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How nanoscale protein interactions determine the
mesoscale dynamic organisation of bacterial outer
membrane proteins
Matthieu Chavent 1,2, Anna L. Duncan1, Patrice Rassam1,5, Oliver Birkholz 3, Jean Hélie 1,6, Tyler Reddy1,7,

Dmitry Beliaev4, Ben Hambly4, Jacob Piehler 3, Colin Kleanthous 1 & Mark S.P. Sansom 1

The spatiotemporal organisation of membranes is often characterised by the formation of

large protein clusters. In Escherichia coli, outer membrane protein (OMP) clustering leads to

OMP islands, the formation of which underpins OMP turnover and drives organisation across

the cell envelope. Modelling how OMP islands form in order to understand their origin and

outer membrane behaviour has been confounded by the inherent difficulties of simulating

large numbers of OMPs over meaningful timescales. Here, we overcome these problems by

training a mesoscale model incorporating thousands of OMPs on coarse-grained molecular

dynamics simulations. We achieve simulations over timescales that allow direct comparison

to experimental data of OMP behaviour. We show that specific interaction surfaces between

OMPs are key to the formation of OMP clusters, that OMP clusters present a mesh of moving

barriers that confine newly inserted proteins within islands, and that mesoscale simulations

recapitulate the restricted diffusion characteristics of OMPs.
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The dynamic organisation of membrane proteins is central
to the biology of all cells. Membranes are crowded envir-
onments: it is estimated that ca. 25% of the cross-sectional

area of a red blood cell membrane is occupied by proteins1, and
this may be as high as ca. 40% in a bacterial outer membrane
(OM)2. Such molecular crowding can result in dynamic clustering
of membrane proteins3–6. Membrane protein clustering is
observed both in eukaryotic7 and bacterial8 cell membranes, and
is thought to be crucial to their organisation9,10 and biological
function. In eukaryotic cells, interactions with the cytoskeleton
underlying the cell membrane may also modulate the dynamic
organisation of membrane proteins and lipids11, however, no
such mechanism is apparent in bacterial cell membranes. We
have previously demonstrated that clustering of outer membrane
proteins (OMPs) in Escherichia coli results in the creation of
asymmetric structures termed OMP islands8. These OMP islands
are the size of eukaryotic organelles (diameter up to 0.5 µm) and
contain hundreds (possibly thousands) of OMPs. The binary
partitioning of OMP islands during cell division provides a means
whereby OMPs are turned over in the OM, thus allowing Gram-
negative bacteria to alter their OMP composition in response to a
changing environment. OMP clustering also drives the clustering
of inner membrane proteins when the two membranes become
connected by an energised protein bridge12. The OM is an
attractive target for novel antibiotics13, but to exploit this target
greater knowledge of OMP behaviour and organisation is
needed14,15. Here, we combine single molecule experimental
approaches with computational simulation to show how the gap
between nano- and meso-scale measurements on OMPs can be
narrowed, in the process revealing principles about the dynamic
organisation of bacterial OMPs.

A number of experimental methodologies allow us to probe the
dynamics and organisation of crowded cell membranes16, e.g. the
use of fluorescence correlation spectroscopy (FCS)17 or single
particle tracking (SPT)18 to estimate protein diffusion rates in
membranes. At the same time, e.g. high-speed AFM enables
imaging of the dynamic organisation of OMPs in bacterial
membranes in vitro2, and stimulated emission depletion (STED)
can reveal the nanoscale dynamics of lipids in the membranes of
living cells19. Taken together, these approaches provide descrip-
tions of emergent complexities of the dynamic organisation of
membranes at meso and micro scales. However, it remains
challenging to link mesoscale organisation to atomic scale
structural descriptions of the interactions between membrane
proteins and lipids. In particular, we wish to know how OMP
islands emerge as a consequence of atomic resolution interactions
between membrane proteins, mediated by lipids.

Molecular simulations allow detailed exploration both of lipid/
protein interactions of individual membrane proteins20 and the
dynamic consequences of such interactions in terms of co-
diffusion of lipids and proteins in membranes21. It is now pos-
sible to undertake such simulations of membranes on length and
timescales, which begin to approach those observed experimen-
tally22 whilst preserving aspects of the crowding and composi-
tional complexity of cellular membranes23. This provides an
opportunity to use simulations to more fully understand the
molecular basis of mesoscale membrane organisation.

In this study, we employ large-scale simulations of OMP-
containing membrane systems, at two levels of description, to
characterise the process and consequences of membrane protein
clustering. We thus develop a dynamic model of mesoscale
organisation, which is derived from an underlying structural and
dynamic description of membrane protein interactions as pro-
vided by the molecular simulations. This model permits
exploration of the mesoscale both spatially (on a near-micrometre
scale) and temporally (on a multi-millisecond scale). The

simulations are used to emulate fluorescence data, enabling direct
comparison with experimental data. By successfully bridging the
gap between molecular level simulations and experiments, we
thus obtain a mechanistic molecular interpretation of single
molecule tracking data, revealing how dynamic clustering of
OMPs results in the formation of mesoscale OM islands, which
modulate the diffusional mobility of OMPs.

