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Dinosaur diversification linked with the Carnian
Pluvial Episode
Massimo Bernardi 1,2, Piero Gianolla 3, Fabio Massimo Petti 1,4, Paolo Mietto5 & Michael J. Benton 2

Dinosaurs diversified in two steps during the Triassic. They originated about 245Ma, during

the recovery from the Permian-Triassic mass extinction, and then remained insignificant until

they exploded in diversity and ecological importance during the Late Triassic. Hitherto, this

Late Triassic explosion was poorly constrained and poorly dated. Here we provide evidence

that it followed the Carnian Pluvial Episode (CPE), dated to 234–232Ma, a time when

climates switched from arid to humid and back to arid again. Our evidence comes from a

combined analysis of skeletal evidence and footprint occurrences, and especially from the

exquisitely dated ichnofaunas of the Italian Dolomites. These provide evidence of tetrapod

faunal compositions through the Carnian and Norian, and show that dinosaur footprints

appear exactly at the time of the CPE. We argue then that dinosaurs diversified explosively in

the mid Carnian, at a time of major climate and floral change and the extinction of key

herbivores, which the dinosaurs opportunistically replaced.
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D inosaurs are exemplars of an evolutionarily successful
group1. The clade Dinosauria includes the large Mesozoic
reptiles, as well as birds, comprising more than

11,000 species, with extremely disparate morphologies. The
dinosaur stem lineage originated in the early Triassic, in the
maelstrom of perturbed environments and recovering
faunas following the devastation of the Permian-Triassic mass
extinction2. However, the mode and timing of the origin and
diversification of the dinosaurs have so far been unresolved.

The clade Dinosauria rose to its ecological acme through the
50 myr of the Triassic, and two key steps can be recognised: the
origin of Dinosauria in the early-Middle Triassic, followed by a
span of some 20 myr during which dinosaurs existed at low
diversity, and then the explosive diversification of the clade in the
early part of the Late Triassic2. The focus here is on this latter
diversification event, when new lineages emerged and the
ecological dominance of the group, measured by relative
abundance of specimens in well documented faunas, shifted from
<5 to >90%2–4. The diversification of dinosaurs at this point,
especially herbivorous forms, followed extinctions of previously
ecologically significant herbivorous groups such as dicynodonts
and rhynchosaurs.

Over the years, this explosion, which we term the ‘dinosaur
diversification event’ (DDE), was dated variously to the Carnian
and Norian, depending on continuing revision of continental
stratigraphy5,6. The problem has been that there was no inde-
pendent system of dating for the bulk of Triassic terrestrial rock
successions. Initially, they were roughly aligned in time according
to their contained tetrapod faunas7, providing approximate early,
middle, and late Triassic divisions. However, the late Triassic is
over 35 myr long, and a great deal happened during that time,
meaning that a reliable way to subdivide this long interval is
required.

This uncertainty highlights the need to avoid circularity in
dating the key events in the origin of dinosaurs by not using
tetrapod faunas to provide the dating. We believe that we have the
solution here, which is to use rock sections that are dated
independently of the tetrapod fossils, by means of magnetos-
tratigraphy, radioisotopic dates, and correlations to marine
successions dated by ammonites, conodonts, and other fossils.
Recent attempts to understand the relative ordering of Triassic
terrestrial tetrapod faunas2–4,8–10 were founded in part on mag-
netostratigraphic data that provided correlations between red bed
successions of Europe and North America11,12, combined with
some exact age dates in the Carnian, Norian, and Rhaetian13,
some of them directly from tetrapod-bearing sedimentary units.
Here and there, cross-overs between terrestrial and marine
sediments, for example around the edges of the Germanic Basin,
provided additional independent age tie-points. Nonetheless,
critical faunas with early dinosaurs from the North American
south-west, India and, at least in part, Argentina and Brazil,
currently lack precise independent age dating, and so cannot be
used to test the timing of the event.

There was an important climate-change event in the Carnian,
the Carnian Pluvial Episode (CPE)14, termed also “Carnian
Humid Episode”, “Carnian Pluvial Event” or “Wet Intermezzo”15

that corresponds to a time of major turnover in the oceans and on
land. Could this switch from arid to humid and then back to arid
conditions mark the trigger for the replacement of precursor
herbivorous reptiles by the dinosaurs3,8?

