the measurements carried out by agents W and W
is relevant within Bohmian mechanics. If agent W measured before agent W then,
according to Bohmian mechanics, statement W

n:22
would be invalid whereas F

n:02

would hold. This is a clear departure from standard quantum mechanics, where the
time order in which agents W and W carry out their measurements is irrelevant,
because they act on separate systems.

This violation of (Q) raises the question under what circumstances Bohmian
mechanics still endorses the use of the quantum-mechanical Born rule for
predicting the outcome of a measurement. A candidate criterion could be that such
a prediction is only valid if a memory of the prediction is available upon
completion of the measurement. One may then be tempted to argue that agent F’s

statement F
n:02

, for instance, is invalid because F is herself subject to a
measurement, which may destroy her memory of the prediction for w before that
value is measured. This argument does however not work. The reason is that, in the
relevant case when w ¼ ok, the value r and hence also agent F’s prediction for w is,

by virtue of statements W
n:22

and Fn:12, retrievable at the time when w is measured.

Analysis within the CH formalism. In the CH formalism, statements about
measurement outcomes are phrased in terms of “histories”. These must, by defi-
nition, be elements of a whole family of histories, called a “framework”, that
satisfies certain consistency conditions. In the Gedankenexperiment proposed in
this work, a possible history would be

History h1: “In round n the outcomes r= tails, z ¼ þ 1
2 ;w ¼ ok, and w= ok

were observed.”
To verify that h1 is indeed a valid history, one has to construct a framework

containing this history. It is straightforward to check that one such framework is
the set consisting of h1 together with the additional histories

History h2: “In round n the outcomes r= tails, z ¼ þ 1
2 ;w ¼ ok, and w= fail

were observed.”
History h3: “In round n the outcomes r= heads, z ¼ þ 1

2 ; and w ¼ ok were
observed.”

History h4: “In round n the outcomes z ¼ � 1
2 ; and w ¼ ok were observed.”

History h5: “Outcome w ¼ fail was observed.”
The CH formalism contains the Born rule as a special case and hence fulfils

Assumption (Q). Since it also satisfies (S), it follows from Theorem 1 that it violates
(C). To illustrate how this violation manifests itself, we may consider a shortened
version of history h1, which leaves the values z and w unmentioned:

History h′1: “In round n the outcomes r= tails and w= ok were observed.”
The CH formalism provides a rule to assign probabilities to these histories,

which turn out to be

Pr½h1� ¼
1
12

and Pr½h′1� ¼ 0 : ð12Þ

Note that these probabilities disagree with the fact that h′1 is just a part of history
h1, i.e., h1 ) h′1. (This finding may be compared to the “three box paradox”69,
where calculations in three different consistent frameworks yield mutually
incompatible probability assignments; see Section 22 of ref. 35 as well as 70 for a
discussion.)

The CH formalism accounts for this disagreement by imposing the rule that
logical reasoning must be constrained to histories that belong to a single framework,
which is not the case for h1 and h′1. To illustrate what this means, it is useful to return
to the casino example described in the Discussion section above. Within a framework
that contains history h′1, the gambler’s reasoning is correct, for Pr½h′1� ¼ 0. That is,
w= ok implies that r= heads. Conversely, considering the framework above, which
contains history h1, it is readily verified that the other histories, h2–h5, have
probabilities 1

12, 0, 0, and
5
6, respectively. That is, all nonzero probability histories of this

framework that agree with the observation w ¼ ok also assert that z ¼ þ 1
2 and r=

tails. This seems to be in agreement with the casino’s argument, i.e., w ¼ ok implies
that z ¼ þ 1

2 and r= tails. However, because the framework does not include a history
that talks about r alone, it disallows the—seemingly obvious—implication
r ¼ tails and z ¼ þ 1

2

� � ) r ¼ tails. In other words, within the CH formalism, the
casino can prove that r= tails and z ¼ þ 1

2, but not that r= tails.

Analysis within QBism. QBism is one of the most far-reaching subjectivistic
interpretations of quantum mechanics. It regards quantum states as representations
of an agent’s personal knowledge, or rather beliefs, about the outcomes of future
measurements, and it also views these outcomes as personal to the agent.

To reflect these tenets of QBism in the analysis of the Gedankenexperiment, it is
useful to imagine that the agents write their observations and conclusions into a
personal notebook. For example, according to Table 3, when agent F gets r= tails
in round n= 1, she may put down the following

Statement F
1:02

:“r= tails at time 1:01, hence I am certain that we will hear W
announcing w= fail at the end of this round.”

