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Theoretical principles of transcription factor traffic
on folded chromatin
Ruggero Cortini 1,2 & Guillaume J. Filion 1,2

All organisms regulate transcription of their genes. To understand this process, a complete

understanding of how transcription factors find their targets in cellular nuclei is essential. The

DNA sequence and other variables are known to influence this binding, but the distribution of

transcription factor binding patterns remains mostly unexplained in metazoan genomes.

Here, we investigate the role of chromosome conformation in the trajectories of transcription

factors. Using molecular dynamics simulations, we uncover the principles of their diffusion on

chromatin. Chromosome contacts play a conflicting role: at low density they enhance tran-

scription factor traffic, but at high density they lower it by volume exclusion. Consistently, we

observe that in human cells, highly occupied targets, where protein binding is promiscuous,

are found at sites engaged in chromosome loops within uncompacted chromatin. In sum-

mary, we provide a framework for understanding the search trajectories of transcription

factors, highlighting the key contribution of genome conformation.
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Transcription factors play a key role in the regulation of
transcription1. Upon binding to cognate regulatory
sequences within the chromatin, the transcription factors

trigger a cascade of molecular events culminating in the recruit-
ment of the RNA polymerase and subsequent transcription2.
Understanding how transcription factors find their targets in the
genome is thus the very first and pivotal step in understanding
how transcription is controlled at the molecular level.

Transcription factors contain a DNA-binding domain with a
non-specific affinity for DNA and a high specific affinity for some
target sequence called the binding motif3. Affinity for their motifs
predicts the binding of transcription factors in vitro4. However,
recently acquired data using the ChIP-on-chip and ChIP-seq
technologies showed a different picture in the nucleus of multi-
cellular eukaryotes. Transcription factors occupy sites where their
motif is absent5,6, and leave unbound most sites where it is
present7–10, indicating that a simple protein–DNA interaction
model is insufficient to describe the transcription factor dynamics
in vivo.

The nucleus is a rich and heterogeneous environment, where
higher-order interactions between molecules take place. Histones,
the core component of chromatin itself, present a barrier to
transcription factors binding. To overcome this constraint, the so-
called pioneer transcription factors have been shown to bind their
targets in the presence of a nucleosome, or even aid other tran-
scription factors to gain access to their targets11. However, as the
binding of pioneer transcription factors is vastly different between
cell types12, the simple view that they bind their motif regardless
of the chromatin context cannot hold true. Therefore, additional
phenomena dictate and drive the search process of transcription
factors within the nucleus.

One such mechanism is facilitated diffusion13,14, which
emphasizes the key role of non-specific affinity for the search
kinetics. Transcription factors are first adsorbed onto DNA or
chromatin through an electrostatic pull acting at a short distance15,
and for a short period of time they diffuse on the polymer. This
scanning or sliding mode is essential to discover the target
sequence13,16. However, both terms are somewhat inaccurate:
transcription factors may merely detach and reattach to the
chromatin immediately. At the points where the chromatin fibers
meet, transcription factors can in theory fall off one fiber and
reattach to the adjacent one, effectively jumping over large genomic
distances while diffusing on the chromatin. Such effects have been
observed in vitro, where the three-dimensional (3D) conformation
of naked DNA was shown to impact the search kinetics17.

The importance of this mechanism of diffusion is well estab-
lished in the eukaryotic nucleus18, and it is now clear that tran-
scription factors diffuse intermittently in the nucleoplasm and on
the chromatin fiber itself19,20. However, little is known about the
impact of the geometry of the chromatin fiber. Genomes have a
characteristic 3D structure, revealed by chromosome capture
methods such as Hi-C21. It is still unclear how genomes acquire a
particular conformation, however, it is known that once pre-
ferential contacts are established, they can influence the trajec-
tories of transcription factors diffusing along the chromatin.

Therefore, it is tempting to hypothesize that the knowledge of
chromosome conformation could be used to obtain an insight
into the search dynamics of transcription factors. However, the
general principles are presently unknown for lack of a general
theory. Previous work by ourselves and others suggested methods
to infer the binding profiles of proteins on DNA from Hi-C
matrices22–24, but the validity of those approaches remains
unclear as there is no guarantee that they correspond to realistic
physical processes.