The Permian and Triassic sedimentary sequences of the Alpine
region offer a unique opportunity in this respect. The palaeo-
geographic setting of the Dolomites and nearby areas (NE Italy),
gave rise to a unique geological situation, now well exposed in
several sections, in which marine sediments, continental deposits,
and volcanites interfinger16. Correlation of sections in the region,

using marine fossils, magnetostratigraphy, and exact radio-
isotopic age dates, has allowed the development of a precise
framework of biostratigraphic and chronological data, which can
now be used to date faunas and events accurately. This temporal
standard is based on all kinds of data, but not on tetrapod ske-
letons or footprints, so is an independent standard against which
tetrapod evolution can be calibrated. Taking advantage of this
high-resolution chronological framework, and growing under-
standing of both the timing and extent of the CPE in this sector of
eastern Pangaea13,17,18, we here identify a significant Carnian
shift in the composition of archosaur ichno-associations as
recorded in the Southern Alps, which in turn provides the first
well constrained date for the DDE in eastern Pangaea. Further-
more, we take advantage of new radiometric dating in western
Pangaea9,10 to integrate the oldest dinosaur-bearing formations of
the South America in this model, providing a globally coherent
scenario for the DDE. Finally, we highlight the synchronicity of
the DDE and CPE and suggest a possible causal relationship
between the two.

Results and Discussion
Background on the early history of dinosaurs. The origin of
Dinosauria is thought to have occurred in the mid- to high-
latitudes of Gondwana19,20 (but see ref. 21). Although precise
temporal calibration is to date unavailable, the Middle Triassic
Manda beds of Tanzania yielded the remains of the possible
oldest dinosaur, Nyasasaurus parringtoni22, as well as the
silesaurid Asilisaurus23. Therefore, even if Nyasasaurus is not a
dinosaur, Asilisaurus is definitely a silesaurid, and Silesauridae is
the immediate sister-group to Dinosauria, so minimally extend-
ing the origin of dinosaurs to the mid Anisian, about 245Ma.
These early dates have been confirmed by reports of
non-dinosaurian dinosauromorph tridactyl footprints from the
late Olenekian and Anisian of Poland24, and other evidence from
Italy, France, and Germany25.

These Early and Middle Triassic dates for the origin of
dinosaurs were unexpected and new1. Until 2010, the oldest
undisputed members of Dinosauria were from the late Carnian of
the lower Ischigualasto Formation of Argentina26, whose age is
radiometrically constrained between 231.4 ± 0.3 (Herr Toba
bentonite) and 225.9 ± 0.9 Ma (Valle de la Luna Member)26.
There, the presence of dinosaurs, such as Panphagia, Eoraptor,
and Herrerasaurus in the basal horizons of the lower Ischigual-
asto Formation was used by Martínez and Alcober27 to suggest
that Dinosauria originated during the Ladinian or earlier and that
they were already well diversified in the early Carnian. The
Hyperodapedon Assemblage Zone (AZ) of the Santa Maria
Formation of southern Brazil yielded some of the earliest
dinosaurs (e.g., Saturnalia and Staurikosaurus4) recently redated
at 233.23 ± 0.73Ma10. Two further early dinosaur-bearing
formations, the lower (and upper) Maleri Formation of India28

and the Pebbly Arkose Formation of Zimbabwe4 are less
constrained in age, and are thought to be Carnian by
biostratigraphic correlation within the Hyperodapedon AZ4.
These skeletal records of early dinosaurs document a time when
they were not numerically abundant, comprising typically <5% of
individual specimens in their faunas, and when they were still of
modest body size2,3.

The DDE, indicated by dramatically increased relative faunal
abundances worldwide and by body size increases in some forms,
is documented by skeletal remains and footprints. The classic
remains come from Europe. In the southern Germanic Basin,
sauropodomorphs such as Sellosaurus and Plateosaurus dominate
the Löwenstein and the Trossingen formations of mid-Norian
age29, both in terms of size and abundance. Theropods radiated
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too, with Procompsognathus triassicus and Halticosaurus longotarsus
from the middle part of the Löwenstein Formation and Liliensternus
liliensterni from the Trossingen Formation29. Of mid-late Norian
age are also the Polish theropod skeletal findings recently discussed
by Niedźwiedzki et al.30. The British Late Triassic Thecodonto-
saurus-bearing fissure faunas, once thought to be Carnian in age are
now considered as Rhaetian31. The Ansbacher Sandstein (Stuttgart
Formation, upper Schilfsandstein) and the Coburger Sandstein
(Hassberge Formation) yielded some of the oldest definitive
footprints assigned to dinosaurs32 in this sector of Pangaea, which
can be dated to the early to late Carnian (Julian-Tuvalian33). A
single possible dinosaur footprint is known from the late Carnian of
Monti Pisani in Central Italy34. Norian dinosaur footprints are then
widespread in the Dolomia Principale/Hauptdolomit of the Alpine

