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Innovation and cumulative culture through tweaks
and leaps in online programming contests
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The ability to build progressively on the achievements of earlier generations is central to

human uniqueness, but experimental investigations of this cumulative cultural evolution lack

real-world complexity. Here, we studied the dynamics of cumulative culture using a large-

scale data set from online collaborative programming competitions run over 14 years. We

show that, within each contest population, performance increases over time through frequent

‘tweaks’ of the current best entry and rare innovative ‘leaps’ (successful tweak:leap ratio=
16:1), the latter associated with substantially greater variance in performance. Cumulative

cultural evolution reduces technological diversity over time, as populations focus on refining

high-performance solutions. While individual entries borrow from few sources, iterative

copying allows populations to integrate ideas from many sources, demonstrating a new form

of collective intelligence. Our results imply that maximising technological progress requires

accepting high levels of failure.
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The cultural transmission of knowledge and skills, and
concomitant iterative advances in technology, have led to
extraordinary demographic and ecological accomplish-

ments in our species1, but the mechanisms that give human
culture its potency remain unresolved. ‘Cumulative culture’—the
build-up of learned knowledge over time—allows populations to
construct incrementally improved solutions that could not have
been invented by a single individual2–4, often associated with an
increase in efficiency, complexity, and diversity5. This unique
human accumulation of knowledge is widely thought to rely on a
set of cognitive processes that include teaching, language, imita-
tion and prosociality4,6–8, and seems to be facilitated by increased
population size and connectivity9–12, although the underlying
causes are not well-understood.

Cumulative culture is a large-scale, and potentially long-term,
population-level phenomenon, the experimental investigation of
which presents distinctive methodological challenges. Although
theoretical analyses imply that factors such as high-fidelity
information transmission and large, well-connected groups are
important11–14, it has proven particularly difficult to acquire an
experimental understanding of the phenomenon in contexts that
approach real-life complexity. As a result, experimental approa-
ches to-date have been restricted to simplified cases, such as the
building of paper airplanes, or towers from spaghetti and
plasticine15,16. Such studies, like others using simple tasks like
building virtual fishing nets17 or knot-making18, are informative,
but do not approach the intricacy and richness of real-world
cumulative cultural evolution.
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Fig. 1 Scores over time. Normalised log-transformed scores over time (measured in days from the beginning of each contest) in all contests (n= 47,921
entries). For visualisation purposes, because some values were zero, we added a small number on the appropriate scale to each score before log-
transforming (the number chosen was 10). Note that in all contests low score values are better. Each point on the graph is an entry. The red line follows the
progress of the leading entries in the contest, i.e. the entries that achieved the best score at the time of their submission
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Here we present a detailed investigation of cumulative cultural
evolution in a large-scale context that reflects the real-world
complexity of human behaviour. We analysed a database of
21,745,538 lines of computer code in total and 483,173 unique
lines, originating from 47,967 entries to 19 online collaborative
programming competitions organised over the course of 14 years
by the MathWorks software company. In every contest, the
organisers set a computational challenge and, over the course of
one week, participants developed and provided solutions in the
form of MATLAB® code. Once an entry had been successfully
evaluated, its score, code and the username of the participant who
submitted it became public and available to all the other parti-
cipants to build upon. The challenges were all NP-complete
computer science problems19, which are defined as problems for
which an algorithm could not have found exact solutions in the
contest timescale for problems of sufficient size (see Supple-
mentary Methods). This resulted in reliance on heuristic and
approximate solutions, thus allowing for open-ended improve-
ment in the task. Hence, each contest functioned as a microcosm
of cumulative cultural evolution in the sense of measurable
improvement in task and, when combined, provide a data set of
unprecedented richness, scale and complexity. Here we show that,
in this context, individuals rely heavily on copying the current
best entry. Collective improvement is achieved through a com-
bination of small modifications of the current solution and radical
innovations, the latter much less common, riskier, yet potentially
more rewarding. As a result, the population converges on similar
solutions over time, which decreases cultural diversity. Con-
currently, a new form of collective intelligence arises through the
recombination of existing ideas.

