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Single cell analysis of kynurenine and System L
amino acid transport in T cells
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The tryptophan metabolite kynurenine has critical immunomodulatory properties and can

function as an aryl hydrocarbon receptor (AHR) ligand. Here we show that the ability of

T cells to transport kynurenine is restricted to cells activated by the T-cell antigen receptor or

proinflammatory cytokines. Kynurenine is transported across the T-cell membrane by the

System L transporter SLC7A5. Accordingly, the ability of kynurenine to activate the AHR is

restricted to T cells that express SLC7A5. We use the fluorescence spectral properties of

kynurenine to develop a flow cytometry-based assay for rapid, sensitive and quantitative

measurement of the kynurenine transport capacity in a single cell. Our findings provide a

method to assess the susceptibility of T cells to kynurenine, and a sensitive single cell assay

to monitor System L amino acid transport.
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Kynurenine, the product of indoleamine 2,3, dioxygenase
(IDO)-mediated catabolism of tryptophan, is a potent
immunomodulatory molecule that can control T-cell

immune responses1–4. IDO expression is strongly induced in
antigen-presenting cells, especially dendritic cells, in response to
inflammatory signals, including LPS, type I interferons (IFNα/β),
type II interferons (IFNγ) and interleukin 1 (IL-1), as well as in
response to CTLA-4-mediated signalling5–7. The expression of
IDO is also increased in cancer cells8, 9. Multiple studies using
genetic or pharmacological manipulation of IDO signalling have
highlighted an immunomodulatory role of IDO expression to
restrain inflammation and promote tolerance5, 6. Cells that
express high levels of IDO deplete the microenvironment of
tryptophan and replace it with its metabolite kynurenine.
Although the depletion of tryptophan from the microenviron-
ment is immunosuppressive6, 10–12, kynurenine itself also has
immune modulatory properties. For example, it can function as a
ligand for the aryl hydrocarbon transcription (AHR) factor
complex to promote effector CD4+ T-cell differentiation. In
particular, AHR signalling has been shown to influence the dif-
ferentiation of activated CD4+ T cells to Foxp3 expressing,
immunosuppressive regulatory T cells13, 14.

The AHR can also be triggered by dioxins such as 2,3,7,8-
tetrachlorodibenzo-p-dioxin (TCDD) and by the tryptophan
photo-metabolite 6-formylindolo[3,2-b]carbazole (FICZ). The
concentrations of these ligands needed to activate the AHR are in
the pM/nM range compared with μM levels of kynurenine15, 16.
Why are such high concentrations of kynurenine needed to acti-
vate the AHR? In this context, Seok et al.16 have shown that
kynurenine acts more like a pro-ligand, requiring further ‘activa-
tion’ for AHR regulation. Hence, trace element condensation
products of kynurenine can be potent AHR agonists (in the
picomolar range)16. One other possible explanation for the rela-
tively high kynurenine concentrations required for AHR trigger-
ing, compared with other ligands, could be differential membrane
transport requirements for kynurenine versus other ligands, that
is, active transport versus passive diffusion across the plasma
membrane. Indeed, kynurenine has been shown to be transported
by large neutral amino acid transporters (LAT) in rat astrocytes17.

The question of how T cells transport kynurenine across their
membrane to activate the AHR has not been addressed. Hence,
the focus of the present work is to explore kynurenine transport
characteristics of T cells using both conventional radiolabelled
kynurenine uptake assays and a novel flow cytometry-based assay
that utilises the spectral fluorescent properties of kynurenine.
This flow cytometry assay enables rapid, sensitive and quantita-
tive measurement of kynurenine transport by single cells. These
studies show that kynurenine transport is restricted to in vitro
and in vivo immune-activated T cells; the kynurenine transport
capacity of naive quiescent T cells is low. Important triggers to
induce kynurenine uptake are engagement of the T-cell antigen
receptor (TCR) or exposure of TCR-activated T cells to proin-
flammatory cytokines such as interleukin-2 (IL-2). We establish
that kynurenine is transported across the cell membrane of
activated T cells by System L transporters and identify SLC7A5 as
the critical transporter. One role for kynurenine is to be a ligand
for the AHR in CD4+ T cells15, 18, 19. We show that this capacity
of kynurenine to function as an AHR ligand in immune-activated
CD4+ T cells is highly regulated and dependent upon System L
transporter availability.