Results
OMPs form clusters at the nanoscale. Large-scale simulations
are needed both to fully capture the dynamic behaviour of
membrane proteins24,25 and to enable direct comparison with
both in vitro and in vivo experiments. In the present work, we
simulate the behaviour of OMPs in simple PE:PG bilayers devoid
of the main lipid present in the outer leaflet of the OM, lipopo-
lysaccharide (LPS). We contend for the following reasons that
these simulations and associated in vitro experiments nevertheless
provide fundamental insight into the behaviour of OMPs in the
outer membrane of a Gram-negative bacterium. Past studies
estimating the levels of LPS and OMPs in the outer membrane of
E. coli suggest similar numbers of molecules (~106). Total LPS has
been estimated by radio-labelling methods26,27 while total OMP
composition has been estimated by proteomics28. These previous
studies therefore suggest that there are insufficient LPS molecules
to encircle every OMP (although high affinity LPS binding has
certainly been documented for a number of OMPs such as
FhuA29). This probably explains why OMPs cluster in the OM of
bacteria to produce OMP-rich regions8,30,31. Furthermore, OMPs
at densities mimicking those found in the OM of E. coli, and
incorporated into polymer supported membranes (PSM) com-
posed solely of PE:PG, display diffusion coefficients and levels of
restriction almost identical to those observed for OMPs in E. coli8.
This observation is consistent with the hypothesis that the dif-
fusion behaviour of OMPs in live bacteria is more influenced by
promiscuous self-associations between OMPs rather than the
presence of LPS. Moreover, the preponderance to β-barrel
membrane protein self-association is not restricted to LPS-
containing membranes; for example, the mitochondrial OMP
VDAC is also seen to form densely packed clusters32. We
therefore set out to simulate this behaviour of OMPs (in vitro) to
better understand the inherent self-organisation of OMPs and
how this impacts on their diffusion.

We have used a coarse-grained (CG) representation33,34 to
model OMP-containing membranes on a ~100 nm length scale
(Table 1), which approaches that studied experimentally22. The
simulated systems thus contain 100 or more copies of an integral
membrane protein, which enables us to sample formation of
large-scale clusters. The lipid bilayer in these simulations is
composed of a mixture of phosphatidylglycerol (PG) and
phosphatidylethanolamine (PE), which matches that employed
in in vitro experiments of OMP islands that largely recapitulates
the behaviour of OMPs in vivo8. Addition of LPS in vitro did not
significantly alter the clustering of OMPs nor their diffusive
behaviour (Supplementary Figure 1). The protein density in the
in vitro experiments was ca. 25% of the cross-sectional area of the
membrane. In the simulations, the protein density was between
20 and 30%, so the simulations and in vitro experiment were
comparable in terms of protein concentration. Moreover, the
concentration of proteins in the model membranes corresponds
to ca. 25%8 of the cross-sectional area of the membrane, which
matches experimental estimates for both eukaryotic1 and
bacterial cell membranes2,26. At the end of the 20 µs simulations,
extended protein clusters had formed (Fig. 1 and Supplementary
Figure 2). We simulated systems containing the vitamin B12
transporter BtuB or the porin OmpF alone, or an equimolar
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mixture of the two proteins. This matches the in vitro experi-
mental studies which have focused upon these structurally and
functionally well characterised OMPs. In all cases, cluster
formation was observed (Fig. 1a–c) mimicking the co-
localisation of these proteins observed in vitro in supported
bilayers (Fig. 1d, e)8. These simulations were at a surface density
of 10,000 OMPs µm−2 (See Table 1), comparable to that observed
in bacterial OMs (e.g. see refs. 2,35). In studying BtuB and OmpF,

we are simulating two OMPs, which represent the two extremes
of OMP structures: monomeric and trimeric OMPs, respectively.

In the case of OmpF, protein–protein interactions underlying
formation of clusters may be compared with direct observations
using high-speed AFM2. As in AFM data, we observe the
formation of three different classes of interaction between
neighbouring OmpF trimers within larger clusters, namely: tip-
to-tip, base-to-base and tip-to-base configurations (Fig. 1f and

Table 1 Summary of CG–MD and mesoscale simulations performed

CG–MD simulations

Simulation Proteins Lipids Temperature (K) Duration
(µs)

Box dimensions at 20 µs (nm3) Total number of particles

BtuB313 144 BtuB 28,888 313 20 109 × 109 × 12 1,331,636
BtuB323 144 BtuB 28,888 323 20 109 × 109 × 12 1,331,636
OmpF313 100 OmpF 26,832 313 20 112 × 112 × 12 1,370,636
OmpF323 100 OmpF 26,832 323 20 110 × 110 × 12 1,370,636
Mixed313 72 BtuB+ 72 OmpF 25,448 313 20 112 × 112 × 12 1,377,536
Mixed323 72 BtuB+ 72 OmpF 25,448 323 20 112 × 112 × 12 1,377,536
vBig 1152 BtuB+ 1152 OmpF 407,168 323 2.5 446 × 446 × 12 22,040,576

Mesoscale simulations

Simulation Proteins Duration (ms) Box dimensions (µm2) CG–MD simulation used for parameterisation

BtuB_interfaces 4900 BtuB 24 1 × 1 BtuB313
BtuB313

No_specific_interfaces 4900 BtuBa 24 1 × 1 BtuB313a

BtuB_1ms 2500 BtuB 1 0.5 × 0.5 BtuB313
Insert_25 2525 BtuB 1 0.5 × 0.5 BtuB313

aIn this simulation, no specific interfaces were present, i.e. a pair of proteins upon encounter would interact regardless of their relative orientation