Results
Cumulative improvement of solutions. Consistent with the
expectation of cumulative advancements, we found that scores
steadily improved throughout all contests (with the best solution
on average scoring 40 times better than the first, Fig. 1). Only a
small proportion of entries improved upon the current leading
score (c. 6%, Supplementary Fig. 1), so each contest posed a
genuinely challenging task. While each contest had a unique
history of improvement, across all contests we observed extensive
variation in the rate of improvement over time, with distinct
periods of stasis, punctuated by large jumps in score associated
with distinctive coding innovations.

Successful code is copied. Participants copied each other
extensively within contests: across all contests, all entries bar the
first contained at least one line of code from a previous sub-
mission, and overall only 3.8% of the entries contained at least
50% novel lines (Supplementary Fig. 2). This convergence was
not based on the structure of the programming language—the
average number of lines shared between entries from separate
contests was just 8 (±15), compared to an average number of lines
shared between entries in the same contest of 200 (±350).

Analysis of within-contest code similarity (measured between
pairs of entries using the Czekanowski similarity index—see
Methods) revealed that copying was not indiscriminate as
participants exhibited a strong preference for copying the current
leader. The baseline distribution of similarity between entries at
the beginning of the contests (when participants only have access
to their own information) shows a clear skew towards zero
(Fig. 2a; Supplementary Fig. 3), whilst when all entries are
considered a very large proportion of entries exhibit strong
similarities to the current leader (Fig. 2b). Overall, 50% of the
entries had a similarity >0.9 to the current leader, but only 26%
had such a similarity to entries submitted after the current leader,

confirming that it is the best-performing entry that is being
copied. This strategy is even more strongly manifest in entries
that took the lead when submitted (Fig. 2c), 91% of which had a
similarity >0.5 to the previous leader. Relatively few new leaders
introduced substantial amounts of novel code.

Innovations include both ‘tweaks’ and ‘leaps’. The matrix of
similarities between entries provides a graphical illustration of the
pattern of copying throughout each contest, revealing how the
submitted entries are grouped into clusters of similar solutions
(Fig. 3). Analysis of the magnitude of change relative to the prior
leader reveals a strongly bimodal distribution of improvements
(Fig. 2c). We can characterise this distribution in terms of
‘tweaks’ and ‘leaps’: the population adopts a general solution for a
while, incrementally improving it through modest refinements
(i.e. ‘tweaks’), but occasionally jumping to a new solution with
low similarity to preceding entries (i.e. a ‘leap’).

Leaps usually fail but can bring large advances. The success of
an entry—whether it took the lead, and if so by how much – was
strongly related to the extent to which it was based largely on
copying or exhibited substantial innovation. Among entries that
took the lead, we observed a significant negative correlation
between the entry’s similarity to the previous leader and its
associated improvement in score (Spearman’s ρ=−0.15, p <
0.001), with the biggest improvements associated with those
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Fig. 2 Similarities across all contests. Proportion of similarities a between all
entries under limited visibility conditions (i.e. when players only had access
to their own entries—see Supplementary Methods; n= 2,201,279); b of all
entries to the current leader at the time when the entry was submitted (red
indicates tweaks and leaps, with score difference plotted below;
n= 40,896); c of that subset of entries that took the lead when entered to
the previous leader (n= 2399). d Score difference for entries with low
similarity (<0.1) and high similarity (>0.9) to the current leader—score
differences for highly similar entries are narrowly distributed around 0,
while low similarity entries show wide variance (n= 31,575)
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entries most different from the previous leader. However, among
entries that did not take the lead, the reverse relationship was
observed (Spearman ρ=−0.53, p < 0.001), with the most inno-
vative entries exhibiting the poorest performance, measured as
the absolute difference in score from the current leader. Hence
tweaks were associated with smaller changes in score, either
positive or negative, while leaps garnered both large improve-
ments in score and spectacular failures (Fig. 2d; Supplementary
Fig. 4). The distribution of entry performance relative to the
current leader shows that while leaps were more likely to lead to
poorer scores than tweaks of copied material overall, on rare
occasions they generated significantly larger benefits.