Results
Antigen receptor and cytokines regulate kynurenine transport.
To characterise kynurenine membrane transport by T lympho-
cytes, we monitored the uptake of radiolabelled kynurenine (3H-

Kyn) into T cells. The data show that naive T cells do not
effectively take up 3H-Kyn (Fig. 1a). However, TCR triggering of
T cells induced a substantial increase in 3H-Kyn transport, which
is efficiently out-competed in the presence of excess, non-
radiolabelled kynurenine. TCR-primed CD8+ and CD4+ T cells
cultured in interleukin-12 (IL-12) and IL-2 clonally expand and
differentiate to cytotoxic T cells (CTL) and T helper 1 cells
(TH1s), respectively. Moreover, CTLs and TH1s maintained in
IL-2 also show high levels of kynurenine uptake (Fig. 1a). Acti-
vated T cells express many amino acid transporters, consequently
we used a pharmacological reductionist approach to define which
of these are responsible for kynurenine transport. The data in
Fig. 1b show that 3H-Kyn uptake in TCR-activated CD4+ T cells,
TH1s and CTLs is sodium independent, in contrast to 3H-Gln
uptake which is dependent on sodium. Sodium-independent
amino acid transport is a hallmark of System L transporters
whose substrates include leucine, phenylalanine, methionine and
tryptophan. Transport of the known System L substrate trypto-
phan, as well as the tryptophan metabolite kynurenine, is inhib-
ited by the System L blocker BCH in TH1 cells and CTLs (Fig. 1c,
d). The selectivity of BCH action is evidenced by its failure to
block radiolabelled glutamine uptake in activated T cells (Fig. 1e).

These experiments show that populations of in vitro activated
but not naive T cells have high kynurenine transport capacity. A
key question is whether immune activation of T cells in vivo
causes T cells to increase kynurenine transport capacity.
However, addressing this question is difficult because immune-
activated T cells in vivo are found at low frequency in secondary
lymphoid tissue and thus are not readily amenable to analysis
with conventional radiolabelled amino acid tracer assays which
monitor changes at a total cell population level. The capacity to
identify changes in subpopulations in complex mixtures of cells is
best addressed by developing single cell assays for kynurenine
uptake. In this context, a physical property of kynurenine is that it
is fluorescent with an excitation wavelength of 380 nm and an
emission spectrum of 480 nm; standard wavelengths for fluor-
ophores used in flow cytometry20, 21. Accordingly, we explored
the possibility of monitoring the capacity of single cells to
transport kynurenine using flow cytometry.

In initial experiments, we used effector CD8+ CTLs to test the
potential of monitoring kynurenine uptake by flow cytometry.
Figure 2a shows the fluorescence of CTLs measured using a BP
filter 450/50 with 405 nm laser excitation as they are exposed to
kynurenine. Data were collected for 120 s to determine the
baseline fluorescence of CTLs prior to addition of 200 μΜ
kynurenine, as indicated by the red arrow (left panel). The middle
panel shows the same data plotted as a trace graph of the
geometric mean of the cell population against time. The data show
that upon kynurenine addition, the 450 nm fluorescence emission
of CTLs increases substantially. The right panel compares the 450
nm fluorescence of CTLs incubated in the presence or absence of
kynurenine for 4 mins. These data show increased fluorescence
over time, indicating uptake of kynurenine by the CTLs.
Importantly, the estimated Km for the initial rate of kynurenine
transport in CTLs using the radiolabelled kynurenine transport
assay versus the flow cytometry assay were comparable (213 μM±
70 μM versus 267 μM± 20 μM; Fig. 2b). Moreover, the increase in
fluorescence of the kynurenine exposed CTLs was prevented when
the cells were treated with the System L inhibitor BCH (Fig. 2c).
We also compared the ability of BCH to block 3H-Kyn uptake
with the ability of BCH to block Kyn-mediated increased
fluorescence (MFI) in CTL, TH1 and 24 h TCR-stimulated
T cells, over 4-m uptake periods. The data in Table 1 show that
BCH blocks 80–90% of radiolabelled kynurenine uptake, and 80%
of kynurenine transport as measured by flow cytometry. System y
+ L transporters share many substrates with System L

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04366-7

2 NATURE COMMUNICATIONS |  (2018) 9:1981 | DOI: 10.1038/s41467-018-04366-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


transporters22. System L transport can be competitively blocked
using excess leucine, whereas System y+ L is preferentially
blocked by excess lysine23. Accordingly, we compared the
kynurenine transport after 4 min in the presence or absence of
excess leucine, lysine or BCH. The data show that lysine does not
affect kynurenine transport in TCR-stimulated CD8+ T cells or in
effector CTLs, whereas excess leucine blocks kynurenine transport
to comparable levels as BCH (Fig. 2d). Together, these data
indicate that kynurenine transport in activated T cells is mediated
by a sodium independent, BCH-sensitive System L transporter. In
parallel experiments to validate the use of kynurenine as a model
substrate for System L amino acid transport, it was noted that the
kynurenine-mediated increase in MFI is temperature sensitive;
CTLs incubated with kynurenine at 37 °C for 4 min increase 450
nm fluorescence; this is inhibited at 4 °C (Fig. 2e). This is
consistent with kynurenine being actively transported across the
cell membrane. One further important observation with regard to
development of a single cell assay is that the kynurenine
fluorescence survives fixation with no loss of mean fluorescence

intensity (MFI) seen in fixed samples compared to live samples
(Fig. 2f), thus allowing for kynurenine uptake on multiple samples
to be simultaneously performed, fixed and subsequently analysed
together. Moreover, kynurenine uptake in different populations
within the same sample can be compared using standard flow
cytometry gating strategies (Supplementary Fig. 1).