region between Switzerland and Italy25, and Poland-Slovakia
(Tomanová Formation35). Large sauropodomorph tracks (Eosaur-
opus and, possibly, Evazoum) have also been described recently
from the Norian—early Rhaetian of Greenland36.

In all, data from Laurasia show that dinosaurs were relatively
rare in the Late Triassic of north and north-western Pangaea for
some 10 myr after their Carnian occurrence in South America2,5,
and that they eventually became common from the Norian
onwards. New data from the Dockum Group37, and footprint
findings in the Germanic basin32, however, suggest that at least
some dinosaur groups might have radiated synchronously across
Pangaea37.

The early dinosaur record of North America has been hard to
date. The dinosaur-rich Petrified Forest Member of the Chinle
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Fig. 1 Stratigraphy in the Italian Dolomites, and dating the dinosaur diversification event. Footprint occurrences within the chrono-stratigraphic framework
of the middle and upper Triassic of the Dolomites (Southern Alps, NE Italy), and the derived abundances of dinosaurian, non-dinosaurian dinosauromorph
and crurotarsan trackmakers within the associations A1, A2, and A3 described in the text. Note the correlation between the change in composition of the
associations and the climate shifts (climate trend and zones after ref. 11). Lithostratigraphic abbreviations: ADZ: Zoppè Sandstone; AQT: Acquatona
Formation; BHL: Livinallongo/Buchenstein Formation; BIV: Bivera Formation; CTR: Contrin Formation; DCS: Cassian Dolomite; DON: Dont Formation; DPR:
Dolomia Principale; FCL: Coll’Alto dark Limestones; GLS: Gracilis Formation; HKS: Heiligkreuz Formation; IMF: Fernazza Formation and volcanites; MBT:
Ambata Formation; MNA: Moena Formation; MRB/RIC: Richthofen Conglomerate and Morbiac dark Limestone; NTR: Monte Rite Formation; PPS: Piz da
Peres Conglomerate; REC: Recoaro Limestone; SCI: Sciliar Formation; SCS: San Cassiano Formation; SLI: Lower Serla Dolomite; SLS Upper Serla Formation;
TVZ: Travenanzes Formation; VTG: Voltago Conglomerate; WEN: Wengen Formation. Lithologies: a cherty limestone; b sandstone; c sandy limestone; d
volcanics; e oolitic-bioclastic limestone; f black platy limestone or dolostone, black shale; g dolostone; h marlstone, claystone and shale; i marly limestone; j
conglomerate. Ages from GTS timescale, modified after refs12, 91, 92. The silhouette images were created by the authors for use in this paper
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Formation of southwestern North American, once thought to be
of similar age to the Ischigualasto Formation, has now been re-
dated to the late Norian-Rhaetian5. The early dinosaur record of
North America is therefore mainly documented by the Newark
Supergroup, the upper Chinle Formation, and the Dockum
Group. The late Triassic Newark Supergroup of eastern North
America has yielded a sparse tetrapod body fossil record and no
dinosaur remains, although dinosaur footprints have been
repeatedly signalled38,39. Olsen and Huber40 reported the oldest
dinosaur footprints from North America, dated to the late
Carnian (Tuvalian), and associated with Brachychirotherium, and
Apatopus. Cameron and Wood41 described the co-occurrence of
Rhynchosauroides, Brachychirotherium, Atreipus and dinosaur
footprints (Grallator) in the upper portion of the Wolfville

Formation of Nova Scotia (Canada). Furthermore, Weems42

documented some dinosaur tracks (Eubrontes) from the Balls
Bluff Siltstone in the Culpeper Basin of Virginia, considered
Carnian-Norian in age. Camposaurus arizonensis43 is the oldest
skeletal dinosaur evidence, from the lower part of the Chinle
Formation, dated to ~220Ma44, while Lepidus praecisio45 is the
oldest dinosaur from the base of the Dockum Group, which is
considered to be ?early Norian, although the age is only loosely
constrained45. The Late Triassic Chinle Group yielded also
abundant Grallator theropod tracks39 and one possible
Eubrontes46. All these records are most probably Norian in age47.