Most advances are incremental tweaks. These observations
support the intuition that copying combined with a modest tweak
is a relatively ‘safe’ strategy, whilst the innovation manifest in
‘leaps’ is risky. Here the ‘risk’ is in terms of time wasted devel-
oping a new solution under heavy time constraints. The safe
choice is to tweak the current best entry, and this is what most
participants do. Across all entries, we observed substantially more
tweaks than leaps, with a ratio between 2:1 and 3:1, depending on

the methods deployed to characterise tweaks and leaps (Supple-
mentary Methods), and with most entries exhibiting high simi-
larity to the current leader. However, amongst successful entries
that took the lead, the ratio of tweaks to leaps was 16:1, over-
whelmingly larger than in all entries. After the first 1–2 days of a
contest, leading solutions rapidly became difficult to beat because
they have benefitted from the concerted efforts of multiple people,
and it was only rarely that an innovative solution took the lead.
Mean (±SD) increments in performance associated with suc-
cessful tweaks and leaps, normalised across contests, were 0.0003
(±0.0022) and 0.0033 (±0.0171), respectively.

Tweaking and copying reduce code diversity over time. The
strong preference for tweaking copied code generated population-
level patterns of cultural diversity over time. Through copying,
the population converged on similar solutions for substantial
periods of time, causing a decrease in the diversity of entries, as
measured by the total number of distinct lines of code present
across the population of entries in a given time period (Fig. 4,
Supplementary Fig. 5, 6). Bayesian mixed models with beta-
distributed errors indicated an average change of −0.15 (95%
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Fig. 3 Code similarity matrices between all pairs of entries in four sample contests. Entries are ordered chronologically on time of entry from top to bottom
and left to right. Each point represents the similarity between two entries. The bright squares show series of entries similar to each other compared to
previous and subsequent periods, representing minor variations on a solution ‘theme’. The bottom-right corners of the bright squares show where the
population switched to a new form of solution that was relatively dissimilar to those before, and the top-left corners show where a new solution ‘theme’
began. Data are shown for four contests: a Gerrymandering—April 2004 (n= 1726), b Peg Solitaire—May 2007 (n= 2620), c Colour Bridge—November
2009 (n= 1671) and d Mars Surveyor—June 1999 (n= 1148; for ease of visualisation, here we only plot the entries for which the participants reported
copying—see Supplementary Methods). Tweaks are manifest as lighter colours, and leaps as darker regions. a The final large cluster of solutions shows
intermediate similarity to a previous smaller group. b The three distinct groups of similar solutions show the population switching to completely new ideas.
c The population reverts to a previous idea, generating high similarity between the final and second group. d A contest characterised by rapid shifts in ideas
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credible interval: −0.19 to −0.12) in the logit of diversity for
every additional 10% of contest entries (equivalent to a drop in
normalised diversity from 0.01 to 0.086).

Copying also affects how individuals combine ideas from
previous entries. Recombination of different ideas is widely
thought to be a major driving factor in cumulative culture20, but
quantitative evidence is scarce. We defined ‘recombination’
strictly as the association of cultural traits already present in
the population, and thereby distinguish recombination from the
combining of new and old ideas (‘refinement’). For each entry, we
tracked each line of code back to the first entry that introduced it
into the contest, and characterised each entry in terms of its
number of such original sources. This allowed us to quantify how
many original sources each entry drew from, and how long such
sources persisted over time.

Successful solutions combine earlier advances. Entries drew on
many tens, sometimes hundreds, of original sources overall
(mean ± SD= 49 ± 38; Fig. 5a). Across all contests, the
amount of recombination, measured as the number of original
sources utilised, increased over time (Spearman ρ= 0.53, p <
0.001) and was both positively correlated with similarity to the
current leader (Spearman ρ= 0.44, p < 0.001) and negatively
correlated with the difference in score to the current leader
(Spearman ρ=−0.25, p < 0.001), where being different over-
whelmingly means a worse entry. Therefore, copying leads to an
accumulation of recombination in the population—entries bor-
row from more and more original sources with time—and this
accumulation of ideas is correlated with better performance
(Supplementary Fig. 7). Moreover, successful tweaks drew on a
larger number of original sources than successful leaps (mean ±
SD= 64 ± 37, 36 ± 33, respectively), suggesting that copying was a
key driver of population-level recombination (Supplementary
Fig. 8).