Table 3 The agents’ observations and conclusions

Agent Assumed observation Statement inferred via (Q) Further implied statement Statement inferred via (C)

F r ¼ tails at time n:01 Statement F
n:02

: “I am certain that
W will observe w= fail at time
n:31.”

F z ¼ þ 1
2 at time n:11. Statement Fn:12 : “I am certain that

F knows that r= tails at time
n:01.”

Statement Fn:13 : “I am certain that F is
certain that W will observe w= fail at
time n:31.”

Statement Fn:14 : “I am certain that
W will observe w= fail at time
n:31.”

W w ¼ ok at time n:21 StatementW
n:22

: “I am certain
that F knows that z ¼ þ 1

2 at time
n:11.”

StatementW
n:23

: “I am certain that F is
certain that W will observe w= fail at time
n:31.”

StatementW
n:24

: “I am certain
that W will observe w= fail at
time n:31.”

W announcement by agent
W that w ¼ ok at time
n:21

StatementWn:26 : “I am certain
that W knows that w ¼ ok at time
n:21”

StatementWn:27 : “I am certain that W is
certain that I will observe w= fail at time
n:31.”

StatementWn:28 : “I am certain
that I will observe w= fail at time
n:31.”

The statements that the individual agents can derive from quantum theory depend on the information accessible to them (cf. Fig. 2). Agent F, for instance, if she observes r= tails, can use this
information to infer w, which will later be observed and announced by W

Table 4 Interpretations of quantum theory

(Q) (S) (C)

Copenhagen ✓ ✓ ×
HV theory applied to
subsystems

✓ ✓ ×

HV theory applied to entire
universe

× ✓ ✓

Many worlds ? × ?
Collapse theories × ✓ ✓
Consistent histories ✓ ✓ ×
QBism ✓ ✓ ×
Relational quantum
mechanics

✓ ✓ ×

CSM approach × ✓ ✓
ETH approach × ✓ ✓

The proposed Gedankenexperiment can be employed to study the various interpretations of
quantum theory. Theorem 1 implies that each of them must violate at least one of the
Assumptions (Q), (C), and (S) (indicated by ×). For hidden variable (HV) theories, it is relevant
whether agents who are using the theory apply its laws (e.g., the guiding equation in the case of
Bohmian mechanics) to subsystems around them or to the universe as a whole.
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Here the phrase “is certain that” expresses a degree of belief and may also be
replaced by something like “would bet an arbitrarily large amount on”. Similarly,
agent F, when she gets z ¼ þ 1

2, may write into her notebook
Statement F1:12:“z ¼ þ 1

2 at time 1:11, hence I am certain that, if I now checked
F’s notebook, I would read that r= tails at time 1:01.”

Agent F may as well write about agent F’s conclusions, i.e.,
Statement F1:13:“z ¼ þ 1

2 at time 1:11, hence I am certain that, if I now checked
F ’s notebook, I would read that she is certain that we will hear W announcing w=
fail at the end of this round.”

Agent F may now be tempted to conclude from the above that
Statement F1:14:“z ¼ þ 1

2 at time 1:11, hence I am certain that we will hear W
announcing w= fail at the end of this round.”

However, permitting such implications is akin to assuming (C). Because QBism
satisfies (Q) and (S), it would result in the agents issuing contradictory statements.
The Gedankenexperiment is thus an example of a multi-agent scenario where, to
ensure consistency of QBism, implications of the type F1:13 ) F1:14 must be
disallowed. Nevertheless, there should be ways for agents to consistently reason
about each other. One may therefore ask whether (C) could be substituted by
another (weaker) rule that enables such reasoning but does not lead to
contradictions. This question is currently being investigated (J.B. DeBrota, C.A.
Fuchs, and R. Schack, manuscript in preparation).

Data availability
No data sets were generated or analysed during the current study.
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Fig. 4 Circuit diagram representation of the Gedankenexperiment. The actions of the agents during the protocol correspond to isometries (boxes) that act
on particular subsystems (wires). For example, the measurement of S by agent F in the second protocol step, which starts at time n:10, induces an isometry
U10!20
S!L from S to F’s lab L, analogous to the one defined by (2). The subsystems labelled by F, F,W, and W contain the agents themselves. Similarly, D, D, E,

and E are “environment” subsystems, which include the agents’ measurement devices. The states of these subsystems depend on the measurement
outcome, which is indicated by their label. For example, þ 1

2

�� �
F is the state of F when the agent has observed z ¼ þ 1
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