In the southern hemisphere, Norian dinosaur remains are
known relatively abundantly in the lower Elliott Formation of
South Africa and the Los Colorados Formation of Argentina4.
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Dinosaur footprints (cf. Eubrontes) were reported from the
Ipswich Coal Measures of Australia48, which can be dated to the
late Carnian48 and that can be compared with similar findings
from the Carnian-Norian Molteno Formation of South Africa49.
The oldest skeletal remains from this sector of Gondwana are
from the Lower Elliot Formation of South Africa which yielded
basal dinosaurs, such as the sauropodomorphs Euskelosaurus,
Melanorosaurus, Blikanasaurus, and Antetonitrus, and the
ornithischian Eocursor50. The Los Colorados Formation is the
source of the sauropodomorphs Riojasaurus, Coloradisaurus, and
Lessemsaurus, and the theropods Zupaysaurus and Powellvenator.
The coeval, or slightly younger, Quebrada del Barro Formation
has produced a similar fauna, comprising a theropod, basal
sauropodomorphs, and other reptiles, while the Laguna Colorada
Formation (El Tranquilo Group) has yielded the sauropodo-
morph Mussaurus and a heterodontosaurid ornithischian4. The
ages of the Lower Elliot, Quebrada del Barro, and Laguna
Colorada formations are however poorly constrained to the
Norian4. In the Lower Elliott Formation (Norian-Rhaetian),
Ellenberger51 reported also a variety of footprint morphotypes,
some of which can be attributed to dinosaurs52. Of probable late
Carnian age are the dinosaur footprints discovered in the
Timezgadiouine Formation of Morocco and assigned to
Eubrontes and Grallator53.

Chronological constraints in the Dolomites region. The stra-
tigraphy of the Southern Alps and of the Dolomites in particular
encompasses the whole Triassic system, providing an extra-
ordinary record of the environments and ecosystems constrained
by an excellent bio-chrono-stratigraphic framework (Fig. 1),
particularly for the early Anisian to late Carnian interval, which
has made this area a reference worldwide for the Triassic time-
scale. During this time, the Southern Alps (Fig. 2) were located at
tropical latitudes in the western Tethys region (about 15–18°
North54), which was characterized by a complex palaeogeo-
graphy, with narrow ocean branches separated by carbonate
platforms or emerged lands. Overall, the Southern Alps faced an
ocean towards the present-day east and were characterised by the
presence of an emerged land (Adriatic foreland) towards the
present-day south16. The Southern Alps area was a wide shallow
sea during the late Permian and Early Triassic, but started to
differentiate at the beginning of the early-middle Anisian. Later, a
sudden increase in subsidence combined with a strong sea level
rise allowed a general deepening, associated with the formation of
high-relief carbonate buildups and a general retreat of the silici-
clastic shoreline. Subsidence rates reached a climax during the
late Anisian, and at that time the palaeogeography of the Dolo-
mites and Lombardy featured numerous small isolated carbonate
platforms (Sciliar and Esino formations) surrounded by a deep
basin (Buchenstein Formation).

From late Ladinian to early Carnian, the subsidence rate
decreased, resulting in the progradation of the southern shoreline
and a general shallowing of the basins. At that time, the
palaeogeography was characterized by large emerged areas to the
south-south-west, bounded by attached carbonate platforms and
small isolated platforms in the north-eastern Southern Alps55.
This regressive trend culminated in the late Carnian, with a
strong north-eastward shift of the coastline and complete
flattening of the palaeotopography, matched by a climatically
driven increase in siliciclastic input56, restoring a relative
homogeneity in sedimentary palaeoenvironments57, as documen-
ted by the Heiligkreuz and Travenanzes formations. A new
transgression in the latest Carnian allowed the deposition of the
thick peritidal succession of the Dolomia Principale, which
records a huge regional platform that extended for hundreds of

kilometres from north to south and east to west58. Widespread
carbonate platforms then characterised the Southern Alps for
several million years, from the late Carnian to (at least) the late
Norian.