We also estimated the immediate number of sources an
individual entrant utilised by tracking each line of code to the
most recent prior entry containing it. This is a conservative
estimate that assumes copying is the dominant strategy, and that
people submitting code tended to copy the latest entries. We
found that 90% of all entries drew on five immediate sources or

fewer (mean ± SD= 2.82 ± 2; 25% refined only a single entry),
with no increase in the number of recent sources utilised over
time (Fig. 5b, c). In contrast to the use of original sources,
successful leaps drew on larger numbers of immediate sources
than successful tweaks (mean ± SD= 3 ± 2, 2 ± 1, respectively),
suggesting that these leaps were often associated with repurposing
of old code. These findings show that populations are able to
combine and synthesise a very large (up to tens or hundreds) and
increasing number of initial sources, which persist over time as a
result of the high levels of copying, despite the fact that each
individual entrant themselves draws on a small number of
sources. This is further emphasised by the fact that successful
entries draw on original sources from on average 19 (±9 SD)
different individual contestants. In this light, cumulative
culture can be seen to exemplify a novel form of collective
intelligence21–23.

Discussion
The dominant strategy exhibited by entrants (i.e. copying the
most successful entry) is known as ‘success-’, or ‘payoff-’, ‘biased’
social learning24 and it is greatly facilitated in these contests by
explicit payoff information. Yet the observed convergence of the
population over time on similar behaviour leads to population-
level patterns comparable to expectations under ‘conformist
transmission’, where individual disproportionately adopt the
majority behaviour4. There is much current debate regarding the
degree to which individuals conform, and the contexts in which
conformity bias is adaptive25,26. Theoretical analyses demonstrate
that conformity can have substantial fitness benefits, particularly
in spatially variable environments and that, by maintaining stable
between-group differences, conformity can support a cultural
group selection explanation for the evolution of cooperation4,27.
By showing that cumulative culture generates a conformity-
mimicking homogeneity in behaviour without an explicit
conformist bias, and thereby broadening the opportunity for
selection between groups to arise, our study sheds new
light on the roles that success-biased copying and cultural group
selection might play in cultural evolution. Furthermore, once
early human culture became cumulative, the mechanism we have
illustrated here could have led to behavioural convergence that
then fed back to select for conformity precisely because, as we
have also shown, cumulative culture makes copying a low-risk
option28.

The observation that cumulative culture can reduce cultural
diversity may appear paradoxical given the widespread view that
cumulative culture generates diversity. Here our study offers a
further novel insight. Recent analyses of human innovation have
distinguished between two classes of innovation, namely ‘better-
faster-cheaper’ solutions and innovative solutions that generate a
cascade of new possibilities and thereby deliver entirely new kinds
of functionality29. New functionality was precluded in the
MathWorks contests, which raises the possibility that the diver-
sity of human culture does not arise from cumulative cultural
processes per se, but rather from that subset of innovation that
affords novel functionality. Additional cultural diversity may
emerge from the context specificity observed across entire
populations, including that afforded by other cultural knowledge,
as well as from ecological variation, which can provide new
problems for cumulative culture to solve.