Here we establish the basic principles of transcription factor
diffusion on folded chromatin. We use a molecular dynamics

simulation approach to investigate the role of chromosome
conformation in the search process. Exploring configurations
with the strings and binders model of Barbieri et al.25, we find
that geometry has a significant influence on the traffic of diffusing
bodies with an affinity for the polymer. Strikingly, polymer loops
increase traffic and occupancy in a wide range of conditions, but
decrease them at high compaction. Consistently, Hi-C and ChIP-
seq data show that massive protein binding accumulates at
genomic loci engaged in long-distance contacts. Overall, this
work suggests that the 3D conformation of the genome affects the
discoverability of binding sites and contributes to the global
distribution of transcription factors in vivo.

Results
Model and assumptions. We used molecular dynamics simula-
tions to understand how the conformation of the genome can
affect diffusion of transcription factors. This modeling strategy
captures the behavior of simple objects according to realistic
physical interactions. To develop a general and tractable model,
we stripped down the specific features of chromatin and tran-
scription factors to their bare essentials: chromatin was con-
sidered as a folded polymer and transcription factors as diffusible
molecules with an affinity for the chromatin.

We simulated spherical particles, referred to as tracers, which
were used as a model for transcription factors except for one
important difference: tracers have no specific affinity for any
particular site on the polymer, contrary to the specificity of
transcription factors. This aspect of the model is essential to
capture the dynamics of transcription factors in search mode,
rather than in bound mode. Using these restrictions, tracers can
be considered as either non-specific transcription factors, or
transcription factors not bound to their target site. The strength
of the non-specific affinity of the tracer on the polymer was
labeled ε.

Folded polymers were simulated using a model originally
developed by Barbieri et al.25 and are summarized graphically in
Fig. 1. Briefly, the model describes the large-scale structure of the
polymer as an aggregate of stable loops formed between
predefined anchor monomers. The loops are formed by special
particles called binders that have a high affinity for anchor
monomers and can thus bridge them together. The overall
openness or compaction of the polymer depends on the number
of loops, or more accurately on the fraction of these anchor
monomers, labeled ϕ.

Varying ε and ϕ allowed us to explore a wide range of
conditions. For each simulation, we computed the intra-polymer
contact matrix where each entry was the number of times two
given monomers were in contact during the simulation (meaning
that their distance is less than a threshold t, see Methods). From
this matrix, we computed the row sum, referred to as the polymer
contacts, representing the total amount of contacts for each
monomer. We also computed the total number of contacts
between the tracers and the monomers, referred to as the traffic of
the tracers. This profile represents the total amount of time
tracers spent in contact with different regions of the polymer.

Most of the explored parameter space corresponds to
physiologically relevant conditions. For example, recent estimates
from electron microscopy suggest that within the nucleus of a
typical human cell, the local chromatin density varies in the range
of 12–50%26, which corresponds to values of ϕ in the range of
0.1–0.4 (see Methods and Supplementary Fig. 2a). Other
experiments suggest that for a typical human cell, a transcription
factor spends approximately the same amount of time diffusing
on the chromatin and in the nucleoplasm19,20. This corresponds
to ε ≈ 2kBT in the simulations, and for ε in the range of 1.0–2.5
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kBT, the time spent on the polymer varies from 5 to 95%
approximately, which covers most possible cases (Supplementary
Fig. 3c).

We carried out two independent sets of simulations, the first
with 10 tracers and the second with 200 tracers. This allowed us
to test the effect of the tracers themselves on the conformation of
the polymer. The results of both simulations were similar.
However, it is clear from the analysis of both simulations that
when the tracer affinity exceeds a given threshold, the polymer
changes conformation due to a local increase in the tracer
concentration (Supplementary Note 1). The implications of this
result are discussed in more detail within the Discussion section.

Importantly, the results clearly demonstrate the robustness of
the model in regard to the details of the simulation. In particular,
simulations with monovalent tracers (Supplementary Note 4),
and in a crowded medium (Supplementary Note 6), gave the
same qualitative results.

Polymer loops have two opposite effects on the tracer traffic. In
what follows, the tracer traffic is defined as the total number of
times that the tracers are detected in contact with each monomer.
In other words, tracers visit more often a monomer with high
traffic than a monomer with low traffic. In our simulation assay,
polymer looping has two opposite effects on the traffic of the
tracers, which is more clearly demonstrated when the values of
the parameters are extreme (Fig. 2).