Primary and secondary palaeoclimate indicators56,59 suggest a
generally arid climate with elevated temperatures, interrupted by
short “humid shifts” (Fig. 1). The most important humid episode
occurred during the early Carnian. This episode, marked at the
base by a sharp negative carbon-isotope excursion of about 4‰
17,18, is documented by multi-proxy evidence of increased rainfall
as a sudden increase of coarse and immature siliciclastics into the
basin, humid paleosols, hygrophytic pollen assemblages, and
massive resin production60,61. It is also associated with the abrupt
demise of high-relief microbial carbonate platforms59. All these
factors have been interpreted as regional evidence for the
CPE17,18,56.

It should be noted that the CPE is characterised in the Italian
Dolomites by at least four humid pulses before the return to arid
conditions59,61 and has great biostratigraphic control18,56,60,61,
being constrained between the Aonoides/Austriacum boundary
interval (about Julian) and the base of the Subbullatus Zone
(Tuvalian), an interval of about 1.6/1.7 myr around 234–232Ma
(Fig. 1).

The CPE, documented in the Dolomites by the Heiligkreuz
Formation, can be matched in other palaeogeographic settings
around the western border of the Tethys Gulf with the Lunz
Formation and the Raibler Schichten in the Northern Calcareous
Alps61,62, the Veszprem Marls and the Sandhoregy Formation in
the Trans-Danubian Range18 and the Stuttgart Formation and
equivalents in the Germanic basin33. The marine Southern Alpine
record of the CPE can be compared with coeval terrestrial British
facies, where several thin sandstone units sit within the mainly
mudstone-dominated Mercia Mudstone Group of the West
Midlands, Somerset, and Dorset. Borehole records of the latter
show at least five short-lived carbon isotope excursions spanning
an estimated 1.09 myr63, all of which provide evidence of a good
match with the records from Italy. Although some regions of
Pangaea are still understudied, the CPE was most probably a
global event15 that corresponds to one of the most severe biotic
crises in the history of life64.

A Carnian dinosaur shift in tetrapod ichno-associations. In the
Italian Southern Alps, the record of tetrapod ichno-associations is
more or less continuous from the late Carboniferous to early
Jurassic. Only during the latest Permian, latest Anisian and
Ladinian is there no evidence of tetrapod traces from the
Southern Alps, associated with the general retreat of the shoreline
and/or the presence of isolated platforms. In the Julian to Norian
interval, attached platforms and marginal marine environments
became widespread in the region, associated with the common
peritidal environment. Here, various groups of tetrapods became
common, as evidenced by the numerous ichnosites discovered in
the last decades. Three main ichnoassemblages can be dis-
tinguished: a Crurotarsi-dominated assemblage in the Julian,
early Carnian (A1), a mixed assemblage in the Tuvalian, late
Carnian (A2) and a dinosaur-dominated assemblage in the late
Tuvalian–Norian (A3) (Fig. 1).

Assemblage 1: Crurotarsi-dominated, Julian. Five ichnosites of
Julian age record the presence of tetrapods in the region. The Val
Sabbia Sandstone Formation yielded well-preserved trackways
assigned to the ichnogenus Brachychirotherium, known to have
been produced by quadrupedal crurotarsan archosaurs65. Crur-
otarsan tracks (Chirotheriidae) were reported66 in the uppermost
Cassian Dolomite (Aonoides Zone, Julian), as in the Busa dei
Cavai (Mondeval), Nuvolau and Settsass sites. In all, these Julian
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sites provide evidence for crurotarsan dominance (80–100%) of
early Carnian tetrapod associations in the Southern Alps region.