The tweak-and-leap nature of cultural evolution revealed here
has parallels with both scientific revolutions30, though in our case
leaps are restricted to improvement in a single domain, and the
idea of punctuated equilibrium31–33, although it is debatable
whether tweaks truly reflect periods of stasis, given the amount of
improvement they deliver. Our study also has strong implications
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model predictions of cultural diversity over time. Each black line plots the
predictions for a single contest, whilst the red line plots the overall estimate.
The shaded area indicates the 95% credible interval of the posterior
estimates per contest (n= 1845 data points binned by time, see Methods)
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concerning the way human groups achieve collective improve-
ments in performance and thereby drive technological progress.
Medical researchers analysing the use of coding challenges,
similar to the contests we analysed, to crowd-source models of
cancer prognosis have warned against the problem of low solu-
tion diversity34, and our analysis reinforces these concerns. Other
research has shown that novelty in science is risky, but can be
associated with considerably higher long-term impact35, and our
analysis endorses these findings. We note that in the contests
populations do not necessarily converge on the globally best
solution. Individuals commonly and rationally capitalise on the
investment that the population has already made by tweaking the
current best entry, but this ‘safe’ approach tends to result in the
neglect of new innovations, and/or a failure to realise their
potential, if innovations do not immediately become market
leaders. The danger here is that individuals may pursue the
current consensus largely because of the effort that has already
been put into it, analogous to the ‘Concorde fallacy’36, and that
the manifest tendency to copy current leaders may encourage
populations to pursue suboptimal solutions. A clear implication
of our analysis is that the substantial leaps in progress that break
this dynamic go hand-in-hand with a high risk of failure, and that
institutions and organisations that seek genuinely revolutionary
innovation must be prepared to invest in highly original, high-
risk-high-return research whilst tolerating lower rates of success
and substantial amounts of sometimes spectacular failure.

Methods
Data source. We analysed data from 19 online programming competitions
organised by MathWorks from 1998 until 2012. Participants could submit as many
solutions as they wanted though an online interface, identified by a self-chosen
username. Once an entry had been evaluated, its score, code and the username of
the participant who submitted it became public and available to all the other
participants. Although submission was completely anonymised, participants gen-
erally submitted solutions from a single ID, because the main motivation to win the
contest was reputational—actual prizes were nominal (e.g. a branded T-shirt). The
contest winner was the entrant with the best score at the end of the week. There
were a number of variations on this basic model. In 2004, the organisers introduced
two more stages to the competition. While the 6 previous contests allowed parti-
cipants to view other entries from the beginning, the subsequent 13 contests used a
framework consisting of three stages. On the first day, termed ‘darkness’, partici-
pants did not have any information on the scores of their own entries or other
players’. During the second day, labelled ‘twilight’, participants only had infor-
mation on the rank of their own entries compared to everyone else’s. From the
third day onwards, in ‘daylight’, they had full access to information concerning
their own entries and the entries of other players, including their score, rank, and
computer code. When analysing the data from these later contests, we only
included data from the daylight condition—the only condition directly comparable

with earlier contests—while statistically controlling for this difference using mixed
effects models.

Entries in the contests were scored by the MathWorks organisers as a function
of their effectiveness on the task, the speed of execution, and code complexity,
measured using McCabe’s cyclomatic complexity37, which takes into account the
code structure by measuring the number of independent paths through a
programme’s source code. The first two factors weighed more heavily towards the
final score, while limiting complexity ensured that entries remain concise so as not
to lock up the computer evaluating the entries. Thus, improving task result score,
or the speed of execution, or both, could all result in better contest scores. Entries
were disqualified if they exceeded execution time or length limits.

Our sample included 19 contests, with an average of 2396 entries per contest
(ranging from 1138 to 6367 entries) and an average 120 participants per contest
(between 63 and 202). This amounts to a total of 47,967 entries containing a total
of 483,173 unique lines of code (between 1 and 10,061 lines per entry).

Measuring similarity between entries. We used a variation of the Sørensen–Dice
coefficient to measure the similarity between two entries38,39. Originally a statistic
designed for comparing two ecological samples in terms of presence/absence of
species, it has an extension, the Czekanowski similarity40, which we use here,
given by:

CZik ¼ 2

PS
j¼1 minðxij; xkjÞPS
j¼1ðxij þ xkjÞ

; ð1Þ

where CZik is the similarity between samples i and k, xij is the number of instances
of species j in sample i, xkj is the number of instances of species j in sample k, and S
is the total numbers of species. For our analysis, each sample corresponds to an
entry, and each species is a line of code—two lines of code are considered identical
when they both consist of the same set of characters (excluding spacing and
capitalisation) in the same order. Every entry is a set of lines of code, so the
similarity between two entries is a function of the total number of lines they have in
common, including reoccurring lines, relative to the sum of their lengths.