BtuB-BtuB

110 nm

a b c

fed BtuB-OmpF

Fig. 1 Simulations and experimental observations of OMPs compared. Final snapshots of 20 μs molecular simulations of a 144 molecules of BtuB (green);
b 72 molecules of BtuB+ 72 molecules of OmpF (yellow); and c 100 molecules of OmpF in a lipid bilayer (PE:PG 3:1) membrane and simulated at 323 K.
For the OmpF system, the zoomed images (f) illustrate the three main configurations of OmpF association observed in the simulations: tip-to-tip (purple
box), base-to-base (green box) and base-to-top (orange box) interactions of adjacent OmpF trimers (see main text and ref. 2). Further simulations
demonstrating similar behaviour are shown in Supplementary Fig. 2. Clustering/co-localisation of d BtuB molecules (green and red; overlap in yellow) and
of e BtuB (green) and OmpF (purple; overlap in white) molecules in supported bilayers (scale bar= 1 µm). It should be noted that d, e show under-labelled
samples (we estimate less than 10% of BtuB molecules are linked to a fluorescent ColE9) in order to enable us to meaningfully distinguish single molecule
trajectories
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Supplementary Figure 2). Comparable OmpF–OmpF interactions
have been reported in other CG simulations2,36, suggesting that
this result is robust to minor changes in simulation protocol and
reflects the underlying protein–protein interactions in a lipid
bilayer environment. Visually comparing the three simulation
systems (BtuB, BtuB+OmpF, and OmpF) it appears that the
clusters are more linear in BtuB alone than in the presence of
OmpF (Fig. 1a–c). This reflects the spatial distribution of protein
interaction interfaces (see ref. 8 and Supplementary Figure 8).
This clustering behaviour is distinct from that in other
CG–molecular dynamics (MD) simulations of membrane pro-
teins, e.g. of GPCRs37 and potassium channels38, which form
clusters that are smaller or less linear, respectively.

At the end of the simulations, a third of the protein molecules
form small clusters (four or less) and the remainder are found in
larger clusters ranging up to 30 protein molecules in the case of
OmpF at 323 K (Fig. 2a, b, c). During the first 5 µs, OMP
molecules interact to form dimeric and larger clusters (up to 4–5
proteins). Subsequently, these clusters coalesce to form higher
order clusters (Fig. 2b and Supplementary Fig. 3). After the first
10 µs of simulation, the large clusters evolve more slowly (see
Supplementary Movie 1 for an example of clustering for the BtuB
+OmpF system). Thus, our simulations suggest that OMP
islands8 are likely to provide a somewhat heterogeneous
environment composed of a mixture of single OMPs and small
clusters located within larger clusters which are anticipated to
restrict their overall diffusional mobility. These interactions are
mainly mediated by aromatic and hydrophobic residues on the
surface of the proteins (see Supplementary Figure 4)8.

Direct comparison of dynamics in simulations and experi-
ments. The heterogeneity of cluster sizes in the simulated
OMP-containing membranes would be expected to lead to a
corresponding heterogeneity of diffusional dynamics, with higher
diffusion rates for isolated protein molecules and those located in
smaller clusters3,8. This may be compared with the diffusion
coefficients obtained from in vitro experiments, which span
almost three orders of magnitude (Fig. 3a). Although the time-
scales of experimental SPT (~100 ms) and these simulations
(~10 µs) differ by four orders of magnitude, this provides an
opportunity for comparison of the models and data. Analysis of
in vitro single molecule tracking data (from TIRFM of supported
OMP-containing bilayers; see ref. 8 for details) allows the diffu-
sional behaviour of individual OMP molecules to be classified as
Brownian, confined, or mixed (Fig. 3a, b). These diffusion modes
fitted well with the different mobility behaviours that proteins
displayed in the outer membrane in vivo8.

We therefore analysed the simulated OMP trajectories using
the same analysis software (PaTrack39) as for the experimental
data. This enables us to classify the modes of diffusion seen in the
simulations in the same manner as for the experimental single
tracking data, using a back-propagation neural network algo-
rithm, trained and tested on synthetic and experimental data.
Analysis of the experimental data demonstrated that when OMPs
(either BtuB or BtuB+OmpF) are present at high densities in the
in vitro membranes the dynamic behaviour (of BtuB) is
predominantly ‘confined’ or ‘mixed’ rather than Brownian (see
Fig. 3). This confinement is also visible for low densities of BtuB,
and increases with time (see Supplementary Figure 5). In
contrast, in the CG simulations diffusion is mainly Brownian,
with ~40% ‘mixed’ in the BtuB alone simulations. This value is
relatively constant over the course of the simulation (see
Supplementary Figure 6). Inclusion of OmpF increases the
proportion of mixed trajectories to ~90% (Fig. 3b and
Supplementary Figure 6). This suggests a substantive slowing

down of the BtuB proteins via their interactions with the larger
and multivalent OmpF molecules. Nevertheless, the higher
fraction of Brownian and mixed diffusion than observed
in vitro indicates that the regimes captured at the nanoscale
(via CG–MD) and at the mesoscale (via experiment) are not
equivalent. This can also be seen if we compare the ranges of
observed BtuB diffusion coefficients observed experimentally and
in the CG simulations (see Supplementary Table 2 and
Supplementary Figure 5B) where e.g. for the molecules under-
going Brownian diffusion, the experimental diffusion coefficients
are ca. 0.1× those seen in the CG simulations. Furthermore, no
confined movements are visible in the CG simulations, unlike the
situation for the in vitro systems. This in turn suggests that the
simulations may capture the early stages of island formation but
not the confined behaviour seen in the single molecule tracking
experiments.
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This difference between simulation and experiment likely
reflects difference in the size and the duration of simulations vs.
the corresponding scales of the tracking experiments. As an
example, we can display selected trajectories from tracking
experiments and from a 1.3 M particle, 100 nm, 20 µs scale
CG–MD simulation (Fig. 4a): it is clear that the full CG protein
trajectory corresponds to, at best, a single point (i.e. pixel) from
the in vitro tracking.

