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Saccade metrics reflect decision-making dynamics
during urgent choices
Joshua A. Seideman 1, Terrence R. Stanford1 & Emilio Salinas 1

A perceptual judgment is typically characterized by constructing psychometric and chrono-

metric functions, i.e., by mapping the accuracies and reaction times of motor choices as

functions of a sensory stimulus feature dimension. Here, we show that various saccade

metrics (e.g., peak velocity) are similarly modulated as functions of sensory cue viewing

time during performance of an urgent-decision task. Each of the newly discovered

functions reveals the dynamics of the perceptual evaluation process inherent to the under-

lying judgment. Remarkably, saccade peak velocity correlates with statistical decision

confidence, suggesting that saccade kinematics reflect the degree of certainty with which

an urgent perceptual decision is made. The data were explained by a race-to-threshold

model that also replicates standard performance measures and cortical oculomotor neuronal

activity in the task. The results indicate that, although largely stereotyped, saccade metrics

carry subtle but reliable traces of the underlying cognitive processes that give rise to each

oculomotor choice.
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The empirical study of perceptual decision making hinges on
the ability to make inferences about covert cognitive states
based on overt behaviors. And yet, while saccadic choice

paradigms have been instrumental in advancing our under-
standing of decision making in general, few studies have directly
linked saccade metrics themselves to underlying decision-related
processes. Thus, it is currently unknown whether and how the
formation and development of a perceptual decision influence
the metrics of a saccadic choice upon execution, or com-
plementarily, whether the metrics of saccades are a reliable tell
of perceptual decision-making dynamics.

Physiologically, decision-related processing as well as saccadic
motor planning and execution are known to have at least partly
overlapping neural substrates. Within oculomotor regions, such
as the frontal eye field (FEF) and superior colliculus (SC), putative
perceptual decision variables have been shown to be encoded
within the firing rates of neurons prior to saccadic choice
execution1–6. Both empirical as well as theoretical results indicate
that when firing rates within these brain regions reach a certain
threshold of activation, a saccade is triggered5,7–9. While the
amplitude and direction of the movements that ensue are pri-
marily encoded by the locus of neural activity10–14, there is also
evidence that saccadic peak velocity (independent from ampli-
tude) is influenced by the overall level and/or temporal pattern of
activation within these motor maps15–20. Taken together, these
studies implicate oculomotor areas in a sensorimotor transfor-
mation whereby perceptually-driven changes in activity influence
saccade kinematics. However, as noted above, direct behavioral
evidence in support of this hypothesis is lacking, and there is
essentially no mechanistic understanding of the process by which
this could occur.

Therefore, we sought to determine if, how, and when per-
ceptual decision-making dynamics influence the metrics of
saccadic eye movements. We investigate this using a recently
developed, urgent saccadic choice task in which perceptual
performance depends on processing time, i.e., sensory cue
viewing time prior to saccade onset5,6,21,22. Within this urgent
paradigm, accurate performance requires coordinated, dynamic
interaction between perceptual and motor systems in the
moments leading up to saccade execution — facilitating, as
evidenced by the data presented in this paper, overt manifes-
tations of a seamless transition from perception to action.
Indeed, we find that numerous saccade metrics (e.g., peak
velocity, endpoint scatter, etc.) vary continuously as functions
of processing time and that changes in these metrics closely
coincide with processing-time-dependent changes in perceptual
choice accuracy. In addition, using a race-to-threshold model
previously proven to replicate standard performance metrics
in the task (e.g., choice accuracy, response time), as well as
simultaneously recorded FEF neuronal activity5,6,21,22, we
provide a plausible physiological mechanism by which
perceptually-driven changes in oculomotor firing rates could
influence the peak velocity of saccadic eye movements. Ulti-
mately, our empirical and theoretical lines of evidence converge
to support a unified, mechanistic framework, whereby sensory
evidence informs not only what saccadic choices we make, but
when and how we make them.

Results
Urgent perceptual discriminability is a matter of time. In the
current study, three monkeys performed the compelled-saccade
(CS) task — an urgent, top-down search task that systematically
varies the amount of time available to perceptually evaluate
sensory cue information before committing to a saccadic choice
(Fig. 1a). Unlike traditional saccadic choice tasks, the CS task

presents the go signal before revealing target and distracter.
Consequently, saccadic motor planning starts first, and it is only
later, after an unpredictable period of time (gap; 25–250 ms), that
the sensory cues to be discriminated (two colored spots) are
presented (cue), and perceptual information can guide the already
ongoing saccadic choice process.

Perceptual performance in the task fundamentally depends on
the raw processing time (rPT), which is the amount of time
available to view the cue information prior to saccade onset (in
each trial, rPT= RT − gap; Fig. 1a). This is evident by plotting
choice accuracy versus rPT to produce a perceptual performance
measure that we refer to as the “tachometric curve” (Fig. 1b). The
tachometric curves from all three subjects reveal that, as a
function of rPT, saccadic choices range from uninformed guesses
(performance is near chance at rPTs < 100 ms) to informed
discriminations (performance is >95% correct at rPTs > 200 ms),
with perceptual information modulating choice accuracy at an
extremely rapid rate starting ~125 ms after cue onset (i.e., ~125
ms rPT; Fig. 1b). These data demonstrate that, in the CS task,
saccades are executed at various points throughout the temporal
evolution of a perceptual decision. In the sections that follow,
we examine the degree to which the state of the perceptual
decision-making process at the time of saccade commitment
influences the kinematics of the ensuing eye movement.