The Czekanowski similarity does not take context into account—it relies on the
number of lines, disregarding order and potential sequences of lines that might
reappear together—yet it performs very well for our purposes. If two entries have a
high Czekanowski similarity, they are almost certainly similar in terms of the order
of lines of code, as it is extremely unlikely that the same lines could be combined
differently in a piece of code that remains functional. Moreover, the nature of
computer code ensures that the lines in an entry will be highly idiosyncratic
because variable names are arbitrarily selected from a vast sample space (MATLAB
variable names can be up to 63 characters long), so the chance of finding the exact
same lines in two entries that are not actually functionally identical is very low.
Thus the Czekanowski similarity between two unrelated entries will be low, while
two functionally related entries would exhibit high Czekanowski similarity.

Analysing cultural diversity. To measure diversity, we needed to group entries to
create snapshots of the ‘culture’ of the population at given points in the contest. We
sorted entries by order of submission and grouped them in bins each containing
1% of the entries in the contest, and then computed a diversity measure for each
bin. Our measure over the contest reflects the diversity of the first 1% of the entries,
the following 1%, and so on. Within each bin we measured diversity as the number
of unique lines of code entered divided by the total number of lines submitted in
the contest (Supplementary Fig. 5). We used bin number as a measure of progress
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Fig. 5 Recombination over time. a Number of initial sources (n= 42,072—all entries excluding those that do not use recombination) and b number of
recent sources for all the entries in all contests (n= 37,474—all entries that use recombination, excluding the ‘Blackbox’ contest, in which one single
participant submitted a disproportionate amount of entries refining their own solution, skewing the data); c number of initial and recent sources over time,
averaging across all contests (n= 37,474)
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through the contest since the entries were ordered chronologically, and we were not
interested in the absolute time of submission but in how diversity changed over the
course of the contest, independently of the varying rate at which entries were
submitted.

We measured the increments in performance for each entry as the absolute
difference score between each entry and the current leader at the time of its
submission, and normalised across contests using: x ¼ x�minðxÞ

max xð Þ�minðxÞ, where x is the
normalised, and x is the un-normalised increment value.

Statistical analysis. We fitted a Bayesian mixed-effect regression model using
Monte Carlo Markov Chain (MCMC) methods using the Bayesian fitting program
JAGS41 via the r2jags package in the R42 software. As diversity is measured as a
proportion between 0 and 1, we used beta-distributed errors, with a logit link. We
used diversity as the dependent variable, and chronological bin number as a fixed
effect. Each contest proposed a different problem and had a unique set of parti-
cipants, which meant that entries from within the same contest could not be
considered independent. To account for this, we included normally distributed
random effects, allowing both the intercept and the slopes in the diversity–time
relationship to vary with contest. The model definition, parameterised as per ref. 43

is given below:

Yij � beta μij; ϕ
� �

; E Yij

� �
¼μij; var Yij

� �
¼ μij ´ ð1�μijÞ

ðϕþ1Þ ;

logit μij

� �
¼ αj þ βjBinij; αj � Nðμint; σ2intÞ; βj � Nðμslope; σ2slopeÞ:

We present results from an MCMC run of 50,000 iterations after burn-in, with
3 chains, and a thinning value of 10, resulting in 5000 posterior samples, with
adequate mixing. We used uninformative Gaussian priors for the µ estimates, and
flat uniform priors for ϕ and each σ.

Ethical statement. This work was approved by the University Teaching and
Research Ethics Committee of the University of St Andrews (approval code
BL11221).

Data availability. The data and the code used for analyses are available at [https://
osf.io/xvtuy/?view_only=48ae607af38249cdb59965d2f11175b6].
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