Of note is the correspondence between the monomer contact
frequency and the traffic of the tracers. The correspondence is
particularly clear in the cases where only a few loops are present
in the polymer (low ϕ) and the binding of the tracers is strong
(high ε).

We measured the correspondence between the polymer
contacts and the tracer traffic using the Pearson correlation
coefficient and the Kullback–Leibler (KL) divergence DKL. Here,
the KL divergence is computed as:

DKLðCjRÞ ¼
X
i

Ci log
Ri

Ci
; ð1Þ

where Ci and Ri represent the traffic on the ith monomer and the
polymer contacts made by monomer i, respectively. The KL
divergence and the Pearson correlation coefficient are both valid
metrics although they represent different features of the data.
When using the Pearson correlation coefficient, the two variables
are interpreted as numeric random variables and the quantity of
interest is their covariation. When using the KL divergence, the
two variables are interpreted as probability distributions and the

quantity of interest lies in the information lost by using the
polymer contacts array instead of the tracer traffic array.

If the polymer has few loops (ϕ= 0.02) the high values of r and
the low values of DKL indicate that the total amount of contacts
coincides with the traffic of the tracers (Fig. 2b). This is a direct
result of the combination of the two following effects: Firstly, the
on-rate of the association reaction is doubled at the contact points
because tracers come from two distinct branches of the polymer.
Secondly, the off-rate reduces as the local concentration of the
polymer increases, thereby favouring binding (see Supplementary
Movie 1). The latter effect is due to the attractive component of
the interaction potential between the tracers and the monomers.
The overall effect is an increase of the ratio between on-rate and
off-rate, i.e., a net increase in traffic.

Highly compacted polymers with a multitude of looping sites
(ϕ= 0.50) define another category. High compaction combined
with low tracer–polymer affinity (low ε) results in a strong anti-
correlation between the contact amount and the occupancy
profile of the tracers, i.e., the tracers have a tendency to visit the
sites that make fewer contacts. The reason is that the polymer
forms a globule, where the most visited monomers are at the
surface, and their contacts with other monomers are less frequent.
In comparison, when the tracer–polymer affinity is high (high ε)
we observe a caging effect, whereby the tracers remain blocked in
compacted inner structures (see below). In this case, both r and
DKL report that the tracer traffic and the polymer contacts are
unrelated (see Supplementary Movie 2).

Figure 3 summarizes these results with the average values of
the KL divergence and the Pearson correlation coefficient for all
the parameters tested in our simulations. Regardless the number
of tracers, a larger number of loops results in a poorer
correspondence between the traffic of the tracers and the contacts
of the polymer. In summary, the conformation of the polymer
defines two regimes: one where the polymer is uncompacted and
contacts predict the traffic of the tracers, and another one where
the polymer is compacted and contacts do not predict the traffic
of the tracers.

High polymer compaction excludes tracers. Why does the
conformation of the polymer cease to predict the traffic of the
tracers when the number of loops increases? At least two non-
mutually exclusive scenarios can be imagined. In the first, the
polymer forms globular domains that are too dense for tracers to
enter. In the second, tracers enter the domains but steric effects
prevent them from binding to the anchors of the loops.

To address this question, we defined the coverage of the
polymer as the percentage of monomers visited by a tracer at least
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Fig. 1 Description of the simulation setup. a The polymer is made of p (polymer) and a (anchor) particles, connected by harmonic springs. Binders (b
particles) are introduced to bridge a particles. Tracers (t particles) interact non-specifically with both p and a particles. Binders and tracers interact only by
hard-core repulsion, i.e., by volume exclusion. b Snapshot of a simulation together with the simulation box. c Zoom-in of a loop formed by the binders and
their binding sites, along with the tracers bound nearby (yellow)
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once during the simulation. Figure 4 shows that the coverage
decreases as the number of loops increases (high ϕ), consistent
with the view that the tracers cannot access the core of the
polymer. However, increasing the affinity of the tracers alleviates
this effect, so the exclusion does not proceed by hard-core
repulsion, otherwise even tracers with high affinity for the
polymer could not penetrate the core. In fact, most of the
monomers are accessible at some value of the non-specific
affinity, so for the highest values of the compaction that we tested,
the polymer rarely has a density as to be completely impermeable
to tracers. We surmise that higher values of the compaction ϕ
would result in a fully impenetrable polymer core.