Perceptual information modulates saccadic peak velocity.
Using the CS task, we set out to determine what relationship, if
any, exists between the velocity of a saccade and the temporal
availability of sensory information that is relevant for guiding
a perceptual decision. Toward this end, we divided saccadic
responses by processing time (short and long, according to the
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Fig. 1 CS task and psychophysical performance of three monkeys. a The CS
task. The color of the initial fixation spot (Fixation) defines the color of
the eventual target. Two identical yellow spots, diametrically opposed,
surrounding the central stimulus, represent potential target locations
(Targets on/Go). Disappearance of the central fixation spot represents the
command to move, or go signal (Go). Target and distracter are revealed
(Cue) only after a variable gap of time (Gap) following the go signal.
Choices are indicated via saccadic eye movement (white arrow). Reaction
time (RT) is measured between the onset of the go signal and the onset of
the saccadic response. Raw processing time (rPT) is measured between
cue onset and saccade onset. b Percentage of correct responses as a
function of rPT (tachometric curves). Error bars in b represent 95%
binomial proportion confidence intervals. From left to right, data are from
monkeys R (n= 19,796 trials), T (n= 11,148 trials), and G (n= 6042 trials)
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tachometric curve; Fig. 2a) and choice outcome (correct and
incorrect), and compared their velocity profiles. At short rPTs,
the average velocity profiles of correct and incorrect saccades
were indistinguishable — consistent with the idea that these

choices (guesses) were not guided by the cue information
(Fig. 2b). In contrast, subtle but highly significant differences
were evident between the velocity profiles of correct and incorrect
saccades at long rPTs (mean peak velocity, correct versus incor-
rect: monkey R, p= 10−37; monkey T, p= 10−50; monkey G,
p= 10−27; Wilcoxon rank-sum test; Fig. 2c). Notably, the mean
peak velocity of long-rPT correct saccades was slightly (~5%)
higher than that of long-rPT incorrect saccades.

Next, to determine if the changes in peak velocity followed a
similar time course to that of the evolving perceptual judgment,
we binned responses by rPT and choice outcome and computed
peak velocity averages in each bin. The results from each of
three subjects show that peak velocity varies continuously as a
function of processing time (Fig. 3a). At short processing times
(rPTs < 100 ms), peak velocity remained relatively constant and
was similar for correct and incorrect choices. Then, after an
apparent threshold of exposure to the sensory cue, the peak
velocities for correct and incorrect choices diverged abruptly,
increasing for the former and decreasing for the latter.
Importantly, this split was not simply explicable by differences
in movement preparation time, as there was no discernible
relationship between peak velocity and RT (Fig. 4). Rather, as
Fig. 3a illustrates, the peak velocity of saccadic eye movements in
the CS task depends on the amount of time available to process
the cue information prior to saccade onset. Although late rPT
(rPTs > 225 ms) modulations were also observed, such effects
were inconsistent across subjects and appeared to occur only
after the tachometric curve had reached its asymptote, i.e., after
the perceptual judgment had already completed its development
in time. Hereafter, we focus on the earlier (rPTs < 200 ms)
bi-directional velocity modulations that were strongly stereotyped
in their correlation with choice performance.

To more directly relate the time course of the changes in peak
velocity to psychophysical performance, we yoked correct and
incorrect velocity averages by taking their difference (correct −
incorrect) within processing time bins, rescaled the result, and
compared it to the tachometric curve. Plotted together in this
way, the similarity in time course is striking, strongly suggesting
that perceptual information simultaneously impacts both choice
performance and saccade peak velocity (Fig. 3b). Bootstrapping
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Fig. 2 Eye velocity profiles show evidence of a perceptual influence on
saccade kinematics. a Tachometric curve (blue). Trials were divided into
two rPT ranges — short (white region) and long (yellow
region) — according to the tachometric curve. Error bars represent 95%
binomial proportion confidence intervals. b, c Mean eye velocity (±1
standard error of the mean; s.e.m.) of correct (green) and incorrect (red)
saccadic choices executed at short (b) and long (c) rPTs. Velocity traces
are plotted as functions of time from saccade onset. Data are from monkey
R
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Fig. 3 Processing-time-dependent changes in peak velocity closely track perceptual performance. a Mean peak velocity (±1 s.e.m.) of correct (green) and
incorrect (red) saccadic choices as a function of rPT. b Peak velocity modulation (mean correct − mean incorrect peak velocity, brown curves) and choice
accuracy (tachometric curves, blue) as functions of rPT. Error bars in b represent 95% confidence intervals. Data are from monkeys R, T, and G (left to
right)
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analyses found no significant shift between the velocity and
tachometric curves for any of the three subjects, confirming their
temporal alignment (difference in alignment: monkey R, p= 0.06;
monkey T, p= 0.53; monkey G, p= 0.19; see Methods). In
addition, the curves had statistically identical steepness, indicating
that perceptual information modulated choice accuracy and
saccade velocity at an equivalent rate with respect to rPT
(difference in rise time: monkey R, p= 0.53; monkey T, p= 0.38;
monkey G, p= 0.41; see Methods). Therefore, in the CS task, cue
information speeds up correct saccades toward the target and
slows down incorrect saccades toward the distracter, and these
effects closely coincide with processing-time-dependent changes
in choice performance.

