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Entropy favors heterogeneous structures of
networks near the rigidity threshold
Le Yan 1

The dynamical properties and mechanical functions of amorphous materials are governed by

their microscopic structures, particularly the elasticity of the interaction networks, which is

generally complicated by structural heterogeneity. This ubiquitous heterogeneous nature of

amorphous materials is intriguingly attributed to a complex role of entropy. Here, we show in

disordered networks that the vibrational entropy increases by creating phase-separated

structures when the interaction connectivity is close to the onset of network rigidity. The

stress energy, which conversely penalizes the heterogeneity, finally dominates a smaller

vicinity of the rigidity threshold at the glass transition and creates a homogeneous inter-

mediate phase. This picture of structures changing between homogeneous and hetero-

geneous phases by varying connectivity provides an interpretation of the transitions observed

in chalcogenide glasses.
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Lacking long-range order, amorphous materials are fully
governed by their microscopic structures. Increasing evi-
dence indicates that the structural elasticity of such materials

correlates with their dynamical properties and mechanical func-
tions, such as the suddenly slowing relaxations of glasses1–4 and
the allosteric regulation of proteins5, 6. A crucial factor behind the
structural disorder that controls the linear elasticity of a structure
is the average number of constraints n of its interaction network
and the rigidity transition associated with tuning n7. At the
Maxwell point nc= d8, which is the minimum number of con-
straints per particle to avoid floppy modes in spatial dimension d,
both the elastic moduli and self-stresses vanish, accompanied by a
vanishing onset frequency ω* of the soft vibrations on the so-
called boson peak9–11. However, it is questionable whether these
results obtained in homogeneous networks apply to hetero-
geneous network structures, which may be fundamental.

Chalcogenides, for example, are network glasses composed of
chemical elements with different covalent valences r, proportional
to which the number of covalent constraints n varies. Rather than
a point threshold rc= 2.412, 13, a range of singular features,
named the intermediate phase, bridges the well-connected stres-
sed and poorly coordinated floppy phases, as observed in
experiments14–16 and reproduced in molecular dynamics simu-
lations17–19. Inside the phase, the non-reversible heat, a glass-
transition equivalent of the latent heat, vanishes14, which is
associated with a vanishing stress heterogeneity15 and a minimal
molar volume16. All of these measurements are discontinuous
when entering the phase from either side16. The critical point
observed in random networks20–22 (Fig. 1a), which allow fluc-
tuations in local connectivities, fails to capture the nature of the
intermediate phase. Emerging in self-organized networks to
reduce the energetic costs of self-stressed states23, 24 (Fig. 1b), the
rigidity window with distinct onsets of rigidity and self-stress
promisingly maps to a critical range like the intermediate phase;
however, the stronger heterogeneity inside the critical window
actually contradicts the experimental observations, and the win-
dow is also sensitive to the appearance of prevailing perturbations
such as van de Waals forces25. In fact, a rather odd feature is the
heterogeneous nature away from the threshold, outside of the
intermediate phase. What causes the heterogeneity beyond the
local fluctuations?

Recent achievements26, 27 indicate that the entropy, a synonym
of ‘disorder’, leads to order and heterogeneity in many cases,
including the gas-crystal phase separation in colloid-polymer
mixtures28, 29 and the open lattice structures of patchy
particles30, 31. The key components that allow for this compre-
hensive role are the high degeneracy of configurations and the
separation of degrees of freedom carrying entropy from the ones
assembling structures. In amorphous networks, configurations are
inherently degenerate. Floppy and soft modes on boson peaks
store significant amounts of vibrational entropy32, particularly
close to nc; thus, they inevitably shape the network structures.

In this communication, we investigate the role of entropy in
regulating network structures and show the appearance of phase-
separated heterogeneous structures ruled by a critical point at the
rigidity threshold. We then confirm the appearance of a homo-
geneous intermediate phase when stress energy dominates at low
temperature. Finally, we apply the results to chalcogenides and
discuss several experimental evidence of phase separation.

