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Precise temporal regulation of alternative splicing
during neural development
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Alternative splicing (AS) is one crucial step of gene expression that must be tightly regulated
during neurodevelopment. However, the precise timing of developmental splicing switches
and the underlying regulatory mechanisms are poorly understood. Here we systematically
analyze the temporal regulation of AS in a large number of transcriptome profiles of devel-
oping mouse cortices, in vivo purified neuronal subtypes, and neurons differentiated in vitro.
Our analysis reveals early-switch and late-switch exons in genes with distinct functions, and
these switches accurately define neuronal maturation stages. Integrative modeling suggests
that these switches are under direct and combinatorial regulation by distinct sets of neuronal
RNA-binding proteins including Nova, Rbfox, Mbnl, and Ptbp. Surprisingly, various neuronal
subtypes in the sensory systems lack Nova and/or Rbfox expression. These neurons retain
the “immature” splicing program in early-switch exons, affecting numerous synaptic genes.
These results provide new insights into the organization and regulation of the neurodeve-
lopmental transcriptome.
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uring development of the mammalian nervous system,

neurons mature through a prolonged and sophisticated

process that involves dramatic morphological and func-
tional changes in individual neurons, as well as formation of
synaptic connections between neurons to build intricate neural
circuits' 3. These changes must occur with high accuracy®, which,
at the molecular level, is achieved through tight temporal control
of gene expression at multiple steps. To date, extensive efforts
have been made to dissect the role of transcriptional regulation
controlling specification of neuronal subtype identities during
early neuronal development>®, However, regulatory mechanisms
that govern the precise timing of various molecular and cellular
events required for neuronal development and maturation remain
poorly understood.

Alternative splicing (AS) is an essential mechanism that allows
the generation of multiple transcripts and protein variants, or
isoforms, from a single gene’. This mechanism is increasingly
recognized as a major source of molecular diversity, especially in
the central nervous system (CNS)3. Genome-wide transcriptomic
studies based on deep mRNA sequencing (RNA-seq) demon-
strated that AS is ubiquitous in mammals, including many
alternative exons with brain-specific or neuron-specific splicing
patterns”™'!. The neuron-specific splicing program must be
established at specific stages of the neuronal differentiation and
maturation process. Indeed, many alternative exons show dra-
matic changes during neuronal development, as revealed by
several recent studies of developing cortices in primates'? and
rodents'?, different laminar cortical layers'4, and specific neuro-
nal subtypes purified in situ!® or differentiated in vitro from
embryonic stem cells (ESCs)'®. While the functional significance
for the majority of these developmentally regulated alternative
exons has yet to be demonstrated, decades of study have found
multiple examples in which individual alternative exons play
critical roles in various aspects of neuronal development, such as
neuronal migration, axon guidance, and synapse formation!”.
Therefore, elucidating the precise timing of developmental spli-
cing switches and their underlying regulatory mechanisms is a
key step toward understanding the molecular program governing
neurodevelopment.

Cell-type-specific or developmental-stage-specific AS events
are largely controlled by recruiting RNA-binding proteins (RBPs)
that recognize specific regulatory sequences embedded in the pre-
mRNA transcripts. For instance, RBPs specifically expressed or
enriched in neurons, such as Nova, Rbfox, Ptbp2, nElavl, nSR100,
and Mbnl2 have been demonstrated to regulate AS of numerous
neuronal transcripts (reviewed in ref. ¥). Technological advances
have also made it possible to define the comprehensive target
networks of individual RBPs with high accuracy by integrating
global splicing profiles upon depletion of each RBP and genome-
wide maps of in vivo, direct protein-RNA interactions, as we
demonstrated in our previous studies!®!?. Importantly, such
global and unbiased analyses allowed us to demonstrate that
Rbfox proteins in general promote the adult splicing pattern in
the developing cortex'8. Other groups also found that Mbnl2 and
Ptbp2 promote and antagonize the adult splicing pattern,
respectively?0~22, However, how these and other RBPs contribute
to the precise timing of developmental splicing switches has not
been systematically investigated.

The limited sampling resolution, incomplete coverage of
developmental stages, and the scope of analysis have impeded
previous studies to uncover the precise timing of developmental
splicing switches, the key regulatory signals, and the link to
developmental cellular processes. To address these issues, here we
systematically investigate the organization of the developmental
splicing profiles in a large panel of developing mouse cortical
tissues and different subtypes of neurons isolated in situ, as well
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as neurons differentiated in vitro from ESCs. In combination with
integrative modeling of RNA-regulatory networks®>?4, this
approach allows us to dissect the underlying regulatory
mechanisms that control the splicing program at specific neuro-
nal maturation stages and diverse neuronal subtypes in the cen-
tral and peripheral nervous system.

Results

A modular neurodevelopmental splicing program. To deter-
mine the precise timing of developmental splicing changes, we
profiled the transcriptome of mouse cortices by RNA-seq at nine
time points: embryonic day 14.5 (E14.5), E16.5, postnatal day 4
(P4), P7, P17, P30, 4 months, and 21 months (Supplementary
Fig. 1a, b and Supplementary Dataset 1). These time points were
chosen carefully to best capture the dynamics of developmental
splicing changes based on several individual alternative exons
characterized in detail in previous studies (Supplementary
Fig. 1c-e, Supplementary Datasets 2 and 3, and Supplementary
Discussion). Using stringent criteria (changes in percent spliced
in (JAY]) 20.2 and false discovery rate (FDR) <0.05) applied to
both known and novel AS events'%??, we identified over 20,000
events representing 32% of brain-expressing genes with sig-
nificant changes between at least two stages, suggesting pre-
valence of developmental splicing regulation at an unprecedented
scale (Supplementary Dataset 4).

For detailed analysis, we focused on 2883 non-redundant
cassette exons under developmental regulation (1909 known and
974 novel) that could be accurately quantified in 27 of the nine
time points (Fig. 1la). Compared to cassette exons overall,
developmentally regulated cassette exons are much more likely
to preserve the reading frame (68.7% vs. 43.2%) and to have a
conserved AS pattern detected in the human brain transcriptome
(63.4% vs. 29.2%). We recently developed a method to identify
exons under strong purifying selection pressure based on cross-
species sequence conservation in the alternative exons and
flanking intronic regions'®. A much higher fraction of devel-
opmentally regulated exons is under strong purifying selection
pressure (31% vs. 3.9%; Fig. 1b). For example, our analysis
identified a highly conserved 12-nucleotide (nt) microexon in the
Kdm1la gene encoding LSD1 (histone lysine specific demethylase
1) (Fig. 1c); this exon’s inclusion level peaks between postnatal
day 0 (PO) and P7, a temporal pattern consistent with its
previously reported role in modulating neurite outgrowth by
altering the availability of a phosphorylation site>*2°.