Assemblage 2: Mixed Crurotarsi—Dinosauria, early Tuvalian.
Six ichnosites of early Tuvalian age record mixed archosaur
ichno-associations and the oldest occurrence of dinosaurs in the
region. Small tridactyl footprints assigned to the ichnogenus
Grallator and attributed to theropod dinosaurs are dominant in
the Travenanzes Formation of the San Gottardo site67 and co-
occur with the tridactyl Atreipus-like footprints, attributed to
dinosauriforms67, and the tetradactyl Evazoum, attributed either
to sauropodomorphs68 or crurotarsans69. A single-pentadactyl
track assigned to Brachychirotherium70 testifies to the presence of
crurotarsan archosaurs. Crurotarsan archosaurs (e.g., Brachychir-
otherium) also occur in the Heiligkreuz/Travenanzes formations
of the Mostizzolo ichnosite71, together with a large Eubrontes
track, attributed to a dinosaurian trackmaker70. Large dinosaur
footprints (foot length= 26–27 cm), attributed to Eubrontes, were
also described by Bernardi et al.70 from the Monte Roen site of
similar age. These specimens indicate the presence of large
dinosaurs, ca. 5 m long70. Footprints referred to prosauropods
have been reported66 in situ in the Heiligkreuz Formation of
Lastoi di Formin and in erratic blocks in the locality Vare di Giau
(Giau Pass); a single tridactyl footprints attributed to a small
theropod has been found in the Sasso della Croce (Heiligkreuz
Formation). Unnamed archosaurian footprints showing affinities
with the ichnogenus Brachychirotherium, associated with nesting
structures, are also known from the Monticello Member
(Dolomia Principale) of Tuvalian age in the Dogna Valley site72.
Finally, an enigmatic quadrupedal trackway from the Ciol de la
Fratta site (Carnian Pre-Alps), of late Carnian age, has been
referred to a large crurotarsan trackmaker73. A similar mixed
association has been described also from the Carnian of Lerici (La
Spezia)68, but the lack of precise temporal constraint prevents any
further discussion of these data, and they are therefore omitted
from calculations. In all, early Tuvalian sites provide evidence for
the oldest dinosaurs in western Pangaea and for a mixed faunal
composition, with 40% of specimens being dinosaur tracks, 10%
non-dinosaurian dinosauromorph tracks, and 50% crurotarsan
tracks.

Assemblage 3: Dinosaur-dominated, late Tuvalian-Norian.
More than ten ichnosites of late Tuvalian to Norian age, all in
the Dolomia Principale, are evidence for the abundant presence of
dinosaurs in the Southern Alps. Numerous dinosaur footprints
were described74 from the Mt. Pelmetto ichnosite, which also
yielded a single Brachychirotherium-like footprint75, and another
in the same rock slide66. The trampled horizon can be
constrained to the lowermost part of the Dolomia Principale
directly overlying the Travenanzes Formation, and can be dated
to the late Tuvalian57. A Eubrontes-Grallator association was also
described76 from the Tre Cime site, and dinosaur-only associa-
tions were described also in the Friuli and Carnic Prealps77. All
these can be dated to the late Carnian-Norian by means of
stratigraphic position. An association of Evazoum, Eubrontes and
Grallator was also reported78 from the Pasubio Massif, whose
Norian (Alaunian) age is established by conodont biostratigraphy.
A mixed chirotheroid—dinosaur footprint association was also
reported from the Val Pegolera66 outcrop and a dinosaur-
dominated Atreipus-Grallator association was described from the
Moiazza ichnosite66. All late Triassic ichnosites of late Tuvalian to
Norian age provide evidence for dinosaur dominance, with >90%
of tracks being assignable to dinosaurian trackmakers.

Dinosur diversification and the Carnian Pluvial Episode. The
early evolution of dinosaurs has recently attracted much interest,
with new discoveries79, new phylogenies20,21 and new theoretical

models and computational tools1 radically enhancing our
understanding of the tempo and mode of origination, early
diversification, and dispersal of this group. As discussed above,
however, with a few notable exceptions5,6,9, the lack of inde-
pendent age dating for most specimens has hindered any attempt
to reconstruct the precise sequence of events, blurring our
understanding of the earliest phases of dinosaur evolution.

The occurrence of several precisely dated ichnoassemblages in
the late Triassic of the Southern Alps allows us to constrain the
timing of the DDE in this region of Pangaea. In a relatively brief
interval of about 3-4 myr (around early/late Carnian), dinosaurs
shifted from near or complete absence (0% in the Cassian
Dolomite/Val Sabbia Sandstone association of Julian age) to
notable presence (ca. 40% of the Heiligkreuz-Travenanzes
formations association of early Tuvalian age), to ecological
dominance (>90% of the Dolomia Principale association of late
Tuvalian and Norian age). Although new discoveries might
slightly modify these percentages, it is improbable that the
differences between the three assemblages could be the result of
sampling biases, because no single dinosaur footprint has ever
been found below the CPE in the Southern Alps and very few
crurotarsan footprints have been found after the CPE, despite
intensive sampling in the last 40 years. Further, this percentage
shift in the relative abundances of dinosaurs estimated from
tracks and trackways confirms figures noted by earlier authors2,3

based on counts of skeletons, and showing a shift in relative
dinosaurian abundance from 5–10% to 70–90% through the
DDE.