Interrogating System L transport in cells activated in vivo. The
single cell flow cytometry assay for kynurenine uptake should
permit the interrogation of the kynurenine transport capacity of
rare populations of cells including antigen specific lymphocytes
responding to immune stimuli in vivo. Accordingly, using this
newly optimised transport assay, we investigated the ex vivo
kynurenine transport capacity of in vivo antigen activated TCR
transgenic OT2 CD4+ T cells (Supplementary Fig. 1) and that of
effector CD8+ T cells generated during an immune response
against a recombinant strain of Listeria monocytogenes (rLM).
The data in Fig. 3a show that the proportion of CD8+ T cells
present in the spleen of rLM-infected mice is increased at D7
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Fig. 1 T cells regulate kynurenine transport through a System L transporter. a Uptake of 3H-kynurenine (0.1 μCi/ml, 4 min, 37 °C) in purified CD4+ T cells
± TCR activation using CD3/CD28 antibodies for 18 h; in vitro expanded TH1 cells (5 days) and in vitro expanded CTLs (5 days). Cold competition with
non-radiolabelled kynurenine is shown as a control for uptake specificity. b Uptake of 3H-kynurenine (0.1 μCi/ml, 4 min, 37 °C) or 3H-glutamine (0.5 μCi/
ml, 4 min, 37 °C) performed in Na+ containing or Na+-free uptake buffer. The graphs show radiolabelled tracer uptake in purified CD4+ T cells 48 h post
TCR activation using CD3/CD28 antibodies (left panel); IL-2 maintained TH1 cells (centre panel) and IL-2 maintained CTLs (right panel). c–e Radiolabelled
tracer uptake in IL-2 maintained TH1 cells (top panels) and IL-2 maintained CTLs (bottom panels) in the presence of non-radiolabelled substrate (5 mM;
cold competition) or the System L inhibitor, BCH (5mM). The graphs show 3H-tryptophan (c), 3H-kynurenine (d) and 3H-glutamine (e). Error bars are ±s.
d. Individual points represent biological replicates. a–e Three biological replicates. P values *= < 0.01; **= < 0.005; ***= < 0.001; ****= < 0.0001; ns =
not significant (ordinary one-way ANOVA)
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post-infection. This correlates with the emergence of effector CD8
+ T cells as determined by increased CD44 surface expression and
the production of the effector cytokine interferon gamma (IFNγ)
(Fig. 3b, c). The data show that kynurenine transport was readily
detectable ex vivo in D7 rLM-infected CD8+ T cells, and that this
transport was blocked by BCH and leucine competition but not
by lysine competition (Fig. 3d). Figure 3e shows the transport of
kynurenine in CD8+ T cells expressed as a ratio of kynurenine
uptake (MFI) to kynurenine uptake in the presence of BCH
(MFI), allowing for the direct comparison of System L-mediated
uptake across the experiment. The data show that effector CD8+
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Fig. 2 Flow cytometric monitoring of System L-dependent kynurenine uptake. a Flow cytometric evaluation of kynurenine uptake in IL-2 maintained CTLs.
Data acquired using 405 nm excitation (violet laser) and band pass filter 450 ± 50 on BD LSRII (Fortessa). The left panels show a dot plot of fluorescence
(emission 450 nm) of CTLs against time. Data acquired pre (120 s) and post (+700 s) addition of 200 μM kynurenine (indicated by red arrow). The centre
panel shows the same data plotted as a geometric mean trace (FlowJo software). The right panel shows overlaid histograms of the data from CTLs in the
presence or absence of kynurenine (200 μM) for 4 mins (37 °C). b The graphs show the number of 3H-kynurenine molecules transported per cell per
minute (left), or mean fluorescence intensity (MFI, right) of IL-2 maintained CTLs when incubated with increasing kynurenine concentrations. Km values,
the concentration of kynurenine that gives half maximal uptake, were calculated using standard Michaelis–Menton equation (GraphPad Prism software). c
450 nm fluorescence in IL-2 maintained CTLs treated with kynurenine, as in a, in the presence or absence of the System L inhibitor, BCH (10mM). d 450
nm fluorescence emission of 36 h CD3/CD28 stimulated CD8+ T cells (left) or IL-2 maintained CTLs (right) treated with kynurenine in the presence or
absence of BCH (10mM), Leu (5 mM) or Lys (5 mM) at (37 °C) for 4min. e 450 nm fluorescence emission of IL-2 maintained CTLs treated with
kynurenine in the presence or absence of BCH (10mM), at (37 °C); or treated with kynurenine at (4 °C) for 4 min. f The histograms show 450 nm
fluorescence in CTLs treated with kynurenine for 4 mins ± BCH (10mM). Cells were analysed immediately (live; top panel) or after fixation (fixed; bottom
panel) using 1% paraformaldehyde. MFIs are indicated in the histograms. Data shown are representative of 6 (CTL) or 4 (TCR) experiments