To understand the timing of splicing changes on a global scale,
we performed weighted gene co-expression network analysis
(WGCNA)?® on the developmentally regulated cassette exons.
This analysis revealed four modules with distinct temporal
patterns (Fig. 1d and Supplementary Dataset 5). Among them,
exons in module M2 show early splicing switches around birth
and exons in M1 show late splicing switches between P4 and P15.
These two modules, both characterized by monotonic splicing
changes, account for 74% of developmentally regulated alter-
native exons, indicating that these are the predominant modes of
regulation. The other two modules, M3 and M4, show more
complex, non-monotonic changes, including abrupt splicing
changes in M3 that occur around birth. We confirmed that this
modular organization is highly reproducible using independent
datasets (Supplementary Fig. 2 and Fig. 2 below). We also
identified a subset of 1266 (44%) exons that are most correlated
with the module eigenvectors, and thus the most representative of
each module, as “core members” (Fig. 1d and Supplementary
Dataset 5).

Given the importance of precise timing for neural develop-
ment, we tested whether the timing of splicing switches reflects
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specific gene function. To this end, we performed a “sliding
window” gene ontology (GO) analysis (see Methods). This
analysis revealed three major clusters of GO terms associated with
different developmental times of splicing switches (Fig. le and
Supplementary Dataset 6). Early-switch exons are enriched in
genes related to ion channels, transmembrane transport, and
development of synaptic transmission, which are fundamental for
establishing neuronal identity. In contrast, late-switch exons are
enriched in genes involved in cytoskeletal remodeling, neuron
projection, and synaptic formation, which are critical for wiring

of neural circuits. Exons that switch in between (E16.5-P6) are
present in genes related to membrane depolarization and
formation of the axon initial segment, hallmarks of the early
stages of neuronal maturation. Interestingly, genes encoding
proteins that localize to different subcellular compartments, such
as proteins that are part of the presynaptic machinery or
postsynaptic density (PSD), also show splicing switches in distinct
time windows (Supplementary Fig. 3). Furthermore, the func-
tional distinction of genes with early and late splicing switches is
also evident from significant GO terms enriched in each module,
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confirming the robustness of the observations (Supplementary
Dataset 7). These data suggest a clear link between the timing of
regulated splicing switches and cellular events that occur during
neural development.

The splicing-regulatory program is pan-neuronal in the CNS.
Although cortex tissues represent a mixture of different cell types,
the developmental splicing changes we observed are not simply
due to changes in cellular composition (Supglementary Figure 4a,
b and Supplementary Discussion; see ref. 27 for a similar con-
clusion from gene expression analysis). Nevertheless, an impor-
tant question is how well the modular organization of
developmental splicing switches discovered in cortical tissues
captures dynamics in specific neuronal subtypes or cell popula-
tions. To address this question, we analyzed multiple datasets that
profiled the developmental transcriptomes of specific subtypes of
neurons isolated in situ from mouse CNS tissues or differentiated
in vitro from ESCs. We found consistent early splicing switches
(exons in M2-M4) in purified cortical pyramidal neurons (cPNs)
between E15.5 and P1 (ref. 1°). Similarly, spinal motor neurons
show early splicing switches in M2 exons between E12.5 and P1,
as well as late switches in M1 exons between P1 and adults?$~3C,
Importantly, early splicing switches and, to a certain degree, late
splicing switches were also recapitulated in differentiation of
mouse ESCs to glutamatergic neurons'® (Fig. 2a). To be more
quantitative, we counted the number of exons with significant
developmental splicing changes at different time points in each
subtype of neurons by pairwise comparison (|JA¥|>0.2 and
FDR £0.05). This analysis confirmed a large number of early-
switch exons (M2) showing differential splicing in the cPNs and
ESC-derived glutamatergic neurons, and changes of both M1 and
M2 exons in motor neurons, depending on the compared time
points (Fig. 2b). Importantly, among M1 and M2 core module
exons also showing monotonic splicing changes in each subtype
of neurons, 92-94% have concordant changes in the same
direction between the cortex tissue and the specific subtype of
neuron. Taken together, our analysis revealed that in vivo and
in vitro maturation of neuronal subtypes in the CNS share a
dynamic developmental splicing program.

Maturation stage prediction of different subtypes of neurons.
Using the cortex tissue samples as a reference, we developed a
computational method and software tool named Splicescope to
model the splicing profile of any neuronal sample and assign it to
one of six maturation stages (stages 1-6) corresponding to the
cortex reference at E14.5, E16.5, PO, P4, P7, and P15 or older,
respectively. In combination with two-dimensional projection,
such analysis provides an effective summary and visualization of
the developmental trajectory of splicing profiles.

We initially applied Splicescope to the splicing profiles of 92
distinct neuronal samples (merged from 277 biological or
technical replicates from 28 studies; Fig. 3 and Supplementary
Dataset 1). These include 41 tissue samples derived from the
developing CNS (e.g., different brain regions, different cortical
laminae, and the spinal cord), 20 samples of specific subtypes of
neurons purified from mice at different ages, and 31 samples
representing different neuronal subtypes or their progenitors
differentiated from stem cells. Among the 56 tissue or neuronal
subtype samples with known ages, Splicescope assigned the exact
stage for 45 samples (80%). An additional nine samples (16%)
were assigned to the neighboring stage and were also considered
correct predictions because of the ambiguity in determining the
true stage when the age is between those of two reference samples.
Therefore, Splicescope achieved an overall accuracy of up to 96%
in predicting neuronal maturation stages (Supplementary Data-
set 8). Among them, cPNs isolated from older mice are predicted
to have later maturation stages as one would expect (Fig. 3).
Several misclassifications can be explained by heterogeneity of
different cell subpopulations due to neuronal migration and
maturation (e.g., different germinal zones of embryonic brains;
Supplementary Fig. 5a, b) or unusual characteristics of certain
neuronal subtypes (e.g., spinal motor neurons, which mature
earlier than cortical neurons®'; Fig. 3).

When applying Splicescope to in vitro differentiated neurons,
we found samples at later time points of differentiation were
predicted to be more mature than samples at earlier time points,
as expected (Fig. 3). Nevertheless, we note that the ESC-derived
neurons, even after extended culture, only reach a predicted
maturation stage of 4 or 5, which correspond to P4 and P7 in the
cortex, respectively. This is consistent with the observed partial
splicing changes of late-switch exons (Fig. 2 right panel), and
reflects the technical challenge of obtaining fully mature neurons
through in vitro differentiation. This analysis confirmed that the
modular organization of developmental splicing profiles repre-
sents a “pan-neuronal” program that reflects the developmental
stage of a variety of neuronal subtypes and origins, and possibly
underlies their maturation process.