The clear implication from this comparison is that ‘longer and
larger’ simulations are needed if we are to infer experimental
diffusional behaviour (i.e. Brownian vs. confined) from molecular
simulations. From our results, CG systems and in vitro data
cannot be directly compared due to the large differences in spatial
and temporal scale. Thus, trying to quantitatively compare the
diffusion values extracted from CG–MD simulations with
experimental diffusion coefficients remains challenging. It is in
principle possible to simply run very large CG–MD simulations.
For example, we simulated a 0.5 µm membrane patch (the vBig
system containing 1152 BtuBs and 1152 OmpFs in Table 1 and
Fig. 4b), thus directly mimicking the experiments. After 2.5 µs of
simulation we saw equivalent cluster configurations to those
observed in the smaller (114 protein) systems, with formation of
clusters of up to 11 proteins (see Fig. 4 and Supplementary
Figure 7). The very large size simulation reveals some nucleation
points from which the clusters rapidly extend while in other
regions of the membrane we only observe small clusters. This
reinforces the heterogeneity of the system in the earlier stages of

membrane protein clustering. However, such CG–MD simula-
tions are very computationally demanding (using about a third of
a million cpu.h per microsecond of simulation) and cannot reach
the timescales we believe are necessary to observe full develop-
ment of clustering and the ‘confined’ dynamic behaviour.

From this we may conclude that although large-scale CG–MD
simulations enable us to initiate comparison between simulations
and experimental studies of in vitro models of crowded
membranes, we need to develop a higher-level mesoscale model
if we are to link molecular interactions to the formation of OMP
islands and the behaviour of OMPs in vivo.

Development of a mesoscale model. We have developed a
mesoscale model to describe the dynamics and interactions of
OMPs in crowded membranes on more extended length and
timescales than are feasible for CG–MD. As a proof of concept,
we focused on the system containing only BtuB proteins as this
system is well characterised experimentally. An important aspect
of this model is that its parameters are derived from the dynamic
behaviour observed in our large CG–MD simulations. Given the
relatively small scale fluctuations of the OMP-containing bilayers,
leading to deviations from planarity for this system (estimated to
correspond to an RMSD height fluctuation of 4 nm on a 0.5 µm
length scale for the bilayer)40, we have developed a two-
dimensional model in which each copy of a membrane protein
is represented by a single particle moving in the plane of the
membrane (see SI for a more detailed description of the mesos-
cale model). To parameterise the dynamics of this model we have
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measured translational and rotational motions of OMPs as a
function of cluster size in the CG–MD simulations (see Fig. 5a, b).
Both translation (in the bilayer plane) and rotation (about the
centre of mass of each cluster, in the plane of the bilayer; both
over a period of e.g. 10 ns) depend strongly on cluster size. To
extrapolate to the larger clusters which we anticipate in the
mesoscale simulation sizes, we fitted observed RMS rotation or
translation vs. cluster size data using a power law function (see
Supplementary Table 1 for further details).

As has been observed previously2,8, interactions between the
OMP molecules in clusters occur via well-defined interfaces (see
Supplementary Figure 4). To incorporate this feature within our
two-dimensional mesoscale model, we analysed the density of
occurrence of adjacent proteins around a central BtuB or OmpF
molecule, averaged across all such molecules and the duration of
a CG–MD simulation (see Fig. 5c and Supplementary Figure 8).
This analysis revealed that BtuB interacts principally via two
interfaces whereas there are 3 main interaction areas for the
trimeric OmpF molecule (Supplementary Figure 8A). In the
mesoscale model these interfaces were represented as sticky
patches of the protein particles. These areas of interaction
influence the topology of clusters for the two different systems.
Thus, clusters of OmpF proteins are more branched than clusters
containing only BtuB proteins (see Fig. 1 and Supplementary
Figure 2).

Thus, the dynamic behaviours of the protein particles in the
mesoscale model are parametrised directly from the correspond-
ing CG–MD simulations. In the mesoscale model, at each
timestep each protein undergoes a translation and a rotation,
selected from the CG–MD-derived distributions as described
above. If two protein molecules encounter one another through
their sticky patches they form a dimer. Once a dimer is formed it
moves as a single entity, with translations and rotations selected
from the CG–MD distributions for dimers. As successive proteins
interact, larger clusters form and each cluster subsequently moves
as a single entity, again with its motion determined from the
CG–MD distributions. From our fitting onto the CG–MD
simulations, we defined a single step in the mesoscale model as
10 ns in the CG–MD simulation timescale.

Clustering and dynamics of OMPs at the mesoscale. We eval-
uated the mesoscale model by a simulation comparable to our
CG–MD simulations of BtuB, i.e. a 20 µs mesoscale simulation of
144 BtuB molecules in a 120 × 120 nm2 membrane (Fig. 6). The
extents of the sticky patches and other parameters of
the mesoscale simulation were checked by comparison with the
outputs of the CG–MD simulations (Fig. 6, and Supplementary
Figures 9, 10). In particular, the clustering behaviour of the
mesoscale model was seen to reproduce that of the CG–MD
simulation, such that after 20 µs both monomeric and clustered
proteins were present, with the largest clusters containing 10 or
more proteins (Fig. 6a, b). By inspection, the clusters were gen-
erally linear rather than branched, again as observed in the
CG–MD simulations. In terms of dynamic behaviour, after 20 µs
of simulation, 20–40 proteins exhibited mixed motions while the
remaining protein motions were Brownian, again in broad
agreement with the CG–MD simulations (Fig. 6c and Supple-
mentary Movie 2). Thus, the mesoscale model seems to capture
the essential behaviour of the underlying CG–MD simulations. In
terms of computational performance, at the CG–MD level this
simulation required ~410,000 cpu.h for 20 µs, whereas the
mesoscale simulation required <1 cpu.h. Thus, the mesoscale
model enables much larger and longer simulations, permitting
direct comparison with experimental observations via single
molecule tracking.