The explosive increase in dinosaurian abundance in terrestrial
ecosystems, which had been dated variously to the Carnian and
Norian in other parts of the world, is therefore constrained in the
Southern Alpine region to the early-Late Carnian (early
Tuvalian), an order-of-magnitude improvement of dating preci-
sion over most earlier work.

The U-Pb dating of the Argentinian Chañares Formation has
been used6 to suggest that the shift from assemblages containing
only dinosaur precursors to those with early dinosaurs occurred,
in the high latitudes of Gondwana, between the early and late
Carnian and took <5 myr. Similarly, recent U-Pb dating of the
Santa Maria Formation and the Caturrita Formation in Brazil10

constrained the first dinosaur diversification in the region
between 233 and 225Ma. Our analysis of the Italian Dolomites
supports this timing and provides a high-resolution chronological
framework for this event. It also suggests that the first major
dinosaur diversification might have been a synchronous event
across all Pangaea. The oldest widespread dinosaur evidence is
provided by footprints recorded in the Heiligkreuz Formation of
the Southern Alps, in the Ansbacher Sandstein of the Germanic
Basin32 and in the Los Rastros Formation in Argentina80, which
can all be dated to the late early Carnian and is soon followed by
skeletal evidence in western Pangaea6,10 (Fig. 3). Both in
Gondwana (Ischigualasto, Caturrita, Los Colorados, Lower Elliot
formations) and Laurasia (Dolomia Principale, Löwenstein,
Trossingen formations), dinosaurs then dominated through the
Norian81 (Fig. 3).

The CPE14,15,17 marks an important phase of climate
destabilisation. Abrupt environmental changes, such as warming,
ocean acidification, mega-monsoonal conditions, and a general-
ised increase in rainfall are observed in the geological record
worldwide during this time15,18,82 and these phenomena were
synchronous with a carbon-cycle perturbation17,18 that could be
linked to the Wrangellia Large Igneous Province volcanism17.
The CPE is characterised by elevated extinction rates in several
marine groups such as crinoids, scallops, corals, ammonoids, and
conodonts, and an abrupt interruption in organic carbonate
production in shelf settings (reviewed in ref. 15); it is considered
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among the most severe biotic crises in the history of life64. On the
other hand, this event coincides with the appearance of the first
abundant pelagic calcifiers and of scleractinian corals83,84, the
radiation of modern conifers85 and the diversification of
archosaurs which replaced the then-abundant herbivorous
rhynchosaurs and dicynodonts3, possibly reflecting the diversifi-
cation of conifers and the decline of Dicrodium seedferns.

Data presented here suggest that the first dinosaur dispersal in
eastern Pangaea and the DDE are synchronous with the CPE and
that dinosaurs became dominant only after this perturbation
(Figs. 1 and 3). In the Southern Alps, in fact, dinosaurs are absent
in the Julian formations, which are older than the CPE (Cassian
Dolomite and Val Sabbia Sandstone; ca. 236Ma), and appear in
the overlying Heiligkreuz-Travenanzes formations, which are
coeval or slightly younger than the Episode (ca. 234Ma) to

become dominant just a few million years later, at the base of the
Dolomia Principale (ca. 230Ma).

This pattern is also matched by the first occurrence of
dinosaurs in the Germanic Basin32, within the Ansbacher
Sandstein (Stuttgart Formation, upper Schilfsandstein), which
correlate with the Heiligkreuz Formation and represent the
regional expression of the CPE. The same pattern can also be
recognized in South America, where the first occurrence of
dinosaurs is in the Los Rastros Formation80. This unit, which
records a sharp shift from fluvial to lacustrine, and then back to
fluvial conditions, unconformably follows the Chañares Forma-
tion, recently9 assigned to the Carnian through radioisotopic
dating of detrital zircons (ages 233.7 and 236.1 Ma). The Los
Rastros Formation is overlaid by the Ischigualasto Formation,
which is constrained by a 40Ar/39Ar date of 231.4 ± 0.3 Ma from a
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tuff near the base of the unit. This chronostratigraphic framework
allows correlation of the continental sections of South America
and the Tethyan sections (Fig. 3). Moreover, the most recent
radioisotope dating6,9 and magnetostratigraphic correlation with
the Newark astrochronological polarity timescale81 strongly
support the synchronicity between the humid event as recorded
in Europe (Fig. 3) and the biotic turnover recorded in the various
basins. We hasten to point out that the signature of the CPE in
Southern Pangea has yet to be verified through detailed
stratigraphic studies. However, we note that the shift to more
humid environments is documented in the Los Rastros Forma-
tion both by sedimentological and palynological evidence86,87,
that this formation records the earliest evidence of dinosaurs80,
and that it is overlain by the Ischigualasto Formation where
dinosaurs became abundant (Fig. 3), mirroring the pattern and
showing temporal synchronicity with the eastern Pangaea record
and in particular with the Southern Alpine Heiligkreuz and
Travenanzes formations, where dinosaurs appeared and started to
become dominant, providing evidence for possible comparable
macroevolutionary dynamics throughout the whole of Pangaea.
Notably, the first dinosaur diversification in southern Brazil,
which occurred in the late Carnian10, was recently suggested to be
linked with the climatic oscillations of the CPE, although no
conclusive supporting geological evidence is to date available10.
Our model supports these intuitions and provides a new
framework for interpreting these and other early dinosaur-
bearing faunas.