Distinct RBPs regulate early and late splicing switches. We next
sought to elucidate the regulatory mechanisms that control the
early and late splicing switches we observed in the developing
CNS. Our initial analysis was focused on four families of tissue-
specific or neuron-specific RBPs: Rbfox, Nova, Mbnl, and Ptbp.
These RBPs have an established role in regulating tissue-specific or
development-specific splicing'®-22, but the temporal specificity of
such regulation and their contribution to neuronal maturation
stages have not been determined. Our choice to study these RBPs
is motivated by their dynamic expression changes during neural

Fig. 1 Modular organization of dynamic splicing switches during cortex development. a The number of non-redundant cassette exons with differential
splicing (JAW| > 0.2, Benjamini FDR < 0.05) in each pairwise comparison of developmental stages. The numbers of exons with increased inclusion at later
stages are shown above the diagonal (top right), and exons with decreased inclusion at later stages are shown below the diagonal (bottom left). b Mouse
cassette exons with developmental changes are highly conserved in human, as measured by the percentage of exons with conserved splicing in human
(left) or the percentage of exons under strong evolutionary selection pressure (right). € An example of developmental splicing regulation in exon 8a of the
KdmTa gene. Inclusion of this microexon peaks between postnatal days PO-P7. d Four modules of developmentally regulated exons identified by WGCNA
analysis with distinct temporal patterns during cortex development. A non-redundant set of 2883 known and novel cassette exons was included for this
analysis, and their mean-substracted inclusion levels across developmental stages are shown in the heatmap. Exons in each module were ranked based on
their correlation with the eigenvector of the module, and those with the strongest correlation are defined as core members (black bars on the right). Exons
in each module are further divided into two groups (e.g., M1+ and M1—) depending on positive or negative correlation with the eigenvector. e Enrichment
of gene ontology (GO) terms in exons showing splicing switches with specific timing. The timing of developmental splicing switches is parameterized by
sigmoidal curve fitting, and exons are ranked based on the timing. Exons in each sliding window (with a window size of 300 exons) were compared to all
cassette exons with sufficient read coverage in the brain to identify significant GO terms. Only GO terms significant in at least one sliding window are
shown (Benjamini FDR <0.05). Broad categories and top GO terms in each category are highlighted on the right

4 | (2018)9:2189 | DOI: 10.1038/541467-018-04559-0 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04559-0

ARTICLE

a In vivo In vivo ESC-derived b
cPN MN glutamatergic neurons
ESC-derived
0w 0 W 0 - © < © =~ © In vivo In vivo glutamatergic
Corexdev. © © & _ o _ 3 2328353388 cPN neurons
—_ W W wa wa < [= = = = e s s N a)
B |
Rel. inclusion: Number of exons:
| R | | - Il m e -
-1 0 1 0 100 0 100 0 200

Fig. 2 The modular organization of the developmental splicing program is pan-neuronal. a The splicing profile of module exons in different neuronal
subtypes. Exons are shown in the same order as in the cortex reference. DIV: days in vitro. For differentiation of glutamatergic neurons from ESCs, cells on
DIV 0 are enriched in radial glia committed to the neuronal fate, which becomes post-mitotic on DIV 1. b Quantification of developmental splicing switches
among module exons in different neuronal subtypes. In each dataset, M1+/M1— and M2+/M2— core module exons also showing differential splicing (|
AW| > 0.2, Benjamini FDR <0.05) in each pairwise comparison were counted. The number of exons showing increased inclusion at later time points is
shown above the diagonal (top right), and the numbers of exons showing decreased inclusion is shown below the diagonal (bottom left)

development (Fig. 4a). Furthermore, our analysis suggests that
binding motifs of these RBPs are enriched in flanking intronic
sequences of the core module exons in M1 and M2, which is
evident from de novo motif analysis (Supplementary Fig. 6), as
well as analysis of established consensus sequences recognized by
each RBP (Supplementary Fig. 7).

To investigate the contribution of the four RBP families in
establishing the embryonic or mature splicing program, we
defined the downstream splicing-regulatory networks by predict-
ing the target exons they directly regulate using our previously
established integrative modeling approach!®!° (Fig. 4b). This
approach achieved high specificity and sensitivity (conservatively
estimated to be 95-98% and 57-78%, respectively) by integrating
data that measure altered splicing upon RBP depletion, direct
protein-RNA interaction sites and additional genomic informa-
tion (Supplementary Fig. 8, Supplementary Datasets 9 and 10).
We found that target exons directly regulated by the four RBP
families are disproportionally enriched in specific modules of
developmentally regulated exons, especially among core members
(Fig. 4¢); overall, 36% of module exons (or 50% of core members)
are regulated by at least one of these RBPs, compared to 9% of all
known cassette exons (p<2.2x 1071¢ in both cases; hypergeo-
metric test). Among them, ~12% of module exons are regulated
by more than one of the four RBP families, including 10 of the 11
exons regulated by all four families.

To demonstrate how these splicing-regulatory networks can be
used to elucidate mechanisms underlying developmental splicing
switches, we first focused on GABA receptor gamma 2 subunit
(Gabrg2) exon 9, whose inclusion was previously reported to be
altered in schizophrenic brains*’. In developing cortex, inclusion
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of the exon increases gradually between P4 and P30 (Fig. 4d). We
previously showed that this exon is activated synergistically by
Nova and Rbfox!. Our new data suggest that the same exon is
also repressed by Ptbp2 and activated by Mbnl1/2, and depletion
of the RBPs individually resulted in dramatic splicing changes
(Fig. 4e). The two Ptbp-binding sites consisting of clustered
UCUY elements we predicted were previously validated to be
important for Ptbp-dependent splicing using in vitro binding and
splicing assays®. Intriguingly, simultaneous overexpression of
Nova, Rbfox, and Mbnl in 293T cells, which have undetectable or
low endogenous expression of these RBPs, resulted in dramati-
cally increased inclusion of the exon in a splicing reporter, and
the effect is much stronger than the activation by each individual
or pair of proteins. This synergistic activation is due to direct
regulation, as it was abrogated by mutation of the newly identified
Mbnl-binding site, which is located four nucleotides downstream
of the Rbfox-binding site (Fig. 4f).

On a global scale, we found that Mbnl, Rbfox, and Nova
promote the mature splicing pattern of developmentally regulated
exons in the vast majority (80-96%) of cases, while Ptbp mostly
suppresses the mature splicing pattern (80% of cases), confirming
and extending previous studies'®?*2! (Fig. 4g). Importantly,
targets of these RBPs show splicing switches at different times.
Nova and Ptbp2 targets tend to switch early (~P0), Mbnl targets
predominantly switch late (~P7 or older), and Rbfox targets
switch in between (Fig. 4h). In addition, activation or repression
of exon inclusion by these RBPs is predictive of an exon’s module
and direction of developmental splicing changes (Fig. 4i and
Supplementary Fig. 9). These findings agree well with the
expression pattern of these RBPs.
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Fig. 3 Prediction of neuronal maturation stages based on splicing profiles using Splicescope. Principal component analysis (PCA) of splicing profiles in the
cortex reference was used to project high-dimensional data into a 2D space for visualization. Different types of samples are indicated by different marker
shapes with border color representing the predicted maturation stage using a regression model and filled color representing the true stage (when

available). The reference cortex samples are shown in large filled circles with color representing the developmental stage. Highlighted are spinal motor
neurons isolated from E12.5, P1, and adult mice, ESC-differentiated glutamatergic neurons at different days, and purified cPNs between E15.5 and P1. DIV:

days in vitro

Based on these observations, we built a variant of Splicescope
which allows prediction of the neuronal maturation stage using
only the exons directly regulated by each of the four RBP families.
We applied either the full Splicescope model or the RBP-specific
Splicescope model to samples with RBP depletion and their
controls to assess the contribution of each RBP to specific stages
of neuronal maturation. Analysis of RNA-seq datasets upon RBP
depletion using the full Splicescope model shows clear shifts along
the maturation trajectory based on the overall splicing profile
(Fig. 4j), suggesting that these RBPs have global impacts on
neuronal maturation. Importantly, the shift is even more
pronounced when we used the RBP-specific Splicescope models
(Table 1). For example, depletion of Mbnll/2 in adult mouse
brain results in a shift from stage 6 to stage 5 (corresponding to
P7) based on the overall splicing profile, but to stage 4
(corresponding to P4) when only target exons directly regulated
by Mbnl were used for analysis. Similarly, although Nova
depletion results in a more embryonic splicing profile overall,
the magnitude is not large enough to change the predicted
maturation stage when using the full model; in contrast, the
maturation stage shifted from 3 (corresponding to P0) to 1
(corresponding to E14.5) when only direct Nova targets were
used for analysis. In combination with the specific enrichment of
RBP targets in early-switch or late-switch exons, these data
suggest an instrumental role for Ptbp, Nova, and Rbfox in
regulating early splicing switches and for Mbnl in regulating late
splicing switches during neuronal maturation.

A combinatorial developmental splicing code. To obtain opti-
mized prediction of the timing of developmental splicing changes
based on regulatory mechanisms, we developed random forest-
based classification models®* to predict exons with early and late

6 | (2018)9:2189

splicing switches in modules M1 and M2 from all cassette exons.
This analysis allowed us to compare and integrate the contribu-
tion of a large number of features related to splicing regulation
including general splicing signals, regulation by the four RBP
families that we focused on, and many additional RBPs (Sup-
plementary Datasets 11 and 12). In addition, such models con-
sider both the additive contribution of individual factors and their
combinatorial effects.

The full models achieved high accuracy in prediction (area
under receiver operating characteristic (ROC) curve or AUC
between 0.87 and 0.92; Fig. 5a, the “All features” models and
Supplementary Fig. 10a, b). The models are less predictive when
only sequence-based features were used (i.e., RNA-seq and CLIP
data were excluded; the “Seq_all” models). Notably, the models
constructed only using features related to the four RBP families
(RBP4) we focused on achieved similar performance to the full
models, suggesting limited extra information provided by motif
sites of many additional RBPs. These results strongly suggest that
the four RBP families are key players of the developmental
splicing program to specify the precise timing, although lack of
significant contribution from additional RBPs to the model
performance could reflect the redundancy of these features for
prediction. When we ranked sequence features based on their
importance for prediction, the RBP4 motif sites are indeed among
the top. Nevertheless, we also identified additional motifs,
including U-rich and UG-rich elements, which resemble binding
sites of Elavl, Celf, and nSR100 RBP families (Fig. 5b and
Supplementary Dataset 12). Indeed, depletion of Elavi3/4 (ref. *°)
or nSR100 (ref. 3°) led to specific impairment in the splicing
switches of M2 exons (Supplementary Fig. 11), suggesting that
they are also part of the early splicing switch regulatory program.
Detailed analysis of their contribution was not pursued in this
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study due to the limited number of datasets currently available for
integrative modeling.

We also note that although our models were trained on exons
with monotonic splicing changes and each model predicts only a
single splicing switch, combinations of the models are predictive
of more complex splicing patterns such as those in module M4.
For example, M4+ exons are predicted to exhibit both early-
switch on (by the M2+ model) and late-switch off (by the M1—

model), while the opposite is true for M4— exons (Fig. 5¢; p <
0.002, Fisher’s exact test). This observation suggests that these
non-monotonic splicing changes result from independent
regulatory events with the opposite direction.

A unique splicing-regulatory program in sensory systems.
When we examined the splicing profiles of various other neuronal
subtypes, we very unexpectedly found that many alternative
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exons in olfactory sensory neurons (OSNs) and dorsal root
ganglion (DRG) neurons isolated from adult mice showed an
immature-like splicing pattern. OSNs and DRG sensory neurons
are both part of the peripheral nervous system. Intrigued by this
observation, we investigated whether sensory neurons in general
have a distinct developmental splicing program and the func-
tional implication. For this purpose, we examined the splicing
profiles of nine in vivo purified samples representing seven dif-
ferent sensory neuronal subtypes. These include OSNs, rod and
cone photoreceptors, somatic sensory ganglion neurons (from
DRG and trigeminal ganglia), and visceral sensory ganglion
neurons (from jugular and nodose ganglia). We also included
three types of sensory receptor cells, isolated from the gut and
taste buds. These are non-neuronal cells, but nevertheless possess
certain properties resembling sensory neurons, such as expression
of voltage-gated ion channels and electrical excitability (Supple-
mentary Datasets 1 and 8). For comparison, we used four types of
CNS neurons (motor neuron, dopaminergic neuron, Purkinje
neuron, and cerebellar granule neurons) isolated from adult mice.
When Splicescope analysis was applied to determine the
maturation stage of each of these samples, we observed four
distinct clusters of maturation stages reflecting four categories of
cell types-CNS neurons, sensory neurons, sensory ganglion
neurons, and non-neuronal sensory receptors—despite the fact
that all these samples represent mature cells or neurons derived
from adult mice (Fig. 6a). All CNS neurons were correctly
assigned to the maturation stage 6. In contrast, the sensory
receptor and sensory neuron samples were predicted to be very
immature. For example, although the OSNs were isolated using a
genetic reporter for the olfactory marker protein (a marker for
mature OSNs), Splicescope analysis predicted that OSNs were in
stage 1 (very immature). The somatic or visceral sensory ganglion
neurons also deviate substantially from the adult cortex samples
and the mature CNS neurons, although in this case they were still
predicted as stage 6 of maturity.

Given the pronounced difference of the maturation trajectory
for the sensory and CNS cell types, we performed more detailed
comparison of the sensory neuron and receptor splicing profiles.
Strikingly, the sensory receptors, sensory neurons, and sensory
ganglion neurons (collectively denoted sensory cells) differ most
prominently from mature CNS neurons in that their early-switch
exons in module M2 retain the very immature splicing pattern
(Fig. 6b and Supplementary Fig. 12a). In contrast, all cell types
show more similar adult splicing patterns among the late-switch
exons in module M1 (Fig. 6b). Quantitatively, when comparing
the differentially spliced M2 exons between sensory cells and
mature CNS neurons, 88-98% show a more immature splicing
pattern in sensory cells (Supplementary Fig. 12a, b). In contrast,
when comparing differentially spliced M1 exons, sensory cells
showed a much smaller bias (65-81%) towards the immature

splicing pattern, and the magnitude of the differences is also
much less pronounced. To obtain functional insights into this
distinct molecular program, we performed GO analysis using
exons differentially spliced between sensory cells and CNS
neurons. This analysis revealed significant enrichment of genes
involved in synapse, cell projection and neurite outgrowth, and
cell-cell junction (Fig. 6¢). Thus, sensory neurons and receptors
cells retain an immature splicing program specifically in early-
switch exons, but show a relatively mature splicing pattern for
late-switch exons. This “chimeric pattern” is distinct from the
CNS neuronal splicing profiles at either embryonic or mature
stages.