Table 1 Percentage of kynurenine uptake blocked by BCH

3H-Kyn Kyn MFI

TCR 79.1 ± 11.3 77.1 ± 14.7
TH1 90.2 ± 2.1 81.0 ± 9.0
CTL 92.5 ± 0.9 78.3 ± 4.5

The table shows the percentage of kynurenine uptake blocked by the System L inhibitor, BCH as
measured by 3H-Kyn uptake or 450 nm fluorescence emission. Data from CTLs, TH1 and 24 h
CD3/CD28 stimulated T cells (TCR) are shown. Data (±s.d.) are pooled from from six (CTL) or
four (TH1 and TCR) experiments
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T cells increase System L transport compared with uninfected
controls (UIC) (Fig. 3e). To verify the specificity of the observed
increase in kynurenine transport seen in the in vivo generated
CD8+ effector T cells, we performed the uptake assay in the
presence of increasing concentrations of the System L transporter
inhibitor, BCH or in the presence of increasing concentrations of
the System L preferred substrate, leucine. The data in Fig. 3f and g
show clearly that kynurenine uptake by in vivo generated CD8+

effector T cells is competed by both BCH and leucine in a dose
dependent manner. Furthermore, this is comparable to the
competition data obtained from in vitro generated effector CTLs.
The calculated IC50 values of BCH and leucine on kynurenine
transport in D7 rLM CD8+ effector T cells are 161 and 168 μM
respectively, whereas the IC50 values of BCH and leucine on
kynurenine transport in CTLs are 492 μM and 411 μM respec-
tively (Table 2). The concordance between the IC50s of BCH and
leucine values is in agreement with kynurenine being transported
by a System L transporter, and the higher IC50 values seen in the

CTLs would suggest these in vitro derived effectors express higher
levels of System L transporters than in vivo generated effector
CD8+ T cells. In support of this, CD98 expression (a.k.a SLC3A2;
heavy chain subunit of heterodimeric System L transporters) is
higher on in vitro maintained CTLs compared to D7 rLM CD8+

T cells (Fig. 3h).
Collectively, these data show that T cells activated in vitro

and in vivo upregulate kynurenine transport capacity
through a BCH-sensitive, System L amino acid transporter.
They also demonstrate that the spectral properties of
kynurenine can be exploited to allow analysis of kynurenine
transport in individual cells within tissues and mixed cell
populations.

SLC7A5 is the dominant kynurenine transporter in T cells. The
BCH sensitivity and sodium independence of kynurenine
transport in T cells indicates that it is transported by System L
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amino acid transporters. These are heterodimers composed of
a heavy chain chaperone unit, CD98 (SLC3A2) and a light
chain responsible for amino acid transport, e.g. SLC7A5
(LAT1) and SLC7A8 (LAT2)22. We have previously identified
that the dominant System L transporter expressed in activated
CD8+ T cells is SLC7A524. To probe the importance of
SLC7A5 expression for kynurenine uptake, we used CD4-Cre
Slc7a5fl/fl mice, which express Cre recombinase under the
control of the CD4 promoter, thus driving deletion of the
Slc7a5 gene in CD4+CD8+ double-positive (DP) thymocytes
and all subsequent T-cell populations24. The data in Fig. 4a
show that SLC7A5 null CD4+ T cells do not take up radi-
olabelled kynurenine in response to TCR activation. Together
these data, and the data presented above, reveal that kynur-
enine transport in lymphocytes is tightly controlled and
mediated predominantly through the System L amino acid
transporter SLC7A5. This explains why kynurenine transport
in T-cell populations is restricted to immune-activated T cells
and not seen in naive T cells; this is the pattern of SLC7A5
expression in T cells24, 25.

In further experiments, we set up co-cultures of wild-type
(CD45.1) and CD4Cre Slc7a5fl/fl (CD45.2) splenocytes and
activated the T cells with CD3/CD28 antibodies. Figure 4b shows
representative gating of the CD45.1+ (wild-type) and CD45.2+

(CD4Cre Slc7a5fl/fl), CD4+ and CD8+ subpopulations within the
splenocyte mix. The data in Fig. 4c and d compare kynurenine
uptake from co-cultured wild-type and CD4Cre Slc7a5fl/fl CD4+

and CD8+ T cells, respectively. Kynurenine uptake is increased
in wild-type T cells in response to TCR stimulation, but does not
increase in the SLC7A5 null T cells. The System y+ L preferred
substrate, lysine, did not inhibit kynurenine uptake in the
activated wild-type T cells, whereas BCH treatment did, thus
confirming that the kynurenine transport, as measured by flow
cytometry, was via System L transporters (Fig. 4d–f).