Perceptual modulation of multiple saccade metrics. Further
analysis revealed that saccade amplitude also depends on processing
time (Fig. 5a). That is, with differences on the order of fractions
of a degree, correct saccades at long rPTs were hypermetric and
incorrect saccades hypometric, on average, when compared to their
short-rPT counterparts. Moreover, the pattern of amplitude mod-
ulation with rPT resembled that for peak velocity (compare with
Fig. 3a). Thus, we wondered whether the observed effects on peak
velocity could be explained simply as a direct consequence of the
standard association between amplitude and peak velocity, i.e., by
the saccadic “main sequence” (ref. 23; Fig. 5b). To investigate this,
we performed the following analysis. For each saccade, we com-
puted the residual peak velocity (rpv) around the line of best fit
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between the amplitudes and peak velocities of uninformed saccades
(rPTs < 75). This measure of saccade vigor— rpv— quantifies peak
velocity enhancement or suppression relative to that of amplitude-
matched uninformed trials, such that velocity enhanced saccades
have positive rpv and velocity suppressed saccades have negative
rpv, still with units of degrees per second (deg/s). Then we plotted
mean rpv as a function of processing time. The results revealed
processing-time-dependent modulation of saccade vigor for all
subjects (Fig. 5c). Specifically, the rpv of correct saccades increased
to more positive values, whereas that of incorrect saccades
decreased to more negative values as a function of rPT. This con-
firms that the magnitude of the observed peak velocity effects was
beyond that which can be accounted for by changes in saccade
amplitude. Together, these results indicate that saccade amplitude
and peak velocity are independently modulated according to the
amount of time that is available for cue information to guide an
urgent perceptual decision.

Next, we sought to establish whether, during a perceptual
decision, incoming cue information influences the variability of
the evoked saccades. We first examined the mean endpoint
scatter of correct and incorrect saccades for evidence of
perceptual modulation (Fig. 6a). At rPTs corresponding to
uninformed choices, correct and incorrect endpoint measures did
not differ. However, as cue viewing time increased beyond a
critical threshold, the endpoints of saccades made to the correct
target became less scattered, whereas those of saccades made to
the distracter became more scattered. Once again, bootstrapping
analyses indicated that the time course of these changes closely
matched that of perceptual performance as measured via the
tachometric curve (difference in alignment: monkey R, p= 0.12;
monkey T, p= 0.15; monkey G, p= 0.85; difference in rise time:
monkey R, p= 0.49; monkey T, p= 0.22; monkey G, p= 0.89).

Having discovered this, we hypothesized that variability in
the peak velocity of saccades may similarly reflect perceptual
processing. Indeed, the standard deviation (s.d.) of the peak
velocity depended on rPT in much the same way as the dispersion
in saccade endpoint (Fig. 6b). That is, for incorrect choices, the
standard deviation of peak velocity sharply increased, while that
of correct saccades decreased as a function of rPT. These results
clearly demonstrate that the variability of saccade metrics is

influenced by the amount of information on which an urgent
perceptual judgment is based.

A plausible mechanism linking perception and peak velocity.
Thus far, we have demonstrated that various saccade metrics are
highly dependent on the temporal availability of sensory infor-
mation that is relevant for guiding a perceptual decision. In light
of these findings, we sought to determine how (mechanistically)
perceptually-driven changes in oculomotor activity could influ-
ence saccade metrics. To do so, we utilized a heuristic model that
reproduces both behavioral performance and FEF neuronal
activity in the CS task — the accelerated race-to-threshold
model5,6,21,22.

In the model, saccadic choices are contingent on the outcome
of a race to threshold between two variables, xL and xR, which
represent the mean firing rates of two populations of oculomotor
neurons, each competing to initiate an eye movement to one of
the two potential target locations. In each simulated trial, the go
signal triggers both motor plans to race toward threshold, with
initial, constant build-up rates vL0 ; v

R
0

� �
drawn randomly from a

bivariate distribution. Next, time permitting, incoming cue
information simultaneously accelerates the plan congruent with
the target (acceleration equals aT, which is positive) and
decelerates the plan congruent with the distracter (acceleration
equals aD, which is negative). In this way, the model simulates
both correct (Fig. 7a, c) and incorrect responses (Fig. 7b, d) that
may correspond to either guesses (Fig. 7a, b) or informed choices
(Fig. 7c, d), depending on the timing of the cue relative to how
advanced are the motor plans toward the target (blue traces) and
distracter (red traces).

As can be seen in Fig. 7e, f, the simulated motor plan
trajectories that give rise to correct and incorrect saccadic choices
vary, on average, depending on rPT. As our current interest
relates to saccade execution specifically, we examined the state of
the simulated motor plans around the time of saccade initiation
as a function of rPT (Fig. 7e, f insets) in search of processing-
time-dependent modulation relating to that of saccade metrics.
Indeed, using the accelerated race-to-threshold model — fit to
reaction time data (see model fits, Supplementary Fig. 1; see
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Methods) and blind to all saccade metrics — we found that, as a
function of processing time, the derivative of the simulated firing
rates at threshold crossing (vf) exhibited a pattern of modulation
remarkably similar to that of peak velocity (Fig. 7g; compare with
Fig. 3a). That is, on average, the vf values from correct and
incorrect simulated trials were virtually identical up to a point
(around rPT= 125 ms) and then split, with those from correct
saccades increasing and those from incorrect saccades decreasing
thereafter (given only slight adjustments, the model can account
for additional, late rPT peak velocity modulation as well; see
Methods). Importantly, the time course of these simulated results
was statistically similar to that of the observed peak velocity
effects (difference in alignment: p= 0.12; difference in rise time:
p= 0.25). Together, these simulations provide a plausible
mechanistic explanation for our saccade metrics data, demon-
strating how perceptual decision-making dynamics could influ-
ence saccade peak velocity via rate coding within the FEF.
Notably, other simulated quantities calculated just prior to
saccade onset (e.g., the difference between in vs. away activity,
the activity integrated over a given time window, etc.) did not
behave in the same way as vf; i.e., they showed trends as functions

