
ARTICLE

The basic helix-loop-helix transcription factor
SHARP1 is an oncogenic driver in MLL-AF6 acute
myelogenous leukemia
Akihiko Numata1, Hui Si Kwok1, Akira Kawasaki1, Jia Li1, Qi-Ling Zhou1, Jon Kerry2, Touati Benoukraf1,

Deepak Bararia1, Feng Li1, Erica Ballabio2, Marta Tapia2, Aniruddha J. Deshpande3, Robert S. Welner4,

Ruud Delwel5, Henry Yang1, Thomas A. Milne 2, Reshma Taneja 6 & Daniel G. Tenen 1,7

Acute Myeloid Leukemia (AML) with MLL gene rearrangements demonstrate unique gene

expression profiles driven by MLL-fusion proteins. Here, we identify the circadian clock

transcription factor SHARP1 as a novel oncogenic target in MLL-AF6 AML, which has the

worst prognosis among all subtypes of MLL-rearranged AMLs. SHARP1 is expressed solely in

MLL-AF6 AML, and its expression is regulated directly by MLL-AF6/DOT1L. Suppression of

SHARP1 induces robust apoptosis of human MLL-AF6 AML cells. Genetic deletion in mice

delays the development of leukemia and attenuated leukemia-initiating potential, while

sparing normal hematopoiesis. Mechanistically, SHARP1 binds to transcriptionally active

chromatin across the genome and activates genes critical for cell survival as well as key

oncogenic targets of MLL-AF6. Our findings demonstrate the unique oncogenic role for

SHARP1 in MLL-AF6 AML.
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The MLL (mixed lineage leukemia) gene is located on
chromosome 11q23 and encodes a large histone methyl-
transferase. MLL constitutes a large protein complex,

binding to DNA and positively regulates the clustered homeobox
(HOX) genes through histone 3 lysine 4 (H3K4) methyl-
transferase activity of the SET domain1,2 and histone acetyl-
transferase activity of p300/CBP, MOZ, and MOF interacting
with the PHD or TA domain3–5. The translocation of 11q23 is
one of the most frequent chromosomal abnormalities in acute
leukemia, and this rearrangement fuses the genomic region
encoding the N-terminus of MLL to a sequence encoding the C-
terminus of one of a number of fusion partner proteins, resulting
in loss of chromatin modification potential. MLL-fusion protein
(MLL-FP) acquires a unique transcriptional machinery recruiting
the transcriptional elongation complex, EAP (elongation assisting
protein), that includes p-TEFb (positive transcription elongation
factor b), which phosphorylates RNA polymerase 2 and results in
sustained transcriptional elongation6. The MLL-FP also interacts
with DOT1L (disruptor of telomeric silencing 1-like), a specific
H3K79 methyltransferase; di- and tri-methylated H3K79
(H3K79me2/3) are epigenetic hallmarks of active transcription by
MLL-FPs7. Pharmacological inhibition or genetic deletion of
DOT1L substantially suppresses MLL-rearranged (MLLr)
AML8,9, indicating it as a therapeutic target.

More than 70 genes have been characterized as partner genes
of MLL in acute leukemia10. Although the partner proteins have
various functions and cellular localizations, most of the MLL-FPs
share a principle machinery in their transcriptional regulation.
AF4, AF9, AF10, and ENL are nuclear partner proteins that form
a part of the transcriptional elongation complex, and these fusion
partners account for more than 80% of all clinical cases of MLLr
acute leukemias10. On the other hand, MLL-AF6 represents the
most common leukemogenic fusion of MLL to a cytoplasmic
partner protein. AF6 is not identified in the components of the
major transcriptional elongation complex7,11. Nevertheless, MLL-
AF6 also recruits EAP and DOT1L complexes to target chromatin
via an unknown mechanism and activates transcriptional elon-
gation of target genes7,12 and the unique underlying mechanisms
for MLL-AF6-driven leukemogenesis have not been fully eluci-
dated. Here, we identify a basic helix-loop-helix transcription
factor SHARP1 as a MLL-AF6 specific target gene and revealed its
unique oncogenic role, representing a potential therapeutic target.