Results
Network model. To illustrate our main result of an entropy-
induced phase-separated connectivity range near the rigidity
threshold, we consider a network model on a two-dimensional
triangular lattice with periodic boundaries, nevertheless, the result

and its derivation depend neither on the dimension nor on the
lattice structure. On lattice, a particle at each of N nodes can be
wired to at most all of its six neighbors, corresponding to the
maximal constraint number nm= 3. Following ref.20, we ran-
domly perturb the locations of lattice nodes to avoid straight lines
that lead to non-generic singular modes, as shown in Fig. 2a. The
key assumption of the model is the separation of energy scales
such that we can consider the network of the stronger interactions
such as the covalent bonds in chalcogenides and treat the weaker
ones such as van der Waals forces as perturbations. In the sim-
plest construction, a network configuration Γ is defined by the
allocation of Ns≡ nN linear springs of identical stiffness k on the
nmN possible links. Different configurations are probed by relo-
cating one random spring (red solid) to an unoccupied (blue
dashed) link at a time, as illustrated in Fig. 2a, such that their
number is fixed by a given average number of constraints n,
similar to rearranging atoms of different valences in network
glasses. The different configurations are sampled with prob-
abilities proportional to the Boltzmann factor expð�F=TÞ using
the Metropolis algorithm, which is documented together with the
model parameters in Methods section. Given configuration Γ, its
free energy is

FðΓÞ ¼ H0ðΓÞ � TSvibðΓÞ; ð1Þ

where vibrational entropy Svib quantifies the volume of thermal
vibrations near the mechanical equilibrium of Γ31–33,

SvibðΓÞ ¼ � 1
2
ln det

MðΓÞ
T

¼ �
X
ω

lnωþ c ð2Þ

which depends on ω2–the eigenvalues of Hessian M and a Γ-
independent number c. H0 is the self-stress energy of Γ at equi-
librium. We introduce frustrations by imposing that the rest
length of the spring γ positioned at the link ijh i, lγ ¼ r i;jh i þ ϵγ,
differs from r i;jh i, the spacing between neighboring nodes i and j,
by a mismatch ϵγ assigned from a Gaussian distribution of zero
mean and variance ϵ2. In the small frustration limit, where ϵ is
much smaller than the lattice constant, we computeM and H0 in
the linear approximation, as derived in the Supplementary Note 1
and refs.4, 25, 34.

We include perturbations of non-specific but weaker interac-
tions by connecting all six second neighbors on the lattice with
springs of stiffness kw � k. At this high connectivity, they act
approximately as isotropic potentials of effective stiffness α ¼
6kw
dk � 1 time of k. These weak forces hence set a finite vibration
volume for floppy modes while leaving the other modes nearly
untouched, as illustrated in Fig. 2b, c.

Entropy favors phase separation. As shown in Fig. 1c, in the
limit of no self-stress penalty ϵ= 0 and thus no energy regulation
H0 ¼ 0, entropy-favored networks present a phase separation
into two phases, a highly coordinated stressed cluster (n > nc dark
green) and a floppy phase formed by the remainning clusters (n <
nc blue), near nc, distinct from the homogeneous structures in
Fig. 1a, b, where the percolating rigid cluster would appear
indistinguishable from the remainder if the color code and the
pivots are removed in Fig. 1. This phase separation is captured by
a long-range correlation of the local constraint number and a
bimodal cluster size distribution (a system-size stressed cluster
plus small ones in the floppy phase) in contrast to a continuous
one35, as shown in Fig. 3a, b.

Due to the phase separation, the network rigidity arises in a
discontinuous fashion as the stressed cluster percolates—growing
from an island inside the floppy sea to a continent enclosing
floppy lakes. This percolation occurs at a constraint number n*
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different from nc, which is captured by a discontinuous P∞, the
probability of springs in the percolating cluster, as shown in
Fig. 3c. In Fig. 3d, the bulk modulus K shows a trend to jump at
n*, whereas the shear modulus G vanishes.

Phase diagram. Why does entropy alone favor a floppy-rigid
phase separation? As the degrees of freedom carrying vibrational
entropy (particles) disconnect from the ones coding the config-
uration (springs), the total entropy increases by creating floppy
modes in the floppy subpart of the network by confining springs
in the stressed counterpart, particularly when this spring redis-
tribution costs little configurational entropy near the rigidity
threshold. When the self-stress energy is not participating, the
balance between the vibrational entropic gain and the config-
urational cost determines the stability of the separation.