We asked whether the distinct splicing profiles in sensory
neuronal subtypes can be explained by the regulatory programs of
the neuronal Rbfox, Nova, Mbnl, and Ptpb RBP families.
Intriguingly, although these RBPs are expressed abundantly in
most CNS neuronal subtypes, we found no expression of Rbfox1/
3 or Noval/2 (and only a low level of Rbfox2) in OSNs or in rod
and cone photoreceptors, and no or very low expression of
Noval/2 in somatic or visceral sensory ganglion neurons (Fig. 6d
and Supplementary Fig. 13a, b). In contrast, all these cell types
abundantly express Mbnl and Ptbp family members at a level
comparable to or higher than the CNS neuronal subtypes. To
confirm these observations, we examined OSNs by performing
immunofluorescence analysis of olfactory epithelium dissected
from adult mice using antibodies recognizing each Rbfox family
member. Indeed, mature OSNs (labeled by Calmegin) lack
immunoreactivity with the Rbfox1/3 antibodies while moderate
expression of Rbfox2 is detectable (Fig. 6e), supporting the RNA-
seq data in single cells at the protein level. Furthermore, we
confirmed the low expression of Noval on the basis of the Allen
Brain Atlas in situ hybridization data in P4 DRG (Supplementary
Fig. 13¢; data on Nova2 expression is not available). On the other
hand, no global deviation was observed in expression of the 372
assayed RBPs when comparing the various sensory cell types to
mature CNS neurons or adult cortical tissues (Supplementary
Fig. 13a, b and Supplementary Dataset 13).

Given the distinct RBP expression pattern in different neuronal
subtypes, we predicted their maturation stages when restricting
the analysis to only the splicing profile of target exons regulated
by each RBP family. For OSNs and photoreceptors, using only the
target exons of Ptbp, Nova, or Rbfox individually predicted very
immature stages (stage 1 or 2), while using Mbnl targets predicted
maturation stage 5. For somatic and visceral sensory ganglion
neurons, using Nova targets only predicted a maturation stage of
1, while using the targets of other RBPs including Rbfox proteins
(which are abundantly expressed in DRG) all predicted a
maturation stage 5 or 6 (Fig. 6f and Supplementary Dataset 8).
These data suggest a model whereby OSNs and photoreceptors
have insufficient expression of “pan-neuronal” RBPs (Nova and/

Fig. 4 A set of tissue-specific or neuron-specific RBPs regulate the timing of developmental splicing switches. a Dynamic expression of four families of
tissue-specific RBPs, including Ptbp1/2, Noval/2, Rbfox1-3, and Mbnl1/2. RPKM values are normalized based on the maximum expression value in each
family separately and shown in color scale. b Integrative modeling to define the target alternative exons regulated by each RBP family. The Venn diagram
summarizes target exons regulated by each RBP family. Note 11 exons regulated by all four RBP families and an additional 58 exons regulated by three RBP
families. ¢ Regulation of WGCNA module exons by each of the four RBP families. Activation and repression of an exon by each RBP resulting from
integrative modeling analysis are indicated in red and blue, respectively. The total number of regulators for each exon is shown in the bar on the right in
gray scale (the darker, the more regulators). d-f Gabrg2 exon 9 as an example in module M1 under combinatorial regulation by all four RBP families. The
exon inclusion level in developing cotex is shown in d and changes upon depletion of Ptbp2 (PO) and Mbnl1/2 (adult) are shown in e. Inclusion of the exon
in wild type (WT) and mutant (MUT) splicing reporters, in combination with overexpression of different RBPs, is shown in (f). Rbfox-binding and Mbnl-
binding site sequences are shaded. RBP expression and exon inclusion were measured by immunoblot and RT-PCR, respectively. g RBPs either antagonize
(Ptbp2) or facilitate (Nova, Rbfox, and Mbnl) the mature splicing pattern through activation or repression of exon inclusion. h Time of the maximal splicing
switch for target exons regulated by specific RBPs (*p < 0.05, **p < 0.001, t test). Only exons showing a more mature (for Ptbp) or embryonic (for Nova,
Rbfox, and Mbnl) pattern upon RBP depletion were included for this anlaysis. i Prediction performance of exon module membership based on regulation by
each RBP family. The performance is measured by partial area under curve (pAUC) of the receiver operating characteristic (ROC) plot with a cutoff at
false-positive rate (FPR) <0.1. j Changes of predicted maturation stages of mouse brain tissues upon depletion of RBPs
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or Rbfox) to promote the mature splicing pattern of early-switch
exons but have an overwhelming abundance of suppressors
(Ptbp), which together results in retention of an immature
splicing program. Somatic and visceral sensory ganglion neurons
show an intermediate state for early-switch exons because of
expression of Rbfox but not Nova. On the other hand, the
abundant expression of Mbnl is largely sufficient to promote the
mature splicing pattern of late-switch exons in all neuronal
subtypes we examined (Fig. 6g).

To validate this model, we used rat embryonic primary DRG
neuronal culture to test whether exogenous Nova expression in
this system is sufficient to promote the mature splicing pattern of
early-switch exons as observed in CNS neurons. We generated a
lentivirus which expresses a Noval-GFP fusion protein (Fig. 7a).
Five days post infection of dissociated DRG neurons with the
Nova-GFP-expressing lentivirus, but not with the GFP (Mock)-

Table 1 Predicted maturation stages of WT and RBP KO
brains using the overall splicing profile or exons regulated
by specific RBPs

Predictions
Sample Name True True Overall Ptbp Nova Rbfox Mbnl
Age Stage Targets Targets Targets Targets
Emx_nPTB_WT P1 3
Emx_nPTB_KO P1 3
Nes_nPTB_WT PO 3
Nes_nPTB_KO PO 3
Nova2_WT E18.5 3
Nova2_KO E18.5 3
Mbnl_WT Adult 6
Mbnl_dKO Adult 6

The color codes are the same as Fig. 3

expressing lentivirus, we detected robust expression of Nova at
the mRNA and protein levels (Fig. 7b, c). Similar to the
subcellular localization of the endogenous Nova protein in CNS
neurons, Nova-GFP shows a predominant nuclear localization in
DRG neurons, which is required for splicing regulation. We then
examined splicing of five of the Nova target exons we identified
previously'” in the presence or absence of Nova expression. For
all five Nova targets, the exon inclusion level is high in wild-type
(WT) mouse cortex, but is dramatically reduced upon Nova2
depletion, suggesting Nova is essential to activate exon inclusion.
Each of these exons shows low inclusion in DRG sensory
neurons, similar to the Nova2 knockout (KO) cortex, presumably
due to the lack of Nova expression. Importantly, for all five Nova
targets, we found that ectopic expression of Nova is sufficient to
switch the immature splicing pattern in DRG neurons to the
mature pattern observed in WT cortex (Fig. 7d and Supplemen-
tary Dataset 2). These data support the notion that a lack of Nova
is necessary to maintain the “embryonic” splicing pattern for a
subset of early switch exons in mature DRG sensory neurons.