Results
SHARP1 is overexpressed in MLL-AF6 AML. To uncover spe-
cific underlying mechanisms for MLL-AF6 AML, we identified
direct transcriptional target genes of MLL-AF6. To this end, we
performed chromatin immunoprecipitation followed by deep
sequencing (ChIP-seq) using the ML-2 cell line, which is derived
from a patient with AML harboring t(6;11)(q27;q23) and lacks
endogenous full-length MLL gene13,14. The N-terminus of MLL
(MLLN), when fused to its fusion partners, recruits the H3K79
methyltransferase DOT1L directly or indirectly, and methylation
of H3K79 was linked to active transcribed MLL-AF6 target
genes12. Thus the use of antibodies against MLLN and dimethy-
lated H3K79 (H3K79me2) enabled us to identify actively tran-
scribed MLL-AF6 target genes. We identified 92 genes showing
overlap of MLLN (101 genes) (Supplementary Tables 1 and 2) and
H3K79me2 (8904 genes) peaks in their gene loci, which are
potentially regulated by MLL-AF6 (Fig. 1a). This gene set
includes the posterior HOXA genes (HOXA7, 9, 10), JMJD1C,
MEF2C, and MYB, which were identified as target genes of MLL-
FPs in previous studies15–18. To identify specific targets of MLL-
AF6, we further interrogated gene expression profiles of adult
AML patients, comparing MLL-AF6 (14 cases) to the other

subtypes of MLLr-AML (42 cases) and found 581 genes sig-
nificantly upregulated in MLL-AF6 AML patients (Log2 fold >
0.5, p < 0.05). Among these genes, we identified nine MLL-AF6
targets (SHARP1, P2RY1, SSPN, FAM169A, TRPS1, MMRN1,
SKIDA1, HOXA7, and SLC35D1) (Fig. 1b, c, Table 1, and Sup-
plementary Fig. 1a), whereas there was no difference in the
expression level of MLL-FPs canonical targets (HOXA9,
HOXA10, and MEIS1) between MLL-AF6 and the specific sub-
types generally (Supplementary Fig. 1b).

Basic helix-loop-helix (bHLH) transcription factor SHARP1
(also known as BHLHE41 or DEC2) was the highest and the most
significantly upregulated MLL-AF6 target gene (average log2 fold
change 4.650, -log10 p value 13.32) (Fig. 1b and Table 1).
Although SHARP1 was identified as a common retroviral
integration site in the genomes of AKXD murine myeloid
tumors19, suggesting a potential role in leukemogenesis, there
have not been further studies on its role in leukemogenesis.
Importantly, SHARP1 was decreased in most cases of other
subtypes of AML as well as normal bone marrow (NBM) CD34+

cells (Fig. 1c). Moreover, to test these findings, unsupervised
hierarchical gene-expression clustering of leukemic blasts of adult
AML patients from two independent cohorts was performed.
Three cases, in a cohort of 285 AML cases that were studied using
gene expression profiling, showed high SHARP1 expression levels
(Fig. 1d). These three cases were in a cluster that was highly
enriched for AMLs with a MLL-rearrangement (MLLr-AML)20

and all three carried a t(6;11). Gene expression profiling of a
second cohort of AMLs (n= 268) revealed two more cases with
high SHARP1 expression, which also carried a t(6;11), and were
clustered within a group of patients with MLLr-AML as well
(Fig. 1e). In these two cohorts, all of the MLL-AF6 AML cases
showed high SHARP1 expression. These findings prompted us to
investigate whether SHARP1 plays an important role in the
pathogenesis of MLL-AF6 AML.

MLL-AF6 directly upregulates SHARP1 by DOT1L. In human
AML cell lines, consistent with our findings in the gene expres-
sion profiles from the multiple AML cohorts, SHARP1 mRNA
was expressed highly in ML-2, CTS and SHI-1 cells, all of which
harbor t(6;11)(q27;q23), whereas it was undetectable in MOLM-
14, MV4-11 and Kasumi-1, which harbor t(9;11)(p22;q23),
t(4;11)(q21;q23), and t(8;21)(q22;q22), respectively (Fig. 2a).
MLL-FP complex contains MEN1 (Multiple Endocrine Neoplasia
syndrome type 1, also called MENIN), which binds to the N-
terminus of MLL, linking it to LEDGF (Lens Epithelium-Derived
Growth Factor). The association of MEN1 or LEDGF with MLL is
required for chromatin localization of the complex and tran-
scription of their target genes, which are crucial for MLLr-
leukemias development18,21. A histone methyltransferase, DOT1L
is a subunit of MLL-FP complexes and solely responsible for both
H3K79 di- and tri-methylation (H3K79me2/3). ChIP-seq analysis
of ML-2 cells demonstrated that posterior HOXA genes (HOXA7-
10) were bound by MLLN/MEN1/LEDGF and enriched with
H3K79me2/3, which is a hallmark of DOT1L recruitment to
active chromatin, whereas the region of anterior HOXA genes
(HOXA1-6) were neither bound by MLLN/MEN1/LEDGF nor
enriched with H3K79me2/3 (Fig. 2b). In the SHARP1 gene locus,
MLLN/MEN1/LEDGF localized across the transcribed region
concomitantly with high enrichment of H3K79me2/3 (Fig. 2b).
These findings were verified by ChIP-quantitative PCR (qPCR) of
the promoter regions of the SHARP1 gene using antibodies
against MLLN and H3K79me2 and ChIP-qPCR of HOXA9 pro-
moter was used as a positive control (Supplementary Fig. 2a). To
confirm these findings in another MLL-AF6 AML cell line, we
performed an independent ChIP-seq analysis of SHI-1 cells which
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expresses both MLL and MLL-AF6, demonstrating that MLLN