We computed the average correlation between the occupancy
of the tracers and the occupancy of the binders. The binders
bridge the loop anchors and remain fixed on the same monomers
for the duration of the simulation. As the number of loops
increases (high ϕ), the correlation of the occupancy profiles
becomes strongly negative, indicating that the binders exclude the
tracers at looping sites. This can be partially alleviated by a higher
non-specific affinity; however, the correlation remains negative at
high number of loops.

These results suggest that in compact polymers, both effects
apply: the core of the polymer domains becomes less accessible
and the anchor sites become crowded. As a result, contacts within
the polymer become poor predictors of the occupancy of the
tracers.

To better understand the contribution of volume exclusion, we
tested the behavior of tracers interacting with the polymer only
through hard-core repulsion. We kept the polymer in a fixed state
while simulating the motion of the tracers alone. In terms of
traffic, a fixed polymer gives essentially the same results as a
mobile polymer (since the simulated polymer structures are quite
rigid) but substantially speeds up the simulations when modeling
tracers without affinity for the polymer.

We ran the simulations at two extremes of the compaction
spectrum (Fig. 5). At low polymer compaction (ϕ= 0.02), tracers
with and without affinity for the polymer have dissimilar traffic
profiles (r= 0.02). This confirms the importance of non-specific
affinity in shaping the traffic. In contrast, at high polymer
compaction (ϕ= 0.50), tracers with and without affinity for the
polymer have comparable traffic profiles (r= 0.58). This shows
that in this regime, the affinity between the polymer and the
tracers has little impact on the occupancy. In conclusion, the
pattern of tracer traffic in highly compacted polymers is mainly
driven by volume exclusion effects.

Highly occupied targets in the human genome. An important
question is whether the phenomena observed in our simulations
are relevant to living cells. There is a general agreement that
chromatin compaction tends to exclude transcription factors27,
but the idea that the geometry of the chromatin may guide
transcription factors is still exploratory22,2428,29.
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Fig. 2 The dual role of looping on transcription factor traffic. a Effect of chromosome conformation on the traffic of transcription factors. At low compaction
(left), transcription factors (red) slide uniformly on the chromatin fiber (brown). In the presence of a loop (middle), transcription factors accumulate at the
contact point. When the number of loops is high (right), transcription factors diffuse on the outer shell of the globule due to volume exclusion effects. b, c
Examples of simulation results with the smallest and largest values of ϕ and ε in cross combinations. For each example, we show the contact matrix of the
polymer in log scale, above the traffic of the tracers and the total amount of contacts for each monomer (Row sum). Each plot indicates the values of the
Pearson correlation coefficient r between the two, along with their Kullback–Leibler divergence (see text). Panel b shows a simulation with low polymer
compaction and high tracer affinity, resulting in a strong correlation between the polymer contacts and the tracer traffic. Panel c shows that the opposite
happens with a low tracer affinity and high polymer compaction

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04130-x

4 NATURE COMMUNICATIONS |          (2018) 9:1740 | DOI: 10.1038/s41467-018-04130-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38
0.40
0.42
0.44
0.46
0.48
0.50

a

0.1

�[kBT ]

D
K

L

� �

�[kBT ]

0.2

0.3

0.4

0.5

0.6

0.7

0.8
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38
0.40
0.42
0.44
0.46
0.48
0.50

b

–0.6

–0.4

–0.2

0.0

0.2

0.4

0.6

0.8

r

Fig. 3 Coincidence of the traffic of the tracers with the contacts of the polymers. Average values of the Kullback–Leibler divergence (a) and of the Pearson
correlation coefficient (b) for different model parameters. Calculations were performed as described in Methods

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

�[kBT ] �[kBT ]

0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38
0.40
0.42
0.44
0.46
0.48
0.50

0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38
0.40
0.42
0.44
0.46
0.48
0.50

a

0.75

0.80

0.85

0.90

0.95

1.00

C
ov

er
ag

e

� �

b

–0.8

–0.6

–0.4

–0.2

0.0

0.2

0.4

r b
in

d
er

s−
tr

ac
er

s

Fig. 4 Volume exclusion effects in the simulations. a Average percentage of sites of the polymer that are visited by the tracers during the simulations
(coverage). b Average values of the Pearson correlation between the tracer and binder occupancy sets