of rPT that differed from those seen in the peak velocity data.
Thus, the model specifically suggests that the derivative of the
firing rate at threshold crossing in a given trial is closely related to
the measured peak saccade velocity.

Further insight into the origin of this effect can be gleaned
from the model. As previously described, saccadic choices depend
not only on when the cue information arrives, but also on the
state of the already developing motor plan at that time
(corresponding to a random, initial guess driven by urgency).
On each simulated trial, the derivative of the firing rate at
threshold can be expressed using the following equation:

vf ¼ v0 þ a ePT½ �þ ð1Þ

where v0 is the initial build-up rate (either vL0 or vR0 ), a is the
acceleration due to perceptual information (either aT or aD), ePT
is the effective processing time, equal to rPT minus afferent and
efferent delays, [x]+=max{0, x} (i.e., negative ePT values were
rounded to zero), and vf is the derivative of the firing rate at
threshold. Thus, the two terms in Eq. (1) represent urgency-
driven (internally-derived and not based on the cue information;
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v0) and perceptual (cue-derived; a[ePT]+) influences on the
ongoing oculomotor activity. To illustrate the differential
contributions of urgency and perceptual information to our
observed results, we simulated thousands of trials of the model
and plotted the mean v0 and a[ePT]+ terms separately as
functions of rPT (Fig. 7h, i). At short rPTs, as expected,
perisaccadic motor plans were void of any perceptually-based
signal and were driven solely by urgency. However, interestingly,
at long rPTs, urgency and perceptual information modulated
perisaccadic motor plans in opposite directions, on average.
That is, for long-rPT correct choices, the mean initial build-up
rate (v0) decreased, while the influence of the acceleration due to
perceptual information at threshold crossing (a[ePT]+) increased
with processing time. For long-rPT incorrect choices the opposite
was true; i.e., v0 increased slightly on average, while a[ePT]+
decreased on average with increasing processing time. Therefore,
after ~125 ms of cue viewing time, saccade peak velocity,
inasmuch as it relates to the state of perisaccadic oculomotor
plans, carries a multiplexed signal, which, as evidenced by our
simulations, is predominantly driven by perceptual information.

Covert and overt correlates of urgent-decision confidence. But,
what is the significance of this top-down mental computation to the
saccadic choice itself? Our results thus far indicate that, in the CS
task, saccade peak velocity and vf reflect the degree to which per-
ceptual evidence is weighted for or against the target of the saccadic
choice around the time of commitment. Based on this intuition, we
hypothesized that, in the CS task, saccade peak velocity and vf might
closely correlate with the probability that a choice is correct given
the perceptual evidence — i.e., with the statistical definition of
decision confidence24–26. The key insight here is that, in the urgent-
decision paradigm, processing time itself quantifies target/distracter
discriminability, because it directly determines the amount or
strength of the perceptual evidence that is available in each trial.
Equating processing time with discriminability, we found that, in
the CS task, saccade peak velocity exhibits three analytically derived
signatures of statistical decision confidence24 (although see ref. 27

for limitations regarding the generality of such signatures). First, for
all three subjects, choice accuracy increased as a function of saccade
peak velocity (Fig. 8a). Second, as previously shown, the average
peak velocity of correct trials increased, while that of incorrect trials
decreased as a function of rPT (Fig. 8b). And third, saccadic choices
with higher peak velocities were associated with enhanced percep-
tual performance as a function of rPT when compared to those with
lower peak velocities (Fig. 8c). As hypothesized, running the same
analyses on the perisaccadic firing rate derivatives (vf) obtained
from simulations of the accelerated race-to-threshold model yielded
similar results. In plotting the simulated curves, we found that
adding a modest amount of noise to vf served to more closely
replicate the peak velocity data (Fig. 8d–f; see Methods). The only
discrepancy is that the simulated performance curves conditioned
on vf showed a slightly exaggerated relative shift, which was likely
due to the absence of downstream sources of noise in the model, i.e.,
noise beyond the motor planning stage (e.g., FEF), which would
inevitably influence the kinematic/confidence signal as it descends
from cortex. These data indicate that, in the CS task, the peak
velocities of saccadic choices overtly manifest unsolicited, covert
measures of decision confidence, which, according to our predic-
tions, are computed within oculomotor circuitry simultaneously
with the choice around the time of its execution.