System L dependence of kynurenine activation of the AHR.
Kynurenine has been reported to act as an endogenous ligand for
the AHR2, 15, 18, 26. To assess the importance of System L-
mediated transport of kynurenine for its ability to act as an AHR
ligand, we explored the capacity of CD4+ T cells to transport
kynurenine as they polarise and differentiate to the TH17 lineage.
CD4+ TH17 cells express high levels of the AHR and show strong
responses to AHR ligands13, 26. In these experiments, CD4+

T cells were polyclonally activated with CD3/CD28 antibodies
and cultured with the cytokines IL-6, IL-1β and TGFβ
(ΤΗ17cond). Figure 5a shows that uptake of 3H-Kyn is low in the
naive CD4+ T cells and strongly upregulated in day 2 and day 3
activated CD4+ T cells, but by day 5 3H-Kyn uptake has returned
to near baseline low levels. The 3H-Kyn uptake by the activated
CD4+ T cells was always dependent upon BCH-sensitive System
L transport (Fig. 5a). We also used the flow cytometry-based
assay to monitor kynurenine uptake and found that CD4+ T cells
activated under TH17 polarising conditions show high levels of

kynurenine uptake on day 3 of culture but this declines at day 5
(Fig. 5b, c).

Does System L transport control kynurenine-mediated AHR
signalling? To investigate this, we monitored the ability of
kynurenine to induce the expression of mRNA encoding the
AHR target, Cyp1A1 in CD4+ TH17cond cells on D3, with high
levels of SLC7A5-mediated transport, compared to D5 post
activation, where cells have reduced levels of SLC7A5-mediated
kynurenine transport. As a control, we used the AHR ligand 6-
formylindolo[3,2-b]carbazole (FICZ), a tryptophan-derived
photoproduct. The intrinsic fluorescence of FICZ has previously
been used to monitor cellular accumulation of FICZ by flow
cytometry using BP filter for 530/30 nm emission with 488 nm
laser excitation27. Figure 5d shows that T cells rapidly take up
FICZ but this is not affected by System L inhibition with BCH,
whereas kynurenine uptake is inhibited by BCH (Fig. 5d–f).
Importantly, the data in Fig. 5g show that the ability of kynurenine
to induce Cyp1A1 mRNA expression in TH17 polarised CD4+

T cells was strikingly higher on day 3 post activation compared to
day 5 cells, which correlates with the relative ability of the cells to
transport kynurenine (Fig. 5a, b). This is in contrast to FICZ
mediated Cyp1a1 mRNA expression, which is equivalent on D3
and D5 (Fig. 5g). Further evidence for the importance of System L
transport for kynurenine action came from experiments using
BCH treatment to inhibit System L transport. The data in Fig. 5h
show that BCH impedes Cyp1a1 mRNA induction in response to
kynurenine, but does not block FICZ mediated Cyp1a1 mRNA
induction. To further investigate the parameters of kynurenine-
mediated AHR signalling on CD4+ TH17cond cells, we performed
a dose–response of kynurenine and measured corresponding
Cyp1A1 mRNA expression in D3 TH17cond cells. The EC50 of
kynurenine to drive Cyp1A1 mRNA expression was 11.07 μM
(Fig. 5i). This correlates tightly with the EC50 for AHR activation
by kynurenine in COS-1 cells (13 μM)16, and the EC50 of
kynurenine to drive Cyp1A1 expression in U87 glioma cells (12.3
μM)2. Moreover, the data in Fig. 5j show that induction of Cyp1A1
mRNA in D3 TH17cond cells in response to kynurenine (10 μM) is
dependent on AHR signalling, as it is completely blocked in the
presence of an AHR antagonist. These data collectively show that
kynurenine can activate AHR signalling in activated CD4+ T cells,
but only when cells express a System L transporter. Furthermore,
the blockade of kynurenine transport with System L inhibitors
blocks kynurenine-mediated AHR signalling.

Discussion
The present data show that kynurenine uptake in T cells is
mediated by the System L amino acid transporter SLC7A5. The
expression of SLC7A5 is precisely regulated by immune acti-
vation24 and, accordingly, the ability of T cells to take up
kynurenine is restricted to immune-activated T cells. The
importance of this regulated transport of kynurenine is illu-
strated by the fact that the ability of kynurenine to function as a
ligand for the AHR is limited by the System L transport capacity
of the T cell. Hence, only cells expressing high levels of System L
transporter activate the AHR in response to kynurenine;
blocking System L transport inhibits AHR activation in response
to kynurenine. This could explain why relatively high extra-
cellular concentrations (μM) levels of kynurenine are needed to
act as an AHR ligand compared with the effects of other AHR
ligands (e.g. TCCD or FICZ) that are proposed to passively
diffuse across the plasma membrane. In this respect, recent work
has reported trace element condensation products of kynurenine
to be a potent AHR ligand16. Our data showing the System L
dependence of kynurenine activation of the AHR indicate that
this trace metabolite may also need to be actively transported

Table 2 IC50 values of BCH and leucine on kynurenine
uptake

BCH LEU

CTL 492 ± 45 411 ± 30
D7 rLM 161 ± 34 168 ± 38

The IC50 (μM) values of BCH or LEU on kynurenine uptake in CD8+ T cells from spleen 7 days
after recombinant Listeria monocytogenes (D7 rLM) infection and CTL. IC50 values were
calculated from the dose–response curves (Fig. 3f, g) using one-site Fit IC50, GraphPad Prism.
Data are from five biological replicates
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into the cell. The ability of kynurenine to enter cells is thus
dictated by the Km of System L transporters for kynurenine. In
this respect, studies that consider how kynurenine controls the
immune system, be it AHR-dependent or independent, do not
consider that cells will not be capable of sensing intracellular
kynurenine unless they have been activated to express System L
transporters.