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04130-x ARTICLE

NATURE COMMUNICATIONS |          (2018) 9:1740 | DOI: 10.1038/s41467-018-04130-x | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Our results indicate that at low chromatin compaction,
long-range chromosomal contacts may increase the traffic of
transcription factors. The simulations predict a 2–5-fold increase
of non-specific binding (Fig. 2). The effect is modest, but it
applies to every molecule with an affinity for chromatin and with
a size comparable to that of the polymer (see Supplementary
Note 5).

It is possible that loop-enhanced traffic may explain one of the
least understood patterns of transcription factor occupancy,
namely the existence of highly occupied targets5,6,30 (HOTs).
HOTs, or binding hot spots, are small regions of the genome
(typically less than 1 kb) bound by most proteins with an affinity
for chromatin. The promiscuous binding of transcription factors
in HOTs is independent of the presence of their binding motifs,
suggesting that the process depends on non-specific affinity and
protein–protein interactions. Could HOTs be a result of the
formation of chromatin loops?

To test this hypothesis, we used high-resolution Hi-C data
performed in the human cell line GM1287831, and HOTs
locations obtained from the ChIP-seq profiles of 96 proteins
mapped in the same cell line30. It is visually apparent that HOTs
tend to localize at regions engaged in long-distance chromosomal
contacts (Fig. 6a). HOTs are strongly enriched at loop anchors, as
defined by Rao et al.30,31. Indeed, 2138 of the 12,887 HOTs lie at
the basis of a loop, compared to 528 expected (Fig. 6b). Thus the
trend is very robust, especially considering the imprecision in
calling loops and HOTs.

The simulation results predict that HOTs should be present in
the regions of the genome that are the least compact. The
standard way to compare compaction levels is to estimate the
local rate of contact decay, which is a measure of the polymer
state25. The probability of Hi-C contacts is locally proportional to
s−α, where s is the linear separation between the loci and α is the
decay rate. The most compact states of the polymer correspond to
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the lowest local values of α and vice versa. The local contact decay
surrounding HOTs in the dataset is significantly lower than the
genome average (Fig. 6c), indicating that HOTs tend to occur
within the least compacted regions of the genome, consistent with
the simulation results.

Overall, these results indicate that massive protein binding
tends to accumulate at loop anchors in open regions of the
nucleus, consistent with our prediction that chromatin loops
enhance the traffic of transcription factors in the nucleus.

Discussion
In this study, we used molecular dynamics simulations to estab-
lish the governing principles of transcription factor diffusion on
folded chromatin (Fig. 2a). Despite the fact that our assumptions
are reasonable, our model of chromosomes and transcription
factors is simplistic, so we do not claim that it represents the real
molecular detail at work in a cell nucleus. It only captures some
general properties of the system.

The main feature of the polymer structure is the amount of
contacts, acting in two opposite ways (Fig. 3): at low density, it
increases the traffic of the tracers; at high density, the compaction
of the polymer results in a volume exclusion effect that keeps the
tracers away from loop anchors (Fig. 4). In the latter case, the
tracers tend to interact with the monomers on the outside of
globular domains, but they can also enter the structure, especially
if their affinity for the polymer is high. These results are in line
with experimental data obtained in live cells27, where it was
shown that chromatin compaction excludes diffusible factors, but
no compartment is fully inaccessible.

Importantly, these effects describe the behavior of transcription
factors in search mode only. Theoretical analyses32 show that
chromatin loops may increase the on-rate by a factor of 2–5 (the
number of fibers at the contact point, see Fig. 2), but the off-rate
may vary by several orders of magnitude with the DNA
sequence4. A 2-fold effect is large for the binding kinetics, but
negligible for the average occupancy of high affinity binding sites.
Consistently with the view that chromosome conformation has a
mild impact on the occupancy of high affinity binding sites, it was
recently shown that target sites of many transcription factors
remain bound on the mitotic chromosome33, where the con-
formation is radically different34.