We then used the mesoscale model to perform a long timescale
(24 ms) simulation of a large patch (0.5 µm2) containing 4900
copies of the BtuB protein molecule in a 1 µm2 box (Fig. 7a;
Table 1, simulation Meso: BtuB_interfaces). As observed in the
CG–MD simulations, the clusters are heterogeneous with a large
fraction of extended clusters containing more than 150 protein
molecules. Thus, we see single clusters of dimensions comparable
to the 0.5 µm length scale observed experimentally for OMP
islands. Smaller clusters were also observed, often formed by
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Fig. 5 Analysis of CG–MD simulations and parameterisation of the
mesoscale model. Standard deviation of the distributions of BtuB molecular
rotations (a) and translation (b) as functions of cluster size for the four
BtuB-containing simulations. Rotations and translations were collected for
the duration of each simulation over the time interval of 10 ns, and were
found to be distributed normally, with mean zero. The lines correspond to
fitted power law functions used to parameterise the corresponding
mesoscale models (see Supplementary Table 1 for details). c Frequency of
occurrence (expressed as a density; see inset) of a neighbouring interacting
BtuB molecule as a function of angle around a central BtuB molecule (from
simulation BtuB313; also see Supplementary Figure 8). The two main peaks
in the distribution, from −10° to 55° (blue) and from 155° to −155° (red),
were used to define sticky patches of interaction between adjacent BtuB
molecules in a mesoscale model (see main text for details)
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fewer proteins intercalated in between these more extended
clusters. In terms of dynamic behaviour, the proportion of mixed
and confined protein diffusion trajectories increased over time
and subsequently decreases slightly (Fig. 7b), reaching values
comparable to in vitro experimental results (Fig. 3b). Further-
more, the diffusion coefficients for BtuB molecules in both the
Brownian and the confined regimes of the 24 ms mesoscale
simulation (e.g. 0.4 µm2 s−1 for Brownian diffusion) approached
the diffusion coefficient of BtuB molecules observed experimen-
tally (0.02–0.4 µm2 s−1 for Brownian diffusion; Supplementary
Table 2 and Supplementary Figure 5B). Additionally, the spatial
extent of the 24 ms mesoscale simulation trajectories is in the
same range as in vitro observations (Supplementary Figure 11).
The extended clusters exhibit occasional branching. These
extended clusters may create moving corrals which can sequester
smaller clusters in localised areas (see Supplementary Movie 3).
Within a bacterial OM, this would create areas of restricted
diffusion within which corralled membrane proteins would be
expected to have a higher likelihood of interaction with one
another. Thus, such behaviour is anticipated to occur within the
OMP ‘islands’ observed experimentally.

To explore the effect of nanoscale protein–protein interactions
on cluster formation and the resultant corralling behaviour, we
simulated a control simulation of a second patch of 4900 proteins
in a 1 µm2 box for 24 ms, with the specific interaction interfaces
removed, such that proteins within the cutoff distance can
associate with one another regardless of their relative orientation
(Table 1, simulation Meso: No_specific_interfaces). Within 1 ms,

a single large cluster formed, which was more branched and more
compact than the mesoscale BtuB_interfaces simulation (Supple-
mentary Figure 12A and Supplementary Movie 4). Notably in this
case, no small protein clusters become corralled by larger clusters
since, given that there are no specific interfaces, all proteins that
come into contact with one another become part of a cluster. The
difference in diffusive behaviour between the BtuB_interfaces and
No_specific_interfaces simulations is evident in the PaTrack
analysis of motion type (Fig. 7b vs. Supplementary Figure 12B).
Over the course of 24 ms, the No_specific_interfaces simulation
exhibited predominantly mixed and Brownian trajectories and,
after the first 5 ms, no confined trajectories were seen (Supple-
mentary Figure 12B). Over the course of the simulation there is
significant variation in the motion type observed (Supplementary
Figure 12B), which is likely due to the stochastic variation in
motion when observing the single large protein cluster.

To further explore the possible functional consequences of
such corralling within an extended network of OMP clusters, we
performed a mesoscale simulation designed to mimic the
behaviour of proteins newly inserted by the BAM complex41.
We first took a patch (0.5 µm2) containing 2500 BtuB molecules
and simulated for 1 ms (simulation Meso: BtuB_1ms; Table 1 and
Supplementary Movie 5). Next, 25 new OMP molecules were
inserted into the resultant configuration, at positions distributed
across the membrane system. We then extended the simulation of
the new system for a further 1 ms and tracked the trajectories of
each of the 25 newly inserted proteins (Fig. 7c, d, simulation
Meso: Insert_25; Table 1). Many of these newly inserted proteins
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quickly displayed confined diffusion. This confined movement
can partly be explained by the integration of the protein into
larger clusters, which are themselves corralled by neighbouring
clusters (see particles in the inset on Fig. 7c and Supplementary
Movie 6). Interestingly, the protein shown in the lower inset in
Fig. 7c was not incorporated into a cluster but rather was
corralled by an extended cluster around it. The diffusive
movement of this protein was still classified as confined. Thus,
confined diffusive motion may arise not only by direct
incorporation into an adjacent cluster8 but can also arise by

corralling by the surrounding extended and slowly moving
clusters. This may explain the heterogeneity of diffusive
behaviour reported in crowded membranes which may confer a
glasslike behaviour on such membranes42. Such glassy dynamics
of crowded membrane proteins is likely to play a key role in the
function of membranes in cells.