The knowledge that kynurenine is a System L substrate, and
more specifically an SLC7A5 substrate, also affords new insight

about why kynurenine might be immunosuppressive.
SLC7A5 substrates thus include other indispensable large neu-
tral amino acids such as leucine and hence SLC7A5 is required
for the activation of the leucine sensing serine kinase pathways
mediated by mammalian target of rapamycin complex1
(mTORC1)24. SLC7A5-mediated amino acid transport is also
critical for maintaining expression of the transcription factor c-
Myc, a key regulator of lymphocyte metabolism25, 28. There may
thus be multiple AHR independent immunosuppressive effects
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of kynurenine regulated through amino-acid competition for
uptake or exchange through SLC7A5. However, the ability of
kynurenine to function as an immunomodulatory molecule via
this ‘competition model’ or to activate the AHR will be deter-
mined by concentrations of other System L substrates in the
T cell microenvironment. We show the Km of kynurenine
transport in CTLs is ~200 μM, whereas the Km of other System
L substrates (eg leucine, tryptophan or methionine) is ~10-fold
less. Plasma levels of System L substrates range from 20–100 μM
and are relatively constant29, 30, whereas plasma levels of
kynurenine are rarely above 3 μM and subject to efficient
clearance3, 31, 32. Taken together, this indicates that the levels of
kynurenine required to out-compete the much higher affinity
substrates exceed the physiological kynurenine levels measured

to date, and allow us to conclude that only in microenviron-
ments of fierce nutrient competition would this particular sce-
nario ever be plausible. Do microenvironments exist where
kynurenine could function as a AHR ligand? In this context,
high concentrations of kynurenine (50–100 μM) are con-
sistently used to demonstrate AHR activation
in vitro1, 2, 7, 14, 33. These concentrations are far in excess of
kynurenine plasma levels typically found in the literature (~1–3
μM)3, 31, 32. Unfortunately, there are very few studies that
include any detailed, microenvironmental quantitative meta-
bolite analysis. However, Opitz et al. measured kynurenine
concentrations of 37 μM in a U87 xenograft tumour model. This
is within the range of what could activate the AHR given low
levels of competition with other SLC7A5 substrates. In this
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context, it is beginning to be realised that the tumour micro-
environment can be depleted of key nutrients. For example, Ho
et al.34 demonstrated a 10-fold reduction in glucose con-
centrations measured from tumours compared with matched
spleen or blood samples. Using these measurements to extra-
polate a 10-fold reduction of System L substrate amino acids
and a 10-fold increase in kynurenine levels in IDO-expressing
tumour environments at the same time, could create an envir-
onment whereby kynurenine levels would be significantly high
enough to drive AHR activation as well as apply competitive
pressure upon SLC7A5-mediated transport of essential amino
acids. Hence, local/microenvironmental kynurenine levels
would undoubtedly be critically important but even then, our
data clearly demonstrate that only SLC7A5 expressing T cells
will be capable of transporting kynurenine into the cell interior.
The ability of kynurenine to act as an immunomodulatory
metabolite would thus be limited.

Notwithstanding the question of the in vivo significance of
kynurenine as an AHR ligand, one useful property of kynur-
enine that facilitated characterisation of its membrane transport
is its spectral properties. These have permitted the development
of a flow cytometry-based assay that allows rapid, sensitive and
quantitative measurement of kynurenine transport in single
cells. The FACS-based kynurenine uptake assay allows analysis
of individual cell responses in tissues and provides a rapid assay
to assess the capacity of T cells or other cells to be susceptible to
the immunosuppressive effects of kynurenine. It is also highly
pertinent that kynurenine is a System L amino acid transporter
substrate in T cells; this knowledge allows the uptake of
kynurenine to be used as an assay for cellular System L trans-
port. In this respect, the current “gold standard” for investi-
gating System L activity is to use radiolabelled amino acids that
are System L substrates (e.g. leucine, phenylalanine) in short
uptake assays, allowing transporter kinetics and biochemical
parameters to be studied. However, radiolabelled amino acid
uptake measures population responses and cannot interrogate
nutrient transport in intricate cellular biological systems. This
requires single cell-based assays such as the kynurenine flow
cytometry-based assay described herein. The present data show
that monitoring increases in cellular fluorescence in cells
exposed to kynurenine allows quantitation of System L trans-
porter activity in single lymphocytes and can therefore be used
as a tool to measure System L amino acid uptake in rare cell
populations in complex tissues. This is a very rapid and sensitive
assay for System L transport. Importantly, the simplicity of the
assay makes it easy to rigorously control for System L transport
activity by assessing the sensitivity of the kynurenine uptake to
the System L inhibitor BCH as well as its sensitivity to com-
petition with System L substrates (e.g. leucine) versus non-
System L substrates (e.g. lysine). This description of a single cell
flow-based assay for amino acid transport is a novel and
important advancement in a field which has previously been
constrained to population-based approaches using radioligands
or metabolite analyses.