Nevertheless, transcription factors spend a large fraction of
time in search mode19,20 and accumulate at HOTs, where most
binding motifs are absent6. Our results suggest that this alternate
binding mode depends on the conformation of the genome. The
HOTs are found primarily at loop anchors in uncompacted
regions (Fig. 6), as predicted by the simulations (Figs. 2 and 3).
Importantly, these chromosome conformation effects apply to all
molecules with an affinity for chromatin within the nucleus,
provided the size of the particles is comparable to the pores of the
chromosome folds (see Supplementary Note 5). This permits the
appearance of emergent behaviors, induced by the interactions
between the components.

Our model provides significant additional evidence to under-
stand the formation of the 3D genome structure. In the molecular
dynamics simulations, the structure of the polymer is given by the
fixed distribution of the binders. This model recapitulates the
essential features of Hi-C maps25, but it does not correspond to
the contentious issue of how the genome is actually folded35. For
example, the loop extrusion model proposes the existence of
molecular machines capable of creating loops (i.e., cohesins36,37).
Other reports focused on the crucial role of epigenetic domains in
shaping the 3D genome38. Furthermore, architectural proteins
such as CTCF also play a crucial role in shaping the 3D gen-
ome39, and they too may act as the binders in our simulations.

Nevertheless, the molecular details underlying the formation of
the chromatin loop is not relevant to the present work. All that
matters is that the loops are stable enough for the effect described
above to take place.

We showed, as mentioned in the Results section, that when the
number of tracers and their affinity exceed a critical value, the
tracers themselves create intra-polymer contacts (Supplementary
Note 2). This effect was predicted by the strings and binders
switch (SBS) model of Barbieri et al.25 and the bridging-induced
attraction mechanism40,41, in which loops are created in a non-
specific fashion. Here, we show that it is also valid when the
polymer has specific loops in its structure, due to the fact that we
separated the role of specific and non-specific bridging particles.
This indicates that a high concentration of transcription factors
may by itself induce the chromatin fiber to collapse locally, a
result which suggests that the many transcription factors present
in HOTs may stabilize long-range contacts. More work is
necessary to clarify the effect of heterogeneous binding profiles of
the transcription factors in mediating and stabilizing chromatin
loops.

A strong assumption will need to be tested: transcription fac-
tors are close to saturating concentration in the nucleus, so that
the weak effect of a chromatin loop is sufficient to nucleate an
aggregate. It will also be important to elucidate whether such
aggregates are stable or transient, and what other factors are
necessary for their formation.

It was previously observed that cohesin binding is frequently
associated with the presence of many transcription factors42, but
the mechanism remained unclear. Since cohesin is necessary for
the formation of the loops43, we propose the following inter-
pretation: cohesin binding induces the formation of a chromatin
loop, which increases the local concentration of transcription
factors. This nucleates the formation of an aggregate stabilized by
protein–protein interactions. Finally, the high concentration of
transcription factors compacts the chromatin the same way we
observed for a large number of tracers, which further stabilizes
the loop. Although we did not simulate cohesin loop formation
explicitly, the binders in our simulations can be thought of as
cohesin proteins. The time scale involved in the formation of
cohesin loops is in fact very long44, so that in our simulations we
do not need to consider that the loops are dynamic. Once again,
our model does not represent actual molecular mechanisms but
only their essential properties regarding the diffusion of tran-
scription factors.

This interpretation suggests that long-distance contacts may
not be an accidental property of enhancers, but rather their
essential mechanism of action. In this regard, the 3D organization
of the genome could be a way to guide proteins of the same
complex to the same locations in order to facilitate their assembly.
This would also imply that the formation of liquid-like aggregates
is dependent on the geometry of the chromatin polymer.

Our model is consistent with the experimental data regarding
the distribution of HOTs in the nucleus. It also makes other
predictions that can be experimentally tested. The first is that
binding kinetics are 2–3 times faster when the target lies at the
basis of a chromatin loop. Since more search trajectories lead to
the target site when it lies within a loop, a rough estimate is that
the search time is reduced by the number of chromatin fibers that
meet at the cross point. The second prediction is that HOTs
should disappear in mitosis. Indeed, the compaction of the
chromosome and the disappearance of long-distance contacts and
loops34 are unfavorable conditions for the accumulation of
transcription factors. Future experimental data will allow these
predictions to be tested.