To date, uncertainties in dating of the best known early
dinosaur association obscured this pattern (but see refs. 10,88) and
prevented a test for coincidence between the CPE and the DDE,
although geologists repeatedly hypothesised this13. Unfortunately,
the chronostratigraphic precision available in the Southern Alps
and partially in South America is currently unavailable in other
parts of the world, so preventing a global verification of this
hypothesis at the moment.

More studies are needed to demonstrate a causal link between
the CPE and the DDE, but we note that the link is plausible in
that both environmental factors (e.g., a more humid tropical belt,
and more emergent land created by the infilling of the basins) and
biological factors (high turnover in ecosystems, vegetation
change) are possible drivers of a rapid dispersal and diversifica-
tion of the dinosaurs.

Finally, we note that the most recent palaeogeographic models
suggest that dinosaurs diversified at middle to high palaeolati-
tudes6,19,20 and that they eventually became dominant at tropical
palaeolatitudes much later, possibly in the Norian. However, the
well dated evidence presented here indicates that dinosaurs were
present in northern Pangaea at least from the late Carnian, and
that soon after their arrival in the region they became dominant
in their ecosystems. The coexistence of dinosaurs, dinosauriforms
and crurotarsan archosaurs, therefore, was also more prolonged
than thought, and began at least in the middle Carnian. This
provides support for the view that crurotarsan-dominated faunas
were substituted by a gradual process of ecological replace-
ment1,2,23,26 that might have been accelerated by the ecological
reshuffling ignited by the Carnian Pluvial Episode, which
triggered the extinction of key herbivores, including rhynchosaurs
and most dicynodonts3,8, and the first diversification of
dinosaurs.

Methods
Identification criteria. We reviewed all published tetrapod tracks described in the
last decades from the Southern Alps and re-assessed their stratigraphic positions
and ages, based on the most recent biostratigraphic schemes. Ichnogenera/mor-
photypes were attributed to three major groups (i.e., crurotarsans, non-dinosaurian

dinosauromorphs, and dinosaurs) on the basis of personal study and published
papers.

The attribution of Mesozoic tridactyl prints to Dinosauria is customary52,
although possibly incorrect. This morphotype cannot in fact be unambiguously
assigned to dinosaurs as at least some non-dinosaurian dinosauromorphs
possessed a functionally tridactyl pes89. Dinosaur tracks are however recognised on
the basis of several synapomorphies: (i) dominance of the digit II–IV group, (ii)
mesaxonic pattern of foot structure, (iii) digit I reduced and shifted backwards (and
thus often not preserved in tracks), (iv) bunched metatarsus, and (v) tendency
towards digitigrady2,90. These characters are present in all dinosaur footprints cited
herein. Furthermore, although we do not discuss any specific attribution within
Dinosauria, theropod-like footprints can be recognised on the basis of the following
characters: (i) asymmetry of the track, with angle between digit III and II lower
than between III and IV, (ii) digit III longer than IV > II, (iii) sharp claw traces on
all digits, (iv) tip of digit II turned inwards, and (v) bipedalism70. Presence of these
characters in the specimens studied here is therefore at least supporting evidence
for a dinosaurian producer.

The abundance of the various trackmakers in the ecosystems has been
calculated as the percentage of specimens attributed to each trackmaker for each
site. We considered a “specimen” as each single evidence of the presence of a
tetrapod, whether a track (=single print) or a trackway (=multiple prints)
assignable to a single ichnotaxon.

Data availability. The authors declare that all data generated or analysed during
this study are included in this published article.
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