Discussion
We investigated, on a fine temporal scale, whether and how
perceptual decision-making dynamics influence the metrics of
saccadic choices upon execution. Our results revealed that various

saccade metrics (e.g., peak velocity, amplitude, vigor, endpoint
scatter) are highly dependent on processing time (rPT) — the
amount of time available to evaluate sensory information that is
relevant for guiding a motor choice. This dependence was char-
acteristically similar across saccade metrics, manifested both in
measures of their mean and variability, and followed a similar
time course (both in onset and rate) to that of choice accuracy.
Through our simulations, we provided a physiologically plausible
mechanistic explanation of our behavioral results, demonstrating
how perceptually-driven changes in neural activity within oculo-
motor structures (e.g., FEF) may influence saccade peak velocity.
In addition, we discovered that, in the CS task, peak velocity and
simulated FEF data (vf) exhibit multiple features that are char-
acteristic of the statistical definition of confidence24 (although
confidence results have been shown to take other forms27,28).

While our results do suggest that, consistent with previous
findings, saccade metrics are modulated by urgency-based sig-
nals29, the effects observed in this study were predominantly
based on perception. The difference between rPT and RT is
critical. Indeed, by design, systematic changes in urgency are
minimized in the CS task — avoiding the fundamental relation-
ship between urgency and response time that is characteristic
of RT, and affording a clearer view of the impact of perceptual
information on saccadic choice behavior. By analyzing many
thousands of CS task trials, we were able to detect, as a function
of rPT, a small (e.g., see Fig. 2c) yet highly robust influence
of perception on saccade metrics — an effect otherwise easily
missed.

Previous work has established that the metrics of a saccade
are influenced by the prior history of reward associated with
the location of space to which it is made30–35. However, in the
CS task, the outcome of each trial is in no way contingent
upon that of previous trials, and thus, our main findings cannot
be directly attributed to systematic alterations of either motiva-
tional or decision-related variables across extended periods of
time (for related effects, see refs.5,22). Rather, our results indicate
that saccade metrics are modulated by rapid changes in cognitive
state that occur within a single trial, unfold over a few tens of
milliseconds, and are based primarily on incoming sensory
evidence.

Still, our results are likely related to the subject’s internal valua-
tion of the saccade target at the time of choice commitment. Indeed,
our data indicate that, under urgent conditions, saccade metrics are
influenced by the perceptual evaluation process that is inherent to
covert visual target selection in general. Viewed in this way, our
results are broadly in agreement with and expand upon those of
studies that have shown saccade metrics to be modulated by the
reward or value associated with the target of a saccadic eye
movement30–39. As we discuss further below, much can be inferred
about (1) the dynamics of the perceptual decision-making process,
(2) the neural mechanisms by which sensory evidence influences
saccadic choice kinematics, and (3) the computations associated
with the covert selection and overt execution of rapid perceptually-
guided saccadic choices, based on the current findings.

Our results indicate that, under urgent circumstances, covert,
graded measures of visual evidence are not entirely lost in the
sensorimotor transformation upon the selection of a discrete,
binary choice, but rather are largely preserved and communicated
through the metrics of saccades upon execution. That is, in the CS
task, saccade metrics appear to reflect the degree to which sensory
evidence is weighted for or against the target of the saccadic
choice around the time of commitment. Accordingly, as a func-
tion of processing time, saccade metrics revealed the dynamics of
the underlying perceptual judgment — manifesting intimate and
otherwise hidden details of the perceptual evaluation process as it
unfolded in time. For example, that incorrect saccades were
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slower, shorter, and had less reliable endpoints with increasing
rPT indicates that our subjects had, to a certain extent, accurately
perceived the cue information, despite their failure to indicate as
much via their binary saccadic choice selections (additional
analyses of corrective saccade metrics further corroborate this
idea; Supplementary Fig. 2). Such clues about the perisaccadic
state of perceptual processing go well beyond what can be
inferred based on standard psychophysical measures such as RT
or choice accuracy alone.

Our behavioral findings strongly implicate oculomotor brain
regions in a sensorimotor transformation whereby perceptually-
driven changes in activity influence saccade kinematics. To gain
insight into the neural mechanisms by which this could occur, we
utilized the accelerated race-to-threshold model, which has previously
been shown to replicate both CS-task performance metrics

(e.g., choice accuracy, rPT distributions, RT distributions) and
simultaneously recorded FEF neuronal data5,6,21,22. Using the model,
fit to RT data and blind to all saccade metrics (e.g., peak velocity,
endpoint scatter, etc.), we demonstrated how perceptually-driven
changes in neural activity within oculomotor structures could influ-
ence saccade peak velocity— based on the speed with which a motor
plan crosses threshold. These simulations help bridge the gap
between studies that have found perceptual modulation of FEF motor
neuron activity5,6 and those that have, through microstimulation17,18,
or inactivation40–45, demonstrated that FEF activity influences sac-
cade peak velocity. In contrast, however, the amplitude and direction
(and, by association, endpoint) of saccadic eye movements are pri-
marily encoded by the locus of neural activity within FEF and SC
oculomotor maps10–14, and thus, inferences regarding these metrics
are beyond the scope of the accelerated race-to-threshold model.
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Fig. 8 Saccade peak velocity and simulated oculomotor neural data correlate with the probability that a choice is correct, given the perceptual evidence.
a Percentage of correct responses as a function of saccade peak velocity for each of the three subjects. b Mean (±1 s.e.m.) peak velocity of correct (green)
and incorrect (red) saccadic choices as a function of rPT (previously shown in Fig. 3a). c Percentage of correct responses as a function of rPT for trials
with peak velocities above (gold) and below (black) the median peak velocity. Error bars in c represent 95% binomial proportion confidence intervals.
d Percentage of correct responses as a function of the derivative of simulated neural activity at threshold crossing (vf). e Mean vf of correct (blue) and
incorrect (red) simulated trials as a function of rPT. f Percentage of correct simulated trials as a function of rPT for trials with high (above median) and low
(below median) vf. Data are from monkeys R, T, and G (rows 1–3). Simulations (row 4) were based on the behavioral data from subject R. For all simulated
results, a small amount of noise was added to vf
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With further experimental validation, this newly proposed physio-
logical link between perception and saccadic choice kinematics could
become an important constraint on neural models of oculomotor
decision making in general.