Consider a separation into a homogeneous rigid phase and a
floppy phase of volume fractions Vr and Vf controlled by the
constraint numbers nr and nf, as illustrated in Fig. 4a. The
configurational entropy is the entropy of mixing springs and

vacancies summed over the two phases,

Sconf
N

¼ sc;0 þ Vr nr ln
nm
nr

þ nm � nrð Þln nm
nm � nr

� �

þVf nf ln
nm
nf

þ nm � nfð Þln nm
nm � nf

� �
;

ð3Þ

plus sc,0, the entropy from the boundary contribution, which
vanishes in the thermodynamic limit. As the extra vibrational
entropy gains from the floppy modes, let us assume that the
vibrational entropy is proportional to the number of floppy
modes,

Svib
N

¼ sv;0 þ Vf nc � nfð ÞΛ; ð4Þ

changing by Λ per floppy mode. As shown in the Supplementary
Note 2, this assumption is approximately valid in the model and
per mode entropy gains λ ¼ � 1

2 lnα+ lnωh i>0, where lnωh i is
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Fig. 1 Scenarios of rigidity transition in elastic networks. Typical structures for a random networks, b self-organized networks, c entropy-favored networks,
and d equilibrated networks at Tg. From left to right, are structures below, at, and above the rigidity transition threshold. For illustration, we implement the
pebble game algorithm20, 46 to decompose the networks into irreducible rigid clusters, unstressed (blue and green) and stressed (dark green), which are
connected by pivots47, shown as yellow circles. The connections in the percolating cluster are colored in green (light and dark) and the remainder clusters
making the floppy regions are in blue
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the spectrum-average entropy of non-floppy modes. Henceforce,
we use the convention of the large Λ as a parameter in the
formalism and the small λ as the actual entropic gain in the
model.

Constrained on the total volume Vf+ Vr= 1 and the average
constraint number nfVf+ nrVr= n, the total entropy Svib+ Sconf
is optimized with

nr
nm

¼ e�
Λnc
nm � 1

e�Λ � 1
; ð5Þ

nf
nm

¼ 1

1þ eΛ nm
nr
� 1

� � ¼ e
Λnc
nm � 1
eΛ � 1

; ð6Þ

Vr ¼ n� nf
nr � nf

: ð7Þ

Since Vr∈ [0, 1], the heterogeneous phase exists in the self-
consistent range n∈ [nf, nr], which is very wide nr�nf

nc
� λ ~

� 1
2 lnα for practical α. The boundaries nf(Λ) and nr(Λ) define the

heterogeneous separation phase in the phase diagram in Fig. 4a.

√T/�D

T/�
ba

c

Fig. 2 Illustration of the network model and vibrational space. a The spring
connections between perturbed neighbor nodes on triangular lattice, shown
as solid lines, define a network configuration. Weak springs (not shown)
connect all second neighbors. A new configuration is sampled by moving a
randomly selected strong spring in red to a random vacant lattice link
shown in blue dashed line. Given a configuration, thermal vibrations
correspond to b a floppy mode and c a Debye-frequency mode at
temperature T
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Fig. 3 Features of network structures optimizing the total entropy. a Spatial correlation of connectivity CnðrÞ= nðrÞnð0Þh i � n2
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for
entropy favored networks, N= 576. b Probability distribution of rigid cluster sizes ρ(S), collapse for a wide range in n < nc. c Probability in the percolating
cluster P∞, and d Bulk modulus K and shear modulus G vs. constraint number n for various system sizes N, α= 0.0003. The black solid line is theoretical
prediction for the thermodynamic limit N→∞. λ≈ 3.3, so nf≈ 0.94, nr≈ 2.76, and n*≈ 1.85, fitted by Eqs. (5), (6) and (7)
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Analogous to the classical spontaneous magnetization and
gas–liquid phase separation, the entropy-induced floppy-rigid
separation is governed by a critical point at Λ= 0 and n= nc,
where the entropy gain Λ plays as the relevant parameter like
temperature Tc− T and the average constraint number n is the
order parameter akin to the mean magnetization M in ferro-
magnet or the mean density ρ in gas–liquid separation. Close to
the critical point Λ= 0 and n= nc, the free energy follows,

F ¼ �TSvib � Λ2þα: ð8Þ

The counting approximation, Eq. (4), gives α=−1. The order
parameter scales as,

nr;f � Λβ: ð9Þ

The mean-field solution, Eqs. (5), (6) and (7) implies β= 1. Both
exponents are different from the standard Landau theory.

A typical size is thus determined by the critical scaling
approaching (0, nc). In the separation range, the network
structure presents the dominant phase (V > 1/2) with droplets
of the subdominant one of this characteristic size. Global rigidity
arises when the rigid phase becomes dominant at n*= (nf+ nr)/2,
as indicated by the yellow line in Fig. 4a.