Methodological reflections. It is useful to reflect on the likely
limitation of the mesoscale model. In the current version of this
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model, when two protein molecules encounter one another via
their respective ‘sticky patches’, they remain associated for the
remainder of the simulation (i.e. they remain associated on a
timescale of up to 25 ms). We do not know the koff for such
interactions, but we can provide order of magnitude estimates.
From simulations of the coarse-grained free energy landscape of
association of two OMPs6 we can estimate a free energy of
association of ca. −50 kJ mol−1, corresponding to a Kd of the
order of 1 nM. We can assume association rates to be in the range
kon= 106–109 M−1 s−143, thus yielding a range of koff= 10−3 to
1 s−1. This is consistent with dissociation timescales observed in
high-speed AFM of OmpF2 and also with the diffusive behaviour
of BtuB in vitro (Supplementary Figure 5A), which shows diffu-
sion slowing on a minute timescale. Thus, the timescale on which
we would expect to observe dissociation of OMP monomers from
a cluster is likely to be seconds or greater.

There remain some differences between model and simulation,
e.g. in the exact values of diffusion coefficients. It is also apparent
that in the 24 ms Meso: BtuB_interfaces simulation there is a
slight decrease in the level of confined motion in the last 5–10 ms
of the mesoscale simulation, even though it might be expected
that the level of confined motion should continue to increase over
time. This is due in part to a concentration/dilution effect, as the
proteins do not retain a microscopically homogenous distribution
within the membrane with time, and additionally, as one or two
large clusters form, there is no longer the same level of corralling
of protein clusters by surrounding clusters and the motion
becomes Brownian, albeit much slower Brownian motion (see
also Supplementary Figure 5). However, we do obtain a semi-
quantitative agreement with experiment, both in terms of
diffusion modes and coefficients. An improved quantitative fit
between simulation and experiment would likely require a more
complex (and hence computationally demanding) modelling
strategy which would then make it difficult to approach a match
in experimental and simulated timescales and so prevent a direct
comparison.

In terms of the system sizes for our mesoscale simulations, we
have used ca. 1 µm patches to emulate the lengthscale of the
in vitro measurements. In future studies we could extend our
model to characterise the behaviour proteins on the full surface of
an E. coli cell, by increasing the number of proteins simulated, by
allowing for dissociation of monomers from a cluster, by
incorporating full lipid complexity, and by including appropriate
curvature to the surface.

Biological implications. In simulating a 1 µm patch we provide a
highly simplified model of a portion of the E. coli outer mem-
brane. To what extent do these simulations inform our under-
standing of the dynamic organisation of bacterial OMPs? Much
recent work has focussed on modelling the interactions of LPS in
such membranes44–46. LPS was not included in our simulations,
as we wished to mimic the simpler in vitro system discussed
above. As discussed above, in E. coli outer membranes, estimates
suggest that LPS is present at concentrations approaching those of
OMPs, with the consequence that not all OMPs will be entirely
encircled by LPS28,47. Taken alongside the evidence that LPS self-
associates48 it is therefore likely that the outer membrane of E.
coli is highly heterogeneous in terms of LPS density. Hence,
defining self-association mechanisms of OMPs within a mem-
brane devoid of LPS is likely to reflect interactions within highly
dense OMP populations. This in turn is consistent with previous
results showing that in vivo and in vitro systems show compar-
able behaviour8, and with the results presented in Supplementary
Figure 1 showing that diffusion and clustering of OMPs is
unaffected by the presence or absence of exogenously added LPS.

Thus, the simulations done in the absence of LPS molecules may
reflect the patchy nature of the OM and the presence of OMP-
rich regions. Moreover, simulating OMPs in a lipid mixture
identical to the in vitro system allows for an understanding of the
relationship between molecular interactions and emergent
mesoscale behaviour in the comparatively simple and well-
defined in vitro reconstituted model. Thus, it is demonstrated that
protein–protein interactions alone allow for an explanation the
restricted motion observed in simple in vitro membranes, which
in turn appears to explain the formation of OMP islands.
Nevertheless, a model of the entire E. coli outer membrane will
require incorporation of LPS, as well as, for instance, outer/inner
membrane connections12. Having established the methodology,
we will be able to build on the current mesoscale model.

Discussion
We have developed mesoscale models of membrane protein
dynamics, based on underlying CG–MD simulations, which have
enabled us to probe the dynamic organisation of models of
bacterial outer membranes on length and timescales approaching
those observed experimentally. This enables us to provide a
nanoscale molecular mechanism for the mesoscale in vitro
observations. Our simulations suggest that the confined diffusive
motion of bacterial OMPs observed experimentally8 corresponds
to a mixture of extended protein clusters, an emergent property
on the mesoscale of specific protein–protein interaction interfaces
observed at the nanoscale, and of individual membrane proteins
corralled by these clusters. This agrees well with recent mea-
surement of the glasslike behaviour of crowded membranes42.
Such corralling is likely to be of importance for OMPs newly
inserted by the BAM machinery. More generally, this multiscale
simulation approach will enable exploration of the molecular
origins of clustering of signalling molecules in both bacterial (e.g.
ref. 49) and mammalian (e.g. refs. 50,51) cell membranes.

Methods
In vitro single molecule tracking and co-localisation. Standard microscopy glass
cover slides were functionalized with a high density poly(ethylene)glycol (PEG)
brush with terminal palmitate as reported previously52. Proteoliposomes were
formed from mixing both E. coli polar lipids (Avanti Polar Lipids) and OMPs
solubilized in detergent with protein to lipid ratios previously described8, followed
by vesicle formation by rapid detergent extraction using ß-cyclodextrin52. For
additional controls, LPS was added to the lipid mixture to yield a 17:1 ratio of LPS:
BtuB, as estimated from the fluorescence intensity of BtuB-ColE9-TMR and of
fluorescent LPS-bodipy.