Discussion

Coordinated regulation of gene expression at multiple levels
dictates the numerous morphological and functional changes that
occur at specific stages of neuronal development. Previous studies
revealed a large number of AS changes in the developing
brain'>!®18, but the temporal resolution of these studies is low
and the underlying regulatory mechanisms are poorly under-
stood. This work represents the first comprehensive analysis of
the precise timing of dynamic splicing regulation during neuronal
development on a global scale.

Our analysis uncovered two major waves of splicing switches
that occur in the mouse brain around birth and in the first two
postnatal weeks. We focused on a time window after completion
of neurogenesis, and thus the bulk of the observed splicing
switches occur during neuronal maturation and likely contribute
to this important process. The developmental splicing changes
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can be driven by intrinsic factors or extrinsic factors, and these
two mechanisms do not have to be mutually exclusive.

A majority of the developmental splicing switches are mono-
tonic and preserve the reading frame, suggesting that exon
inclusion or skipping would generate specific protein isoforms in
the adult brain relevant for the establishment and maintenance of
homeostasis in mature neurons. This hypothesis is supported by
the observation that genes with early splicing switches have dis-
tinct functions from genes that exhibit late splicing switches,

consistent with the cellular events that occur at the corresponding
developmental stages. Interestingly, we also noticed that devel-
opmentally regulated exons more frequently have increased
inclusion, as opposed to increased skipping (Fig. 1a), so that in a
majority of cases an additional peptide would be inserted into the
protein product in mature neurons. The functional implication of
this asymmetry is currently not clear, but it might be relevant for
certain features of the neuronal proteome. For example, phos-
phorylation sites, which play important roles in signal
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transduction, are enriched in peptides encoded by neuron-specific
exons'’.

Analysis of a large panel of neuronal samples from diverse
origins, including different subtypes of neurons purified in situ or
differentiated in vitro suggests that the modular organization of
the developmental splicing profiles we initially identified in cor-
tical tissues reflects a pan-neuronal program in the CNS. At the
tissue level, developmental splicing changes are much more
dramatic than regional variations in different parts of the brain
(see ref. 37 for similar observations at the gene expression level).
With regard to cellular heterogeneity (in a particular brain
region), while some developmental splicing changes observed in
brain tissues might occur in non-neuronal cells such as glia,
neurons have a ]particularly large number of cell-type-specific
alternative exons'®!!, and the inclusion of these exons must be
established during development. Indeed, purified neurons of
specific subtypes such as cPNs and spinal motor neurons exhibit
similar developmental splicing changes as compared to develop-
ing cortical tissues. Interestingly, when we examined specific
types of glial cells at different developmental stages, we did not
observe systematic developmental splicing changes on a global
scale (Supplementary Fig. 4).

This study suggests a new dimension to the role of tissue-
specific splicing factors in regulating the timing of developmental
splicing switches and in defining neuronal maturation stages.
Multiple neuron-specific RBP families including Nova, Rbfox,
and Ptbp, potentially combined with additional RBPs such as
Elavl, Celf, and nSR100, regulate early splicing switches, some-
times in a synergistic manner (Fig. 4d-f). On the other hand, we
have so far only identified Mbnl and, to some extent, Rbfox as
regulators of late splicing switches on a global scale. Together, we
found that regulation of splicing by these RBPs can predict the
timing of splicing switches with high accuracy. Although one
would expect that similar predictions might also be made from
the steady-state mRNA level, due to coordinated regulation of
gene expression at multiple levels, splicing-based prediction can
provide critical insights into the neuronal maturation process that
cannot be obtained by analysis of the steady-state mRNA level. In
line with this argument, mutations in RBPs, including the ones
we examined here, have been implicated in several neurological
disorders®8. For example, sequestration of MBNL by repeat RNA
expansion containing its binding sites is the cause of myotonic
dystrophy, which manifests as global defects in splicing and
polyadenylation in the muscle and in the CNS but only moderate
gene expression changes’®*’. Mutations in the RbfoxI, 2, and 3
genes have been found in human patients with several neurode-
velopmental or neurological disorders, including autism, schizo-
phrenia, and epilepsy?’. In a recent study, we investigated the
function of Rbfox during neuronal maturation by generating
Rbfox1-3 triple KO mouse ESCs, which were differentiated into
spinal motor neurons. These neurons retain an embryonic

neuron-like splicing program, and the abnormality causes defects
in neuronal electrophysiology that is normally established during
neuronal maturation®!. Interestingly, we found dramatic disrup-
tion in developmental splicing switches with few changes at the
steady-state mRNA level.

A surprising finding of this study is that sensory neurons
exhibit a splicing program distinct from CNS neurons. Mature
sensory neurons (including OSNs and photoreceptors, as well as
somatic and visceral sensory ganglion neurons) lack early splicing
switches, resulting in a splicing profile reminiscent of immature
CNS neurons. This distinct splicing program is presumably due
to the fact that sensory neurons do not express all of the “pan-
neuronal” RBPs observed in the CNS (e.g., Rbfox and Nova);
consequently, exons directly regulated by these RBPs do not
undergo developmental splicing switches in these cell types. In
support of this idea, we found that introduction of Nova into
primary rat DRG neurons is sufficient to promote the mature
splicing pattern of at least a subset of early switch exons that is
observed in CNS neurons.

Why do sensory neurons have a distinct splicing program
compared to CNS neurons? One possibility is that this molecular
distinction might be specified early due to a difference in
embryonic origins of these cell types. While CNS neurons origi-
nate from the neural plate, with the exception of the photo-
receptors, all sensory neurons and sensory gan%hon neurons we
examined are of placodal or neural crest origin®’. Photoreceptors
derive from the optic vesicles that are also developmentally
separated from the “canonical” CNS (see also Supplementary
Discussion). Thus, the differential expression pattern of RBPs
may be imposed by the tissue and environment of origin and CNS
neurons are distinct in this respect. Alternatively, the distinct
splicing program of neuronal subtypes in the sensory systems
might have evolved to accommodate certain unique cellular
properties, such as the relatively high regenerative capacity and
plasticity of these cell types. By virtue of their direct interaction
with the environment, sensory systems are the “first responders”
when it comes to adapting to new environmental pressures,
which may require an ‘immature’ molecular program to maintain
the neurons in a state that permits a more flexible molecular
adaptation to new environmental challenges. Moreover, with few
exceptions, mature neurons in the mammalian CNS have only a
limited capacity for self-repair and regeneration, yet many sen-
sory neurons regenerate following injury or as part of their
developmental program®*. For example, the continuous renewal
of OSNs and their neural projection to the olfactory bulb is a
salient feature of the olfactory system*>#°. In addition, most
somatic and visceral sensory neurons can regenerate their per-
ipheral axons after nerve injury?’. Although photoreceptors, like
the other CNS neurons, have limited regenerative capability in
mammals, they can readily regenerate in lower vertebrates*®, and
certain subtypes of retinal ganglion neurons in mice, which share