Self-stress penalty and homogeneous intermediate phase.
When creating self-stressed states is prohibited23, 24, phase
separation can still arise for n < nc due to an entropy gain of
additional soft modes on the boson peak in isostatic structures.
Per degree of freedom in isostatic volume Vc, the vibrational
entropy increases Λ′ � ∂Svib=N

d∂Vc
, positive as shown in the Supple-

mentary Note 2. This gain from isostatic structures leads to a
separation between an isostatic phase and a floppy phase, as
illustrated in Fig. 1j. The corresponding phase boundary follows

Λ′ ¼ ln
nc
nf

þ nm
nc

� 1

� �
ln
1� nc=nm
1� nf=nm

ð10Þ

shown as the white dashed line in Fig. 4a.
Because reducing the self-stress energy tends to level the

connection distribution25, when the energetic cost H0 competes
with the entropic gain, a homogeneous intermediate phase can
develop inside the heterogeneous gap at low temperature. In
Fig. 1d, we depict the typical network structures equilibrating the
total free energy Eq. (1) at the glass transition temperature Tg.
From left to right, which correspond to below, at, and above nc,
the networks are floppy-isostatic heterogeneous, homogeneous,
and floppy-stressed heterogeneous, respectively.

At temperature T (in the energy unit kϵ2 ≡ 1), each self-
stressed state contributes an independent direction to store
energy4, 34. Noticing the duality between self-stressed states and
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Fig. 4 Phase diagrams of network structures near the rigidity threshold. a Phase diagram of the model in n-Λ space. The star sign marks the critical point at
nc= d, Λc= 0. The phase boundaries shown by black and white solid lines defined in Eqs. (5), (6) and (7) separate the heterogeneous phase mixed of
floppy and stressed regions and homogeneous phases as illustrated. The floppy parts are in light blue and the stressed parts are in dark green. The dashed
line shows the phase boundary Eq. (10) towards a floppy-isostatic mixture phase. The color bar labels the probability of a bond in the percolating cluster
P∞, which jumps at the yellow line n*(Λ) when the rigid phase reaches half volume fraction. Numerical data of N= 576 λ= 3.3 are shown in circles. b Phase
diagram of model at Tg with Λ in log scale. The black solid and dashed line reproduce the phase boundaries (white solid and black dashed) in a. On the rigid
side n > nc, when the free energy loss at Tg given by Eq. (11) shown by yellow solid line is above the boundary, the heterogeneous networks appear in
equilibrium. When n < nc, the phase separation is stable when the yellow dashed line showing the free energy loss given by Supplementary Eq. (19) goes
beyond the heterogeneous boundary. c Same phase diagram showing the intermediate phase for compounds AxB1−x. The purple regions show the range of
heterogeneous phases, and the green region is the homogeneous intermediate phase
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floppy modes36, a free energy loss per floppy mode substitutes the
entropy gain Λ in Eq. (4),

Λ ! λFðTÞ ¼ λ� 1
2
ln 1þ 1

T

� �
ð11Þ

(see the Supplementary Note 3 for the derivation). The self-
consistent condition of floppy-rigid phase separation breaks
down when λF(T) ≤Λ(n), the phase boundary in Eq. (5). Relying
on the insights of the elastic models37, we apply a glass transition
temperature that is proportional to the shear modulus, Tg∝G,
whose analytical form is derived in the Supplementary Note 4.
When n > nc, Tg ~ n− nc4, 34, λF, shown as the blue solid line in
Fig. 4b, reenters the homogeneous phase when n decreases close
to nc, nr− nc ~ α, defining the threshold of the homogeneous
intermediate phase on the rigid side.

When n < nc, Tg � α � 14, 34, the self-stress prohibited
situation applies. Derived from a flat mode density
approximation4, 38 in the Supplementary Note 3, the free energy
loss per isostatic volume, shown as the blue dashed line in Fig. 4b,
surpasses the heterogeneous boundary Eq. (10) in the dashed line
at nc � nf ≳

ffiffiffi
α

p
, giving the transition from the intermediate

phase on the floppy side. Altogether, as the connectivity increases,
the network structures change from homogeneous floppy to
heterogeneous floppy-isostatic to intermediate homogeneous
marginal to heterogeneous floppy-stressed and finally to homo-
geneous stressed, as depicted in Fig. 4b.