The proteoliposomes were incubated with the functionalized surface for 30 min,
before membrane fusion was induced by 15 min of incubation with soluble PEG8000

in buffer, followed by removal of excess lipid material.
OmpF with a single point mutation (E29C) was site-specifically labelled with

maleimide-Dy647 prior to the PSM formation, while BtuB was stained by 5 min of
incubation with 10 nM of tetramethylrhodamine (or AlexaFluor488) labelled
colicin E9 after formation of the PSM. (TMRColE9 and AF488ColE9; 97% and 98%
of labelling according to absorbance analyses at 280 nm compared to 488 and 545
nm, respectively.) We estimate that less than 10% of BtuB molecules are linked to a
fluorescent ColE9 molecule, based on the initial vs. final intensity comparisons at
different concentrations of labelled ColE9. Simultaneous single molecule total
internal reflection fluorescence microscopy (TIRFM) of different fluorescence
channels was carried out as previously described8,53. After localising single point
emitters in each channel by the multi target tracking algorithm54, an in-house
routine was subjected to identify OMPs co-localising with an upper threshold of
200 nm (~2 pixels).

To estimate the fraction of the membrane surface area occupied by protein we
first measured the average intensity of single BtuB-ColE9-TMR (i.e. one step
photobleaching) when incorporated into a PSM at very low dilution. We then
summed the intensities of pixels within several regions of interest (ROI) for a PSM
incorporating BtuB at high concentration. Knowing the surface of each ROI, the
intensity value corresponding to a single BtuB, and the transversal surface of a BtuB
molecule, we can therefore calculate the surface coverage of BtuB over the PSM,
yielding a figure from 20 to 40% from one experiment/ROI to another, with an
average close to 25%.

TIRFM videos and image sequences from MD simulations were analysed using
custom software (PaTrack)39. The centre of each fluorescence peak was determined
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with sub-pixel resolution by fitting a two-dimensional elliptical Gaussian function.
The two-dimensional trajectories of single molecules were constructed frame-by-
frame, selecting particles that displayed a single bleaching step. Diffusion
coefficient values were determined from a linear fit to the MSD plots between the
first and fourth points according to the equation: MSD(t)= 4Dt.

Coarse-grained molecular dynamics. Simulation set-up: Three pairs of CG–MD
simulations were performed: simulations containing 144 BtuB molecules; simula-
tions containing 72 BtuB and 72 OmpF trimers; and simulations containing 100
OmpF trimers, all of which had dimensions of roughly 140 × 140 × 15 nm3. In each
case, two 20 µs simulations were performed, a first at 313 K and a second at 323 K.
One very large system, a membrane patch of 480 × 480 nm2, containing 1152 ButB
and 1152 OmpF at 323 K, was simulated for 2.5 µs.

Structures of BtuB and OmpF (PDB ID: 2YSU [dx.doi.org/10.2210/pdb2YSU/
pdb] and 2OMF [dx.doi.org/10.2210/pdb2OMF/pdb]) were converted to a CG
representation using the martinize.py script (version 2.4) downloaded from the
MARTINI website (http://md.chem.rug.nl/index.php/tools2/proteins-and-bilayers)
with the MARTINI2.2 force field34,55 and the ElNeDyn elastic network model56.
The BtuB structure, 2YSU, had missing loop residues, which were modelled using
Modeller57.

A grid of randomly rotated proteins was embedded into a pre-equilibrated
phosphatidyl choline (PC) bilayer using g_membed58. For simulations including
BtuB or a mix of BtuB and OmpF, this initial grid contained 6 × 6 proteins; for
simulations containing OmpF the initial grid contained 5 × 5 OmpF trimers, to
take account of the difference in size between BtuB and the OmpF trimer. Using
the exchange lipid protocol59, the lipid composition was swapped from all PC to PE
and PG in a 3:1 ratio, chosen since it mimics the composition of the in vitro
membrane. Water and neutralising counterions were added. After a short (100 ns)
equilibration with proteins restrained, the (6 × 6 or 5 × 5) systems were tessellated,
using the Gromacs tool genconf, to make larger systems containing 12 × 12 or 10 ×
10 proteins, approximately 25,000 lipids and approximately 800,000 waters. A
further very large system was constructed by tessellating the 6 × 6 BtuB–OmpF
mixture to create a system containing 48 × 48 proteins (1152 BtuB monomers and
1152 OmpF trimers).

Simulation parameters: All simulations were performed using GROMACS 4.660

(www.gromacs.org) and the standard MARTINI protocol33,34. Periodic boundary
conditions were applied, and a time step of 20 fs was used in all simulations. The
temperature was maintained at either 313 or 323 K using a Berendsen thermostat61,
and the pressure at 1 bar using a Berendsen barostat. For both the temperature and
pressure, a coupling constant of 4 ps was used for all simulations. The reaction field
coulomb type was used with a switching function from 0.0 to 1.2 nm, and the van
der Waals interactions were cutoff at 1.2 nm with a switching function applied
from 0.9 nm. The LINCS algorithm62 was used to constrain covalent bonds to their
equilibrium values. All systems containing protein were simulated for 20 μs, except
for the very large system (48 × 48 proteins) which was simulated for 2.5 µs.

Mesoscale model. In the mesoscale simulations, each protein is considered as a
single particle. At each time step, proteins are translated and rotated by an amount
sampled from distributions of rotations and translations, which are themselves
obtained from CG–MD simulations. At each step, proteins that are considered to
be interacting (via specific interaction interfaces as determined from CG–MD
simulations), are clustered. Thus protein clusters are formed and develop.

The distributions governing protein motions are dependent on protein cluster
size (defined as the number of proteins in a given cluster) and are taken from the
CG–MD simulations (Fig. 5a, b). Protein coordinates are restricted to two
dimensions, that is, the assumption is that the membrane is flat. In mesoscale
simulations of 24 ms duration containing 4900 proteins (BtuB_interfaces and
No_specific_interfaces; see Table 1) proteins were placed in a box larger than the
size of the initial protein patch, and the edges of the box acted as a hard boundary,
as in a PSM. In terms of the mesoscale model, this means that if the movement of a
protein would cause it to move outside the box area, that move is rejected. Periodic
boundary conditions were implemented for mesoscale simulations: BtuB_1ms and
Insert_25 in order to mimic the centre of a protein island.