In summary, this study shows that the conformation of the
genome should be taken into account to fully understand the
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distribution of transcription factors in the nucleus of animal cells.
More generally, the principles highlighted here pave the way for a
general theory of transcription factor-facilitated diffusion on
folded chromatin.

Methods
Simulation setup. Our simulation model is the same as the SBS model25, and
consists of the following elements (see Fig. 1):

● A bead–spring polymer, consisting of N total particles, which represent the
individual monomers. The polymer is made of two types of particles: particles
of type p (polymer), which have no special property, and type a, which are
binding sites (anchors). The fraction of a particles in the polymer is the
parameter ϕ.

● Binders, type b, which are free to diffuse in space, have strong attractive
interactions with the a particles on the polymer. In our system, we keep the
number of binders such that there are always two binders per binding site.
Therefore, the number of binders is nb= 2ϕN. The interaction strength is
chosen in such a way that the binders are ordered45.

● Tracers, labeled t, diffuse freely in space and have an attractive short-ranged
interaction to the entire polymer, that is, with both p- and a-type particles. The
number of tracers is nt.

The polymer is described as a classical bead–spring system. Each particle in our
system has a radius σ. We chose σ= 15 nm independently of the particle identity,
and σ is set to be the length scale in the simulation units. The choice of the length
scale is to match the approximate width of the chromatin fiber (30 nm fiber).
Successive beads in the polymer are connected with harmonic springs of stiffness
k= 330kBT/σ2, as illustrated in Fig. 1. The interaction between successive
monomers is then given by

Emonomer ¼
1
2
k riþ1 � ri
�� ��� r0
� �2

; ð2Þ

where ri is the position vector of the i-th monomer, and r0= 1.2σ is the rest
position of the spring. Note that we set kBT= 1 in the local simulation units.

All particles interact via the Lennard–Jones (LJ) potential with the other
particles. The general interaction form is given by

EijðrÞ ¼ 4εij
σ

r

� �12
�ξij

σ

r

� �6� �
: ð3Þ

Here, the coefficients εij and ξij depend only on the particle identity (p, a, b, or t); r
is the center-to-center distance between the two particles. The parameter ξij is set to
zero for particles that interact only through hard-core repulsion, and it is set to 1
for particles that have an attractive component. As usual, we apply a cutoff distance
for the non-bonded interactions, set to rcut= 3σ.

The binders were assigned a fixed, strong interaction energy with the binding
sites, εab= 10kBT. The interaction between the tracers and the polymer is given by
ε≡ εtp≡ εta. This is the other parameter that we vary in our simulations.

We used 25 different values of ϕ, from 2 to 50%, in steps of 2%, and 10 different
values of ε, from 0.9kBT to 2.7kBT, in steps of 0.2kBT. We simulated the system for
all possible pairs of ɸ and ε. For each pair, ten independent simulations were
carried out, each one with a different distribution of randomly placed binding sites
(a sites) on the polymer.

The values of ϕ and ε that we chose are such that a large portion of the explored
parameter space corresponds to physiologically relevant conditions. Measuring the
radius of gyration rgyr of the polymer (see Supplementary Note 2) allows us to
probe the local density of the polymer by calculating

ρlocal ¼ N
σ

rgyr

 !3

: ð4Þ

Experiments by Ou et al.26 on human cells suggest that the local chromatin
density varies approximately 4-fold, and that the highest observed local density is
of the order of 50%. In our simulations, this corresponds to ϕ ≈ 10–40% (see
Supplementary Fig. 2a). On the other hand, the experimental work by Normanno
et al.20 showed that the ectopically expressed TetR repressor spends about half of
the time diffusing freely in the nucleoplasm and half of the time non-specifically
bound to chromatin in human cells. As we show in Supplementary Fig. 3c, there is
an excellent correspondence between the percentage of time that the tracers spend
bound to the polymer and the value of ε. Fixing this value at 50% as in the case of
TetR, we find ε ≈ 2kBT, which is of the order of the weak hydrogen bonds formed
by proteins transiently bound to chromatin. As ε varies from 0.9kBT to 2.7kBT, the
time spent bound to the polymer ranges from approximately 5 to 95%, covering
most possible values.