Relative entropy. This floppy-rigid phase separation has a gen-
eral information theory implication. Rewriting the phase
boundaries nf(Λ) and nr(Λ) in Eqs. (5), (6) and (7) in terms of
relative entropies39, DðpjqÞ= p ln p

q+ ð1� pÞln 1�p
1�q, we find that

D
nc
nm

nf
nm

				
� �

¼ D
nc
nm

nr
nm

				
� �

; ð12Þ

nc � nfð ÞΛ ¼ nmD
nf
nm

nr
nm

				
� �

: ð13Þ

The connection distributions of the floppy and rigid phases
obey the conditions that the relative entropy density from the
rigid phase balances the density from the floppy one to the critical
network and the entropic gain per unit volume of the floppy
phase compensates the relative entropy from the rigid phase to
the floppy one. Similarly, when any self-stress structure is
forbidden, the phase boundary follows

ncΛ ¼ nmD
nc
nm

				 nfnm
� �

: ð14Þ

The entropic gain per unit volume of the critical structure
compensates the relative entropy from the floppy phase to the
critical phase.

As derived and numerically verified in the Supplementary
Note 5 and Supplementary Fig. 2, these balances, as well as the
main results on the phase separation, hold in general for networks
of multiple types of interactions, which is the case of real
chalcogenides and proteins40, as long as the vibrational entropy
gain is approximately linear in probability distributions of
interactions.

Segregation in network glasses. In network glasses, the degrees
of freedom and the covalent constraints, both of which are
associated with the atoms, depend differently on different che-
mical elements. The entropy-induced heterogeneous phase

develops by segregating different elements. For illustration pur-
poses, we derive the phase boundaries of compounds AxB1−x,
where x is the number fraction of atoms A, the knob equivalent to
the number of constraints n. Both A and B atoms, as isotropic
particles, possess d degrees of freedom. The number of con-
straints, counting both bond stretching and bond bending,
satisfies nB < nc= d and nA > nc, so that both floppy and rigid
networks can be produced by different compositions. We perturb
near the segregation of a stressed rigid phase of volume fraction
Vr, B concentration ρBr and A concentration ρAr and a floppy phase
of Vf, ρBf and ρAf .

The vibrational entropy obeys,

Svib
N

¼ Vf nc � nB
� �

ρBf þ nc � nA
� �

ρAf

 �

Λ; ð15Þ

with Λ the vibrational entropy gain from each floppy mode. The
configurational entropy of two segregated regions is,

Sconf
N

¼ �Vf ρBf lnρ
B
f þ ρAf lnρ

A
f

� �� Vr ρBr lnρ
B
r þ ρAr lnρ

A
r

� �
:

ð16Þ
Optimizing entropy with the following constraints, Vf+ Vr= 1,
VfρAf þ VrρAr ¼ x, and VfρBf þ VrρBr ¼ 1� x, we end up with
following phase boundaries,

ρAf ¼ e nc�nBð ÞΛ � 1

e nA�nBð ÞΛ � 1
; ð17Þ

ρAr ¼ ρAf e
nA�ncð ÞΛ ¼ e nA�nBð ÞΛ � e nA�ncð ÞΛ

e nA�nBð ÞΛ � 1
; ð18Þ

ρBf ¼ 1� ρAf ; ρBr ¼ ρBf e
nB�ncð ÞΛ ¼ 1� ρAr ; ð19Þ

Vr ¼ x � ρAf
ρAr � ρAf

: ð20Þ

The boundary of the heterogeneous phase when self-stress is
prohibited is determined by,

Λ′ ¼ 1
d

ρAc ln
ρAc
ρAf

þ 1� ρAc
� �

ln
1� ρAc
1� ρAf

� �
¼ 1

nc
D ρcjρf
� �

: ð21Þ

As many constraints are associated with a high valence atom,
the configurational entropy cost to generate phase separation is
lower than in the network model by a factor of 1/nm. So the
transition boundary Eq. (21) is at a much lower value than Eq.
(14), and the segregation occurs easier. In particular, we plot the
phase diagram in Fig. 4c for chalcogenides GexSe1−x, where
valences rSe= 2 and rGe= 4 correspond to the number of
covalent constraints nSe= 2 and nGe= 7 counting both bond-
stretching and bond-bending contributions13. Segregations occur
above the critical point (Λc= 0 xc= 0.2), and five phases with
four homogeneous-heterogeneous transitions appear at the glass
transition in varying x.