Extant data from subcortical structures are not inconsistent
with the proposed link based on the model results. While
uncertain of the exact ensemble of brain regions that, in concert
with the FEF, may instantiate the apparent influence of the per-
ceptual evaluation process on saccade peak velocity, previous
work implicates the caudate nucleus as well as the SC, both of
which receive direct projections from the FEF46–49. Indeed, not
only have putative perceptual decision variables been shown to be
encoded within the firing rates of caudate and SC neurons3,4,50,51,
but activity within these brain regions has also been demonstrated
to correlate with saccade peak velocity15,16,30,52.

We discovered what appear to be unsolicited measures of
decision confidence embedded within the kinematics of eye
movements in the CS task. Equating saccade peak velocity with
decision confidence, our results indicate that, during a simple
color discrimination, sensory evidence starts to inform the
computation of decision confidence only ~125 ms after cue onset,
with confidence reaching its full extent of modulation only ~60
ms after that. Moreover, we can infer, based on the results of
Fig. 3b, that sensory evidence informs the computation of con-
fidence with the same onset time and rate of change with which it
informs rapid saccadic choices. Together, these behavioral results
suggest that confidence is computed within oculomotor circuitry
along with the choice — and, possibly, as an inherent part of the
urgent decision-making process itself. This conclusion is in
agreement with the results of recent experiments carried out in
the lateral intraparietal area53. Here, we provide further support
for this idea with our neural simulations, which predict that, in
the CS task, statistical decision confidence is encoded within FEF
motor neuronal activity that is causal to the choice.

Our behavioral data are in agreement with the predictions of
normative as well as signal detection-theory based models of con-
fidence24,54, and our simulations seemingly represent a natural
extension of such models to the context of urgent perceptual deci-
sion making. The emergence of this latent computation— statistical
decision confidence— within the model and within saccade metrics
gives further credence to the accelerated race-to-threshold frame-
work, and highlights the utility of saccade metrics as a behavioral
medium through which covert perceptual decision-making
dynamics can be inferred. Evidently, although largely stereotyped,
saccades are highly communicative, thoughtful movements, which
under time pressure can provide basic insight into the neural
computations that give rise to perceptually-guided choice behavior.

Methods
Subjects and setup. Three male rhesus monkeys (Macaca mulatta) participated in
the experiment. All experimental procedures were conducted in accordance with
NIH guidelines, USDA regulations, and the policies set forth by the Institutional
Animal Care and Use Committee (IACUC) of Wake Forest School of Medicine.
Each animal was implanted with an MRI-compatible titanium post under general
anesthesia. The post served to fix the head in place during experimental sessions.

Eye movements were recorded using an EyeLink 1000 infrared tracking system
(SR Research), operating in pupil-corneal reflection mode, with a sampling rate of
500 Hz. Visual stimulus generation, task sequencing, and eye movement data
acquisition were accomplished via a custom-designed PC-based software package
(Ryklin Software). Stimuli were presented on a display monitor at a viewing
distance of 57 cm.

Behavioral task. Details of the CS task have been described previously5,6,21,22.
Briefly, on a given trial of the CS task (Fig. 1a), the subject fixates on a centrally
located spot, the color (red or green) of which defines the color of the eventual
target. While the subject fixates, two identical yellow spots appear, diametrically
opposed, surrounding the central stimulus. The yellow spots serve as placeholders,
informing the subject of the two potential locations of the correct target. Then, the
fixation spot disappears, representing the command to move (the go signal).

However, at this time, the identities of the target and distracter are unknown and
will remain so for a variable gap of time (25–250ms), until the “cue” period begins.
At cue onset, one yellow spot turns green and the other red. The subject’s choice is
indicated via a saccadic eye movement made at any point after the go signal. Two
important quantities are measured: reaction time (RT) and rPT. The RT is mea-
sured as the time that elapses between the onset of the go signal and the onset of the
saccadic response. The rPT is the maximum cue viewing time; it is measured as the
time between cue onset and saccade onset (rPT= RT − gap). Subjects were
required to fixate within a criterion window (3° radius) around the correct target for
a specified duration (typically, 200ms) to receive a drop of juice. Trials in which the
correct target was red were randomly interleaved with trials in which the correct
target was green. Negative rPT responses correspond to those executed after the go
signal, yet prior to cue onset (i.e., during the gap). For this rare subset of trials, the
correct target was randomly assigned to be on the left or right despite there being no
cue information provided, and thus, subjects had a 50% chance of being correct.

Monkeys were first trained to perform a non-urgent version of the two-
alternative forced choice task, in which the color cue is presented before the go
signal, to learn the decision rule of matching the color of a peripheral spot to that of
the fixation point. Following proficient performance of the non-urgent two-choice
task (i.e., performance > 95% correct), subjects started performing the CS task,
which, as described above, instantiates a variable gap of time between the
presentation of the go signal and the cue. To encourage short latency response
times, subjects had to respond within approximately 450 ms following the go
signal (i.e., with a RT < 450ms); otherwise, the trial timed out. Monkeys quickly
adapted to this time constraint (indeed, they prefer not to wait21) and typically
mastered the CS task within a matter of days to a few short weeks with no further
instruction.