Molecular Dynamics (MD) simulations were carried out using the HOOMD-
blue software46,47. To keep the temperature of the system constant at the value T,

the system was simulated using Langevin dynamics. To each particle of the system
was assigned a drag coefficient γ= 1 (in local simulation units), equal for each
particle. For free particles, this gives rise to a bulk diffusion coefficient D0 ≈ 1.2
cm2/s in real units (see also Supplementary Note 3). We chose the simulation box
to be cubic, with edge length L= 50σ. Periodic boundary conditions were applied
in the simulations.

An equilibration of 2 × 107 time steps was run before taking samples of the
system. After that, snapshots of the system were taken every 104 steps. The total
length of the MD runs was 108 steps.

Polymer contact matrix and tracer traffic. To assess the relationship between the
3D structure of the polymer and the diffusing properties of the system, we eval-
uated the contact matrix of the polymer with itself. To obtain a result similar to
chromosome capture-based interaction matrices, we evaluated a boolean contact
matrix, which gives for each pair of particles a value of 1 if the two particles are in
contact, and 0 otherwise. The criterion to establish whether the two particles are in
contact was by assessing whether the center-to-center distance between the two
particles is smaller than a given threshold, t. Note that distances must be calculated
taking into account the periodic boundary conditions of the simulation box. All the
distance matrices were computed using the Python package MDAnalysis48. For
each of the statistically independent snapshots of the system, we evaluated the
contact matrix. The final matrix, H, is given by the sum of the contact matrices for
each snapshot.

In a similar way to what was done for the polymer contact matrix, we evaluated
the contacts between the tracers (t particles) and the polymer. For each snapshot,
we evaluated the contact matrix between all the tracers and all the particles that
compose the polymer. We then considered as a contact any mutual distance shorter
than t. The choice of t is somewhat arbitrary. We set this value to t= 2σ, which
seems a natural choice for it is the diameter of each particle, and also a distance at
which the LJ interactions are practically zero. The tracer traffic at a monomer is
then obtained by summing the contacts with all the tracers through all the
snapshots of the simulation.

Volume exclusion effects. If there are many binding sites on the polymer (high
ϕ), its configuration in three dimensions will be compact, with the binding sites
buried deep inside the globular part of the polymer. The more this is true, the more
we expect the tracers to be excluded from contacting the binding sites that are in
the globular core. Instead, we expect the tracers to bind more to the outer shell of
the globule, which is more enriched with non-binding sites (i.e., particles of type p).
To test these intuitive ideas and quantify volume exclusion effects on the diffusion
of the tracers, we used several metrics.

First, we calculated the tracer coverage, defined as the percentage of monomers
that are visited by the tracers during the simulation time frames. If some
monomers are never contacted by the tracers because of volume exclusion, the
coverage will be less than 100%.

Next, we calculated the Pearson correlation coefficient between the tracer traffic
and the binder occupancy (calculated the same way as the tracer traffic). If the
tracers are excluded from the polymer because of the binders, we expect that the
two profiles will be anti-correlated.

Biological data from GM12878. The Hi-C data were downloaded from GEO (Rao
et al.30,31, accession ID GSE63525). Loop positions were obtained from the file
GSE63525_GM12878_primary+replicate_Arrowhead_domain-
list.txt.gz. The locations of the HOTs produced by Foley and Sidow30 were
downloaded from http://mendel.stanford.edu/sidowlab/downloads/hot/analysis/.
We used the file peaks_GM12878.fasta and obtained the positions of the
domains from the headers. The overlap between the two was computed with
custom R scripts using the package GenomicRanges49.

To compute the rates of contact decay, the raw Hi-C reads were normalized in
50 kb windows using the TADbit pipeline50 with default parameters. The contact
decays were estimated using a simple linear regression between the logarithm of the
linear separation between the windows and the logarithm of the normalized Hi-C
signal. For each window, only the closest 20 windows on each side were used for
the regression, as the signal in windows beyond the 20th was typically too noisy.
Also, the self contacts in the window were discarded for being overly influential on
the regression parameters. The slope of the regression line served as estimate for
the rate of contact decay.

Code availability. The code that was used to obtain and analyze the simulation
data is available at https://github.com/rcortini/sbs_tracers (Zenodo https://doi.org/
10.5281/zenodo.1201081).

Data availability. Data available on request from the authors.
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