Discussion
This comprehensive structural behavior provides a natural
interpretation for the four transitions with discontinuous features,
including transitions to the intermediate phase, as observed in
chalcogenides when changing the chemical compositions16. Out
of the intermediate phase, the micron-sized stress bubbles15 are
direct evidence of the heterogeneity. Its consequence on elasticity,
the weakened shear modulus, is faithfully recorded in Raman
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scattering experiments15. Distortions of micro-structures shift the
Raman peaks proportional to the global elasticity, Δν2∝G. As
shown in Fig. 5, the jump of the Raman shift of the transversal
optical branch in the intermediate phase15 maps to the change of
shear moduli between a homogeneous media and a hetero-
geneous mixture of two components41. In addition, high dyna-
mical fragility out of the intermediate phase16 is consistent with
the appearance of very floppy structures4, and the Einstein rela-
tion breaks down with a floppy-phase-dominated diffusion and a
stressed-phase-limited relaxation19, which results in a very
stretched exponential relaxation42.

According to the model, ruling the transitions is pre-
dominantly the entropic gain λ, which is negatively correlated
with α, the strength of the perturbing interactions relative to that
of the strong ones forming the network. The width of the het-
erogeneous range is Δn / λ ~� 1

2 lnα, whereas that of the
homogeneous intermediate phase is Δn � ffiffiffi

α
p

. Thus the larger is
the entropic gain, that is, in terms of experimental parameters, the
stronger are the covalent bonds or the weaker are the van der
Waals forces, the easier is the glass being frozen in a hetero-
geneous structure and the narrower is the intermediate phase.
This rule provides a general reference to the component-
dependent widths of the intermediate phase19. Stabilizing the
floppy parts as the weak interactions43, the pressure should be
another experimentally approachable knob. Starting from a het-
erogeneous structure, increasing pressure effectively increases α
and leads to a transition to the homogeneous phase18. However,
further pressure that distorts the strong interactions, α ~ 1, breaks
our premise on the separation of energy scales and thus ends up
in new physics19.

In conclusion, we have shown that the entropy favors hetero-
geneous structures in the vicinity of the rigidity threshold of
networks. Based on the counting approximation8, 36, 44, we have
derived a phase diagram for the network model and found that
the critical point rules the phase separation. A homogeneous
intermediate phase emerges inside the heterogeneous separation
range when stress energy becomes dominant at low temperature.
The resulting transitions among heterogeneous and homo-
geneous phases potentially resolve the discontinuous features of
the intermediate phase in chalcogenides14–16. The counting
approximation simplifies the entropic gain as a single parameter

independent of the configurations. To go further, it is necessary to
treat the entropic gain more carefully and study the global
minimum and the dynamics toward it in a rougher free energy
landscape induced by the complex entropic consequences of
structures such as long chains. Meanwhile, it is important to test
the separation in molecular dynamics simulations17 for various
temperatures and non-specific weak forces. Finally, it is useful to
apply the role of entropy in protein foldings and self-assembly,
where flexible units appear vital for elastic functions5, 45.

Methods
Metropolis algorithm and chosen parameters. We equilibrate network struc-
tures Γ using the Metropolis algorithm. From an initial configuration Γ, a new
configuration is proposed by the random relocation of a spring, as illustrated in
Fig. 2. By comparing the free energy Eq. (1) between the current and the new
configurations, we sample and reset to the new configuration with probability

min 1; exp � F Γ′ð Þ�FðΓÞ
T

� �� 
, where parameter T defines the equilibrated tempera-

ture. For each combination of parameters {n, T, α}, we implement in parallel 50
Monte Carlo simulations with 105 steps to approach thermal equilibrium. When
stress energy H0 vanishes, T is relevant only when thermal vibrations are so strong
that Eq. (4) breaks down and nonlinear terms become important, discussed
in Supplementary Discussion. In the model, we focus on the limit of the weak
interactions α= 0.000325, 34. In the segregation of chalcogenides, we apply α=
0.03, a choice closer to the actual strength of van der Waals forces4. For the
networks shown in Fig. 1d, from left to right, they are equilibrated at n= 1.625, T
= α= 0.0003; n= 2.0, T= α= 0.0003; and n= 2.25, T= 0.1. To illustrate the
floppy-isostatic separation in the model, we amplify the free energy loss by six
times, an artifact unnecessary for segregation in chalcogenides.

Data availability. The authors declare that the data supporting the findings of this
study are available within the article and its Supplementary Files, or are available
from the authors upon reasonable request. The numerical data of the network
model were generated by a home-written code on MATLAB interface. This code is
available upon request.
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