Fig. 6 Distinct regulation of early-switch exons in mature sensory neurons. a The PCA scatter plot of splicing profiles in different subtypes of neurons
isolated from adult mice. The circles represent the cortex reference samples and the triangles represent the four categories of cell types: non-neuronal
sensory receptors, sensory neurons, sensory ganglion neurons, and mature CNS neurons. Samples are colored by the predicted maturation stage. EC
enterochromaffin cell, TRC taste receptor cell, OSN olfactory sensory neuron (OMP+), DRG dorsal root ganglia sensory neurons (Nav1.8+ or Avil+), DN
dopaminergic neurons, CGN cerebellar granule neurons, PN Purkinje neurons, and MN motor neurons. b The splicing profile of module exons in sensory
neuron subtypes, in comparison with non-neuronal sensory receptor cells and mature CNS neurons. Exons are shown in the same order as in the cortex
reference. ¢ Statistically enriched GO terms of genes with differentially spliced exons between all sensory cell types and mature CNS neurons. The size and
color represent the number and enrichment of genes associated with each term and related GO terms with overlapping genes are connected. d Expression
levels of the four RBP families we focused on in our analysis as quantified by RNA-seq data. Note the high abundance of the Mbnl and Ptbp families and
lack of Noval/2 in sensory neurons. Rbfox1-3 are absent or low in sensory neurons, but expressed in ganglion neurons. e Immunofluorescence analysis of
Rbfox1-3 expression in OSNs. Red, Calmegin is a marker of mature OSNs; green, Rbfox; blue, DAPI staining the DNA. Scale bar, 20 um. f Maturation stages
of different types of neurons predicted using the overall splicing profile or target exons of each RBP family. g The proposed model that explains the distinct

splicing profiles of different neuronal subtypes
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shows the zoom-in view of the cell. d Changes in the alternative splicing of Nova target exons upon Noval overexpression in rat primary DRG neurons. For
each exon, the exon inclusion level in WT and Nova2 KO cortex, and DRG sensory neurons, as quantified by RNA-seq, is shown in the barplot on the left.
Error bars represent the standard deviation (n > 3). A representative gel image on the right shows inclusion of the alternative exon in Mock-transduced and
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the developmental origin with photoreceptors, also have regen-
erative potential’.

Genes and signaling pathways that potentially underlie the
different intrinsic growth capacities of sensory and CNS neurons
have been intensely investigated for decades®’~>2, with the hope
that such knowledge can be leveraged to enhance the regenerative
capability of CNS neurons. The distinct splicing program we
identified in sensory neurons might inform post-transcriptionally
regulated molecular pathways related to neuronal regeneration.
Consistent with this notion, it was previously noted that Rbfox3 is
transiently downregulated in motor neurons upon axotomy,
while recovery of the Rbfox3 expression level follows peripheral
axonal regeneration and muscle reconnection®. Similarly, our
meta-analysis of published transcriptome profiling data®®>*
suggest that Ptbpl is up-regulated in DRG sensory neurons after
sciatic nerve lesion, and its expression is also highly correlated
with the extent of axonal growth of injured DRG sensory axons.
Thus reduction of Rbfox expression or increase in Ptbpl may
transiently enable a more immature splicing program in these
injured neurons to promote axon regrowth. Importantly, differ-
entially spliced exons in sensory neurons are highly enriched in
genes involved in neuronal projection and synaptic function, and
which were recurrently identified in recent studies to be required
for axon regeneration upon injury’®>!. Taken together, a further
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exploration of the distinct splicing patterns in CNS and sensory
neural subtypes may well shed light onto the molecular
mechanisms underlying their intrinsic capacity of regeneration,
plasticity, and function.

Methods

Generation and compilation of RNA-seq data. A summary of RNA-seq data
generated for this study or compiled from the public domain is provided in Sup-
plementary Dataset 1.

To determine the dynamics of the mammalian brain transcriptome in depth, we
performed RNA-seq using mouse cortex at 9 developmental stages (E14.5, E16.5,
PO, P4, P7, P15, P30, 4 months, 21 months), each stage in duplicates using the
standard Illumina TruSeq poly-dT protocol. All animal-related procedures were
conducted according to the Institutional Animal Care and Use Committee
(IACUC) guidelines at the Columbia University Medical Center and Rockefeller
University. All RNA samples used for this analysis have RNA integrity number
(RIN) >8.5. In total, we obtained 987 million paired-end (PE) 101-nt reads (54.8
million per sample on average)'?.

To further evaluate neural maturation based on developmental regulated
alternative exons, we collected 346 public RNA-seq samples that can be classified
into three categories: cortex or spinal cord tissues, purified neuronal subtypes, and
ESC-derived neurons. Technical or biological replicates were merged to obtain a
final list of 111 samples, of which 41 are from tissues, 39 are purified neurons, and
31 are ESC-derived neurons. In total, these data are composed of about 13 billion
reads or read-pairs, providing an unprecedented depth and scope to study dynamic
splicing changes during neural development.

RNA-seq data derived from Ptbp2 WT/KO and Nova2 WT/KO brains were
obtained from published studies?">>>. For Mbnl, the mammalian brain expresses
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Mbnll and Mbnl2, which both regulate splicing with a certain degree of
redundancy. To identify the comprehensive list of Mbnl-dependent exons, we
generated a Mbnll /=3 Mbni2"X*1oxP; Nestin-Cre mouse line to deplete both
Mbnll and Mbnl2 in the CNS (referred to Mbnl1/2 double-KO or dKO). Deep
RNA-seq was performed using high-quality RNA (RIN > 8) extracted from frontal
cortices of adult Mbnl dKO and control mice, each group in triplicates using the
standard Illumina TruSeq poly-dT protocol (PE 101-nt reads, ~60 million reads
per sample).

To compare the splicing profiles of neurons and glial cells, we obtained the
RNA-seq dataset that profiled all major CNS cell types in the mouse cortex!'!. To
evaluate potential differences of pyramidal neurons and interneurons, we used a

single-cell RNA-seq dataset derived from primary visual cortex of adult mice>®.

Analysis of RNA-seq data and quantification of AS. All RNA-seq data were
mapped by OLego v1.1.2 (ref. 2%) to the reference genome (mm10) and a com-
prehensive database of exon junctions was provided for read mapping. Only reads
unambiguously mapped to the genome or exon junctions (single hits) were used for
downstream analysis.

To quantify AS, we used a comprehensive list of both known and novel AS
events, as we described previously'’. Inclusion of known and novel alternative
exons (percent spliced in or V) was then quantified based on the number of exon-
junction reads using the Quantas pipeline (http://zhanglab.c2b2.columbia.edu/
index.php/Quantas), as we described previously. To reduce uncertainty in
estimating W, we kept the estimation only for exons with read coverage >20 and
standard deviation <0.1 (based on binomial distribution). Gene expression was
quantified using the same pipeline. For all quantifications, biological replicates were
combined. For the single-cell RNA-seq analysis®®, we used cell types defined in the
original paper, and pooled cells that were assigned to each cell type as core
members for AS quantification.