Starting configuration: In all mesoscale simulations, a starting conformation
consistent with the CG–MD simulations was conserved. Thus, proteins were
positioned on a square grid, at a distance of 10 nm from horizontal and vertical
neighbours. In simulations with 4900 proteins, the initial protein patch
encompassing 700 nm × 700 nm was placed in the centre of a 1 µm2 box. In
simulations with 2500 BtuB proteins, the protein grid covered the simulation box,
such that the box had dimensions 500 nm × 500 nm.

Protein–protein interactions: Protein–protein interactions in the mesoscale
model are controlled by three parameters. The first is the protein diameter,
modelled for BtuB as 5 nm; proteins within 5 nm of one another are considered as
possibly interacting. The second protein–protein interaction parameter is an
overlap margin value, which defines the minimum distance between any two
proteins. The third is the size and location of so-called ‘sticky patches’, which were
defined according to the CG protein interaction density (Fig. 5c).

Thus proteins within a cutoff of 5 nm (and above a cutoff distance of 4.9 nm) of
one another are considered to be interacting only if facing each other via ‘sticky
patches’, that is, such that arctan((y2− y1), (x2− x1))− θ1 and arctan((y2− y1), (x2

− x1))+ π− θ2 lie in a specific range, where xi, yi and θi are the x- and y-
coordinates and orientation of the i-th protein. The angle ranges used for BtuB are
15–80° and 180–230°. These angles were chosen as shown in Fig. 5c and
Supplementary Figures 9, 10. The ‘sticky patches’ as described above were used in
all mesoscale simulations except the ‘No_specific_interfaces’ simulation (see
Table 1), in which proteins within the cutoff of 5 nm (and above a cutoff distance
of 4.9 nm) were considered to be interacting regardless of their relative orientation.

Interacting proteins form clusters, which are characterised by the proteins
within a single cluster moving as one, that is, all proteins in a cluster are translated
by the same amount and are rotated about the protein cluster centre of mass by the
same angle. Proteins within 5 nm of one another but not interacting via their
protein–protein interfaces continue to move independently of one another, but are
sterically hindered—i.e. no pair of proteins can move within 98% of the 5 nm cutoff
(i.e. 4.9 nm) of one another.

Update step: The system information that is stored between each update step is,
for each protein, the x-coordinate, the y-coordinate, and θ, the orientation of each
particle. Also stored is a list of clusters, containing the ID of each protein in a given
cluster.

Each cluster is assigned a rotation and an x- and y-translation (see subsection
below). Each cluster is then rotated about its centre of mass and translated.
Pairwise distances are calculated. If any proteins are found to be ‘clashing’ (that is,
the distance between proteins is less than 4.9 nm) then the move of the cluster that
they belong to is rejected. If this move itself causes a clash with a further cluster, the
third cluster is also moved back to its original position, and so on, until there are no
clashes. Given that the translation and rotation steps are small, this does not affect
many clusters.

Finally, after each cluster has been translated and rotated, all protein pairwise
distances and orientations are used to determine whether proteins are interacting
and therefore considered to be ‘clustered’.

Rotation and translation distributions: Rotations are picked from a Gaussian
distribution of rotations, with mean zero and standard deviation as specified by
CG–MD simulations. The standard deviation depends on the protein cluster size
(Fig. 5a).

Translations are picked from a Gaussian distribution of translations, with mean
0 and standard deviation as defined from the CG–MD simulations (Fig. 5b).
Translation in the x-direction and translation in y-direction are sampled separately,
thus generating a direction and a magnitude for translation.

To extrapolate values for translation and rotation to clusters containing more
than 20 proteins the standard deviation of the rotations and one-dimensional
translation vs. cluster size data was fitted using a power law function, y= Ax−b,
where x is the cluster size and y is the rotation or translation as appropriate.
Residual values for the fitting are shown in Supplementary Table 1 and show that
the power law fitting was appropriate.

The mesoscale simulations were performed using scripts written in Python,
which made use of the NumPy63, MDAnalysis64 and NetworkX65 Python libraries.

Analysis of simulation data. Analysis of CG–MD clustering and protein–protein
interactions: Clustering analysis was performed using in-house Python scripts,
making use of the NumPy, MDAnalysis and NetworkX Python libraries. In the
clustering algorithm, proteins were considered to be interacting when the centroids
were within 6 nm of one another (for BtuB–BtuB pairs), 8.8 nm (for pairs of OmpF
trimes) and 7.3 nm (for a BtuB–OmpF pair). Protein–protein interactions were
identified using in-house clustering scripts, again making use of the NumPy and
MDAnalysis modules. Residues of neighbouring proteins were considered to be
interacting when residue centroids were within 0.7 nm of one another.

Analysis of CG–MD and mesoscale simulations using PaTrack: In order to
analyse the simulations using the single molecule tracking analysis package,
PaTrack39, CG–MD and mesoscale simulations were first converted to videos with
an in-house Python script that made use of the libraries NumPy and SciPy. The
videos were converted to spe format using ImageJ66 (https://imagej.nih.gov/ij/
index.html) and then analysed as for conventional single molecular tracking data
using PaTrack.

Visualisation: Systems were visualised using VMD67 and graphs plotted using
matplotlib68 (https://matplotlib.org).

Data availability. Data supporting the findings of this manuscript are available
from the corresponding authors upon reasonable request. The code used to run
mesoscale simulations can be found at https://github.com/annaduncan/
meso_model.
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