Data analysis. All analyses were performed in Matlab (MathWorks, Natick MA).
For behavioral data analysis, only trials with targets presented at 10° of visual angle
directly to the left and right of screen center were analyzed. The X and Y positions
of the eye, represented in degrees of visual angle relative to the center of the screen,
were smoothed using a Gaussian kernel with a standard deviation of 1 sample.
Smoothed X and Y eye position data were then transformed into radial coordinates
and differentiated to calculate eye velocity in the radial direction. Similar results
were obtained with different smoothing kernels, kernel widths, as well as with no
smoothing at all. In addition, no qualitative differences were observed using vec-
torial velocity in place of radial velocity. The start and end times/positions of a
saccade were defined according to the sample indices at which eye velocity
exceeded or fell below 25°/sec. All saccades less than 6° of visual angle or greater
than 13° of visual angle in amplitude were excluded from analysis. Saccades with
peak velocities greater than 1000°/sec were excluded as well. In total, less than 2%
of saccades were excluded.

Average and s.d. of metrics as functions of rPT were computed with bin widths
between 25–50 ms, and with step sizes of 1–2 ms. Percentages of correct responses
were calculated as functions of peak velocity (as well as vf) using bin sizes equal to
one tenth the range of peak velocities (and vf values) and with step sizes equal to
one half the bin size.

The following procedure was used to calculate saccade endpoint scatter. First, for
each session, we calculated the distance from each saccade endpoint to the mean
endpoint of all saccades toward the corresponding choice stimulus. The resulting
distance measures from each session were then converted to z-scores, and, across all
sessions, averages were computed in rPT bins for correct and incorrect trials
separately. The resulting curves, plotted in Fig. 6a, represent the mean displacement
in saccade endpoint relative to the mean endpoint of saccades, as a function of rPT.

Similar results were obtained when the displacement of each saccade endpoint
was measured relative to the mean endpoint of rPT- and outcome-matched
saccades (rather than relative to saccades across all rPTs regardless of outcome as
described above). This analysis provided confirmation that the endpoint effects
observed are due, in large part, to changes in the spread of the distributions of
endpoints as a function of rPT, rather than simply resulting from shifts in the
means of the distributions of endpoints as a function of rPT.

The peak velocities of saccades toward each choice stimulus were first z-scored
within each session before taking rPT-binned standard deviation measures as shown
in Fig. 6b. As explained in the Results section, to determine whether the observed
mean peak velocity effects were beyond those predicted by the saccadic main
sequence, we computed the rpv around the line of best fit between the amplitudes and
peak velocities of uninformed saccades (rPTs < 75ms). We used a linear rather than
an exponential fit here because the trials analyzed had fixed potential target locations,
and thus the ranges for saccade amplitude and peak velocity were quite small.

Curves representing yoked (correct and incorrect) modulation in peak velocity as a
function of rPT (such as those seen in Fig. 3b) were generated by subtracting incorrect
from correct peak velocity averages within rPT bins. The same procedure was used to
generate a single modulation curve for vf, which was then compared (as described
below) to that of mean peak velocity. Similarly, for saccade endpoint scatter, curves
were generated by subtracting correct from incorrect endpoint scatter averages within
rPT bins. These curves were used to compare the time course of modulation of
endpoint scatter to that of choice accuracy, with respect to rPT.

Curve rise times (for tachometric curves, peak velocity modulation curves, etc.)
were calculated by fitting the data of interest with a piece-wise-linear version of a
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sigmoid function, such that

f xð Þ ¼
y1 if x ≤ x1

y1 þ x � x1ð Þ � y2�y1
x2�x1

� �
if x1<x<x2

y2 if x ≥ x2

8><
>:

The set of parameters (x1, x2, y1, y2) that achieved the overall minimum sum of
squared residuals between the linear sigmoid function and the data was found by a
combination of analytical and numerical methods. The rise time of the resultant
best-fitting linear sigmoid was then measured as:

rise time ¼ x2 � x1

To determine the temporal alignment between two curves (e.g., one
representing changes in peak velocity and the other changes in choice accuracy,
such as those plotted together in Fig. 3b), we varied the baseline, rescaled the y-axis,
and shifted the x-axis of one curve until the absolute difference between the two
curves was minimized. The resulting x-shift value of the minimization solution was
our measure of temporal shift (relative alignment) between the two curves.

Bootstrapping procedures55,56 were used to estimate the degree to which two
modulation curves followed the same time course. That is, the data were resampled
with replacement and the metrics of interest (e.g., difference between the rise times
of two curves, or temporal shift between curves, as defined above) recomputed
thousands of times, generating a distribution of values based on the data. From
each bootstrapped distribution, a 95% confidence interval was computed. Zero fell
within the 95% confidence interval for each tested measure, indicating that there
were no significant differences between the time courses of the modulation curves
compared.

Next, we estimated the probability that the rise time (as well as the position
along the time axis) of one modulation curve was either greater (later) or smaller
(earlier) than that of another curve just by chance. To do so, a distribution of
differences was obtained based on the bootstrapped distributions of the individual
curves (as described above), and from it, the probability of obtaining a value more
extreme than zero was calculated (two-tailed).