To identify exons with differential splicing in two compared conditions, we
evaluated the statistical significance of splicing changes using both exonic and
junction reads that support each of the two splice isoforms. For the pairwise
comparisons of different stages of the developing cortex, we used the standard
Fisher’s exact test by pooling read counts of the biological replicates. The remaining
RNA-seq datasets used to measure differential splicing upon depletion of specific
RBPs or comparing different subtypes of neurons (with an exception of the Ptbp2
KO because the Emx:Cre sample does not have replicates) were analyzed with an
updated version of the Quantas pipeline using a generalized linear model (GLM),
as described previously'2. Conceptually, the advantage of the GLM method is that
it explicitly models the variation across biological replicates. In practice, we found
the results from the GLM and Fisher’s exact test to be highly similar, with the GLM
method being slightly more stringent. The FDR was estimated by the
Benjamini-Hochberg procedure®”. An AS event was called differentially spliced in
the two compared conditions with the following criteria: coverage >20, Benjamini
FDR <0.05 and |AY | 2 0.2 (to identify developmentally regulated exons or neuron
subtype-specific exons) or 0.1 (to identify RBP-dependent exons).

To identify exons with developmental splicing changes, we performed pairwise
differential splicing analysis among different stages during cortex development. An
exon is called to have developmentally regulated splicing if it is differentially spliced
in at least one comoparison (Fig. 1a). Developmentally regulated exons in cPNs!5,
motor neurons?®-3Y, and ESC-derived glutamatergic neurons'® (Fig. 2b) were
identified similarly. For each of these datasets, we also identified developmentally
regulated exons with monotonic splicing changes if all significant changes occur in
the same direction.

For detailed analysis, we focused on a subset of 77,950 non-redundant cassette
exons, including 13,500 cassette exons identified from previous expressed sequence
tag/complementary DNA (EST/cDNA) sequences (denoted known cassette exons)
and 64,450 cassette exons identified from brain RNA-seq data de novo (denoted
novel cassette exons). Methods to identify non-redundant cassette exons were
described previously!?.

AS conservation and purifying selection pressure. For each cassette exon
observed in the mouse transcriptome, we determined whether it has conserved
splicing pattern in human and whether it is under strong purifying selection
pressure in mammals, both as described previously'?. In brief, AS events in human
were similarly identified using cONA/ESTs and RNA-seq data derived from
developing human brains. Selection pressure of each exon was quantified based on
cross-species conservation in the synonymous position of the alternative exons as
well as in flanking intronic sequences in 40 sequenced mammalian species®®. A
subset of exons with the highest conservation was determined to undergo strong
purifying selection pressure.

WGCNA to identify exon modules. WGCNA (version 1.34)%® was performed on
the developing cortex data using the splicing profiles of the 2883 developmentally
regulated exons. Pearson's correlations between exons were calculated and raised to
power 3 to determine the adjacency matrix. Exon modules were identified with
default parameters, followed by automatic merging of modules with similar
eigenvectors (using dissimilarity threshold = 0.25, which is the default). This
analysis initially resulted in five modules (Supplementary Fig. 2). Inspection of the
resulting modules suggested that modules 4 and 5 show similar temporal patterns
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(higher/lower exon inclusion between PO and P7). Therefore, these two modules
were manually merged to form the final module M4 reported in the paper and its
module eigenvector was re-calculated. The final module assignments are provided
in Supplementary Dataset 5.

The correlation between each individual exon and the eigenvector of the
corresponding module was calculated and used to measure the membership of each
exon to the module. For each module, a subset of exons with the highest correlation
with the module eigenvector was defined as core module members (correlation p <
0.001, corresponding to Pearson's r = 0.9 approximately).

Determine the precise timing of splicing switches. For each exon, we para-
meterized the temporal pattern of exon inclusion levels by fitting a sigmoidal curve:

‘I’:a+(k7u)/(1+e’b(”m)), (1)

in which a and k are the low and high exon inclusion levels during development
and ¢ is time point represented by post-conception days in log 10 scale. Following
this definition, the parameter m is the time point when the maximal splicing switch
occurs.

Parameters of the sigmoidal fit were estimated by nonlinear least squares curve
fitting in R (using the port algorithm). Quality of fit was measured by the
normalized residual:

where i is the index of the developmental time point.

We applied this method to core members in modules M1 and M2. The
sigmoidal fit was considered to be reliable for 964 exons satisfying € < 0.15, k—a >
0.2, and m > 0.

Sliding window analysis of functional annotations. Developmentally regulated
exons were ranked according to the timing of the maximal splicing switch obtained
from sigmoidal fit (parameter m), as described above. For the results presented in
the paper, we used a sliding window size of 300 exons to obtain lists of foreground
genes. The background gene list for comparison is composed of all genes with
cassette exons with a sufficient coverage in the cortex (coverage >20). GO terms
were downloaded from http://git.dhimmel.com/gene-ontology/. The enrichment of
each GO term among genes in each sliding window was assessed by a hypergeo-
metric test. Benjamini-Hochberg correction was applied to obtain the final FDR
(correcting for 14,514 terms and 665 sliding windows), and only GO terms with
corrected FDR < 0.005 were kept for further analysis. Each significant GO term was
represented by their log-transformed FDRs across all sliding windows and hier-
archical clustering was performed to group GO terms showing similar temporal
patterns of enrichment (Fig. le in the main text and Supplementary Dataset 6).

We also used the same sliding window analysis to find enrichment of genes with
additional functional annotations (Supplementary Fig. 3). These include genes
encoding presynaptic proteins® and genes encoding PSD, components of the
mGIuR5 and the NRC/MASC complexes (http://www.genes2cognition.org)®’. We
also included genes implicated in autism obtained from two sources: genes
compiled in the SFARI gene database®! and genes with likely gene-disrupting
mutations in autism patients as determined by exome sequencing®?~%7.

For comparison, standard GO analysis was also performed using core exons of
each module as foreground, and the same list of genes with brain-expressed
cassette exons as background. Statistical tests and multiple test correction were
performed as described above and the significant terms (FDR < 0.05) are shown in
Supplementary Dataset 7. Similar GO enrichment analysis was performed for genes
with differentially spliced exons between the sensory cells and mature CNS neurons
(Fig. 6¢).

Neuronal maturation stages predicted by splicing profiles. We developed a
computational tool named Splicescope to evaluate neuronal maturation using
developmental splicing profiles and made it available at http://zhanglab.c2b2.
columbia.edu/index.php/Splicescope.

For this purpose, we first defined six distinct maturation stages from the mouse
cortex data E14.5, E16.5, PO, P4, P7, and P15 or older, which are represented by
stages 1-6. P15 or older were grouped as one stage because of high correlation
between samples after P15 (Pearson's correlation r>0.95). We did not name the
stages using the actual ages because developmental timing of different subtypes of
neurons can be different in vivo (e.g., maturation of spinal motor neurons is in
general earlier than cortical neurons). For each sample, we obtained the splicing
profile of the 1909 known module cassette exons defined in the cortex reference,
which was used to assign the sample to a specific maturation stage by comparison
to the cortex reference, using a two-step strategy.

Considering that different exons may have different contributions toward
defining specific maturation stages and that the range of exon inclusion is (0, 1), we
first used a f8 regression method (betareg in R)®® to model the inclusion level of
each module exon y; in each sample y=(y1, y», ..., ym)T in which m is the total
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