Methods
Mice. C57BL/6J (wild-type, WT), CD4Cre Slc7a5fl/fl and C57BL/6J Ly5.1 (CD45.1)
mice were bred and maintained in the WTB/RUTG, University of Dundee. All
studies were performed on project license PPL60/4488, approved by the University
of Dundee Welfare and Ethical Use of Animals Committee and in compliance with
UK Home Office Animals (Scientific Procedures) Act 1986 guidelines. Female mice
aged 12–20 weeks were used.

Cells. To activate primary T cells, spleens and/or lymph nodes (LN) were
removed, disaggregated and red blood cells lysed. Cells were stimulated with 1 μg/
ml of the CD3 monoclonal antibody (2C11) and 2 μg/ml anti-CD28 (37.51;
ebiosciences) to trigger the TCR. Naive CD4+ T cells and 24 h TCR-activated

CD4+ T cells were purified using CD4 isolation kit (EasySep, STEMCELL
Technologies). To generate CTLs, cells were washed from TCR stimulus after 48
h and then expanded in IL-2 (20 ng/ml; Proleukin, Novartis) for a further
3–5 days. To generate TH1s and TH17s, murine CD8+ T cells were depleted from
lymph node preparations using CD8 depletion kit (EasySep, STEMCELL Tech-
nologies). The resulting mix of CD4+ T cells and APC were cultured at 3 × 105

cells/ml for 5 days in the presence of anti-CD3 (2 μg/ml) and anti-CD28 (3 μg/
ml) and, for TH1s; cytokines IL-12 (10 ng/ml; RnD Systems) and IL-2 (20 ng/ml)
and for TH17s; cytokines IL-6 (50 ng/ml, Peprotech), IL-1β (10 ng/ml, Pepro-
tech) and TGFβ (2 ng/ml, Peprotech). TH17s were cultured in IMDM (Gibco).
All other cells were cultured in RPMI 1640 containing L-glutamine (Gibco).
Culture media was supplemented with 10% FBS (Gibco), 50 μM β-
mercaptoethanol (β-ME, Sigma) and penicillin/streptomycin (Gibco). Cells were
incubated at 37 °C with 5% CO2 throughout.

Where indicated, cells were treated with 6- formylindolo[3,2-b]carbazole (FICZ,
Biomol, Enzo Life Sciences), kynurenine (Sigma), 2-amino-2-norbornanecarboxylic
acid (BCH, Sigma) or the AHR antagonist CH223191 (Sigma) for the indicated
concentrations and times.

Radiolabelled tracer uptake. Briefly, radiolabelled uptake was carried out using
1 × 106 cells resuspended in 0.4 ml uptake medium. Kynurenine uptake was
carried out in warmed (37 °C) HBSS (GIBCO) containing [3H] L-kynurenine (0.1
μCi/ml). 4 min uptake assays were carried out layered over 0.5 ml of 1:1 silicone
oil (Dow Corning 550 (BDH silicone products; specific density, 1.07 g/ml):dibutyl
phthalate (Fluka)). Cells were pelleted below the oil, the aqueous supernatant
solution, followed by the silicon oil/dibutyl phthalate mixture was aspirated, and
the cell pellet underneath resuspended in 200 μl NaOH (0.5 M) and β-
radioactivity measured by liquid scintillation counting in a Beckman LS 6500
Multi-Purpose Scintillation Counter (Beckman Coulter). Similarly, glutamine
uptake was performed using [3H] L-glutamine (0.5 μCi/ml); tryptophan uptake
was performed using [3H] L-tryptophan (0.5 μCi/ml). Where indicated, 5 mM
BCH, Kynurenine, L-glutamine or L-tryptophan were used, respectively, to
quench radiolabeled ligand uptake. Where indicated, the sodium free buffer was
prepared using TMACl as described in Baird et al.35 Data are expressed as
molecules radiotracer per cell per minute. [3H] L-kynurenine, [3H] L-tryptophan
and [3H] L-glutamine were obtained from Perkin Elmer. All other chemicals were
obtained from Sigma.