Model simulations. Accelerated race-to-threshold model simulations were carried
out with procedures nearly identical to those described in previous reports6,22.
After an afferent delay (drawn randomly for each trial from a Gaussian distribu-
tion) following the presentation of the go signal, two variables (xL, xR), which
represent the mean firing rates of two populations of oculomotor neurons, begin
racing toward a fixed threshold (1000 units) at constant build-up rates (vL0 , v

R
0 ,

drawn randomly for each trial from a bivariate Gaussian distribution with a
negative correlation coefficient). Trials in which xL or xR reach threshold during
this stage (i.e., before the cue influences simulated motor plans) represent guesses
and result in simulated choices that have 50% chance of being correct. Otherwise,
after a second afferent delay (drawn randomly for each trial from a Gaussian
distribution) following the presentation of the cue, both motor plans pause for a
brief period of time (fixed across trials). Then the motor plan congruent with the
correct target location accelerates (aT; fixed across trials), while the motor plan
congruent with the distracter location decelerates (aD; fixed across trials) until
either the race is over (i.e., one of the plans reaches threshold), or, a maximum or
minimum velocity is reached (vmax, vmin). When either xL or xR reach threshold, a
saccade is assumed to occur after a short efferent delay (fixed across trials),
allowing for simulated performance measures to then be computed (trial outcome,
RT, rPT, etc.). Overall, the model has 12 free parameters, including the means,
variances, and, when applicable, the correlation coefficients of the aforementioned
Gaussian distributions from which values are drawn on each trial. These 12
parameters were optimized for each subject during the model fitting procedure (see
Model Fitting section below).

For the simulations shown in Fig. 8, Gaussian noise was added to all vf values,
under the constraint that vf values could not fall below zero. The amount of noise
was manually adjusted until the similarities between the simulated and peak
velocity data appeared optimal based on visual comparison. This procedure was
found to generate results that more closely replicated the peak velocity data.

Given that, in the accelerated race-to-threshold model framework, changes in
the slope of the firing rate are predominantly attributed to perceptual influence, the
vmax and vmin parameters primarily represent the maximum rates at which sensory
evidence can inform (i.e., enhance or suppress) saccadic motor planning. Although
these two parameters are exactly as in published versions of the model, they (and
their possible variability) play somewhat unique roles in linking the present model
results to the saccade metrics data, particularly at very long rPTs. For all trials, the
upper limit on the slope of the firing rates at threshold crossing (vf) is equal to vmax,
but the implicit lower limit on vf is zero because the firing rate cannot reach
threshold with a negative slope. This explains why vf (and peak velocity) plateaus
for correct but not for incorrect trials. During correct trials, as rPT increases, the
probability that the slope of a simulated motor plan congruent with the target will
equal vmax increases, eventually reaching 100%, and so does the probability that the
motor plan will reach threshold to trigger a correct choice. Both quantities reach
their limits. In contrast, during incorrect trials, the plan that is incongruent with

the target decelerates, but the lower its slope, the less likely it is to reach threshold
in the first place, to trigger an error. Thus, in this case, vf (and peak velocity) does
not typically reach its implicit lower limit, and so it does not flatline.

With only slight adjustments to these parameters, the model can easily account
for additional subtle features observed in the saccade metrics data. For instance,
although in the current instantiation of the model vmax is fixed across trials, adding
variability to it results in vf decreasing, on average, for correct trials after ~225 ms
of processing time (not shown), replicating the decreases in the mean peak velocity
of correct saccadic choices observed at very long rPTs for monkeys R and T
(Figs. 3a, 5c). This would suggest that the eventual decreases in peak velocity of
correct choices simply reflect trial-to-trial variability in the maximum rate at which
sensory evidence informs a saccadic choice. However, many other interpretations
and mechanistic explanations of this behavior are possible, some of which are
related to post-decisional processes. Thus, we decided to focus primarily on the
effects that occur during the most relevant decision-related time frame (i.e., rPTs <
200 ms) which can be explained by the preexisting accelerated race-to-threshold
model framework without adding parameters to the model as published previously.

Model fitting. The free parameters of the model were optimized such as to
minimize the mean absolute error between the simulated and monkey reaction time
distributions within each gap, separately for correct and incorrect trials, as done in
previous studies of the CS task5,6,22. Correct and incorrect trial distributions within
each gap were normalized relative to the same value during the fitting procedure,
ensuring that the relative frequency of correct versus error trials was preserved and
thus that each distribution was weighted appropriately. Crucially, we did not have
multiple, unique sets of model parameters dedicated to simulating trials with a given
gap length, or trial outcome (correct/incorrect). Rather, one set of model parameters
was used across all trials within a simulated session, no matter the gap or trial
outcome. The best-fitting set of parameter values was found by exhaustive search;
i.e., by generating many sets of parameter values (each parameter being drawn
randomly from its own distribution) and selecting the set of parameter values that,
upon running the model, minimized the aforementioned error. This procedure was
then repeated, narrowing the width and shifting the mean of each parameter dis-
tribution toward parameter values that yielded better fits, following each block of
search. All simulations shown were from a model that was fit to the RT data from
subject R (our largest behavioral dataset presented here, with 19,796 trials).

We stress that saccade metrics did not enter into the model or fitting procedure
in any way. Rather, after fitting the model to the behavioral data, the model was run
and the simulated responses were used to compute vf in each trial.

Data availability. All relevant data and code used for the analysis are available
from the authors upon reasonable request.
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