Flow cytometry. For cell surface staining, antibodies conjugated to FITC, PE,
APC, Alexafluor 647 (A647), APC-efluor780 (APCe780), and PerCPCy5.5 were
obtained from either BD Pharmingen, eBioscience or Biolegend. Fc receptors
were blocked using Fc Block (BD Pharmingen). Antibody clones used were:
CD4 (RM4-5), CD8a (53-6.7), TCRβ (H57-597), CD44 (IM7), CD45.1 (A20),
CD45.2 (104) and CD98 (RC388). Cells were fixed using 1% paraformalde-
hyde. Standard intracellular cytokine staining protocols were followed for
IFNγ (clone XMG1.2; Biolegend) staining. Data were acquired on a LSR
Fortessa II with DIVA software or a FACSVerse flow cytometer with FACSuite
software (BD Biosciences) and analysed using FlowJo software version 9.9.5
(TreeStar).

Single cell assay to monitor System L amino acid transport. Start with at least
1 × 106 cells per condition, to obtain at least 200,000 events analysed by flow
cytometry at the end of the protocol. Conditions should include: the test samples
(treated with kynurenine); background fluorescence control samples (matched
samples, not treated with kynurenine, thus allowing for identification of cells
exhibiting fluorescence above background); specificity controls such as System L
blocked samples (BCH-treated, or Leu-treated), or uptake performed on ice (4 °C)
(to determine transported kynurenine as opposed to surface binding); positive
controls such as cell treatments driving high expression of System L transport. If
required, surface cell antibody staining should be performed prior to uptake assay
protocol. This may be performed at room temperature or 4 °C, however test
samples must be warmed to 37 °C, e.g. in water bath, prior to kynurenine uptake.
(As with all multi-parameter flow cytometry, appropriate antibody staining con-
trols must also be performed.) Samples can be fixed immediately after uptake assay
by addition of 4% (vol/vol) paraformaldehyde (PFA; to a final concentration of 1%)
for 30 min at room temperature.

For kynurenine uptake assay; pre-warm kynurenine (800 μM, in HBSS), BCH
(40 mM, in HBSS) and lysine (20 mM, HBSS) and HBSS to 37 °C. After surface
antibody staining of samples, resuspend cells in 200 μl warmed HBSS (1–5 × 106

cells in FACS tubes, or scale accordingly into plates). Keep cells in water bath at 37
°C. Add 100 μl of HBSS, or BCH or lysine to appropriate samples. Add 100 μl HBSS
to no kynurenine controls (final volume 400 μl). Finally, add 100 μl kynurenine to
appropriate samples. Stop uptake after 4 min by adding 125 μl 4% PFA for 30 min
at room temperature, in the dark. The final concentrations for uptake assay are:
200 μM kynurenine; +/-10 mM BCH; +/-5 mM lysine. After fixation, wash cells
twice in PBS/0.5% BSA and resuspend in PBS/0.5% BSA prior to acquisition on
flow cytometer. The 405 nm laser and 450/50 BP filter are used for kynurenine
fluorescence detection.
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To monitor kynurenine uptake in live cells, acquire data on flow cytometer
immediately following addition of kynurenine and plot fluorescence against time.

Recombinant Listeria monocytogenes infection. Mice were infected with atte-
nuated ActA-deleted L. monocytogenes i.v. with 10 × 106 colony forming units36,
and T lymphocytes from spleens were analysed by flow cytometry on D7 post-
infection.

Quantitative real-time PCR. RNA was purified using the RNeasy RNA purifica-
tion Mini Kit (Qiagen) (Genomic DNA was digested with RNase-free DNase
(Qiagen) following manufacturer instructions) and reverse-transcribed using the
iScript cDNA synthesis kit (BioRad). Quantitative PCR was performed in 96-well
plate format using iQ SYBR Green-based detection (BioRad) on a BioRad iCycler.

Cyp1A1 qPCR primers:
Forward: TGCCTAACTCTTCCCTGGATGCCTT
Reverse: CCGGATGTGGCCCTTCTCAAATGT

Statistics. Group/sample sizes for individual experiments or animal studies were
determined by previous pilot studies and experience with regard to the experi-
mental parameters measured. No samples/animals were excluded, neither
blinding nor randomisation was used. All data analysis was performed using
GraphPad Prism version 7.0, GraphPad Software. A Shapiro–Wilkes normality
test was performed followed by either unpaired t-tests or one-way ANOVA with
Dunnett’s multiple comparison test. Variance was similar between the groups
that were statistically compared. P values *= < 0.01; **= < 0.005; ***= < 0.001;
****= < 0.0001; ns= not significant. Specific tests used are stated in the figure
legends.

Adoptive transfer and ova immunisation. For in vivo activation OT2 (CD45.1)
lymph node cells were transferred into C57/Bl6 (CD45.2) hosts. After 24 h, mice
were immunised i.p. with 4-Hydroxy-3-nitrophenylacetyl hapten conjugated to
ovalbumin (NP-OVA; 100 μg; BioSearch technologies) adsorbed to alum
(Pierce). Spleens were harvested and transferred cells were identified and ana-
lysed for activation and proliferation at D0, D1 and D3 after immunisation,
respectively.

Data availability. The data that support the findings of this study are available
from the corresponding author on reasonable request.
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