binds to SHARP1 gene loci, as well as posterior HOXA genes
locus (Fig. 2c). To ascertain the unique MLL-AF6 binding, we
analyzed MLLN and H3K79me2 ChIP-seq data of THP-1 (MLL-
AF9) and MV4-11 (MLL-AF4) cells and found that neither MLLN

binding nor H3K79me2 enrichment was observed at SHARP1 loci
(Supplementary Fig. 2b). Collectively, our results indicate that
SHARP1 is a unique transcriptional target of MLL-AF6 and its
expression is not suppressed at the post-transcriptional level in
the other MLLr-AML subtypes.
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Fig. 1 Overexpression of SHARP1 in MLL-AF6 AML patients. a Venn diagram showing MLL-bound (101 genes) and H3K79me2 enriched genes (8904
genes) obtained from ChIP-seq analysis of ML-2 cells for identification of 92 MLL-AF6 target genes. b Volcano plot showing average log2 fold change
against −log10 p value for all genes in MLL-AF6 AML (n= 14) vs all the other subtypes of MLL-rearranged AMLs (other MLLr) (n= 42). Gene expression
data of patients were obtained from GSE19577, GSE14468 and GSE61804. Red dots MLL-AF6 target (92 genes), Green circles upregulated targets (9
genes), Black circles downregulated targets (8 genes). c Box plot showing SHARP1 log2 expression in AML patients and normal bone marrow (NBM)
CD34+ cells. SHARP1 log2 expression level: MLL-AF6 7.504 ± 0.788 (n= 14), Other MLL 2.854 ± 0.065 (n= 42), Non-MLL 3.623 ± 0.064 (n= 276),
NBM CD34 2.856 ± 0.036 (n= 12). Gene expression data of NBM CD34+ cells were from GSE19429. d, e Left panel: Unsupervised hierarchical gene-
expression clustering from 2 distinct cohorts of adult AML patients from GSE1159 (d n= 285) and GSE6891 (e n= 268). The bars indicate SHARP1 gene
expression. All of the five high SHARP1 cases have the MLL-AF6 fusion gene. Right panel: Box plot showing SHARP1 log2 expression in AML patients.
SHARP1 log2 expression level: d MLL-AF6:10.45 ± 0.096 (n= 3), Other MLL 4.383 ± 0.082 (n= 15), Non-MLL 4.566 ± 0.045 (n= 258). The cytogenetics
was not determined in 9 cases. e MLL-AF6 11.18 ± 0.828 (n= 2), Other MLL 5.916 ± 0.257 (n= 16), Non-MLL 5.658 ± 0.033 (n= 241). The cytogenetics
was not determined in 9 cases. All box plots extend from the 25th to 75th percentiles and the whisker extends from the minimum level to the maximum.
Median value is plotted in the box. ***p < 0.001
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To examine whether MLL-AF6 regulates SHARP1 expression,
we performed MLL-AF6 knockdown using two independent
lentiviral shRNA targeting MLLN (shMLL #1 and #2) in ML-2
cells. Reduction in MLL-AF6 resulted in suppressed SHARP1
mRNA expression (Fig. 2d). Pharmacological inhibition of
DOT1L results in robust and selective ablation of H3K79
methylation, leading to suppressed transcription of MLL-FP
target genes, such as HOXA gene cluster and MEIS19. To
investigate whether SHARP1 expression relies on DOT1L activity,
ML-2 and MOLM-14 cells were treated with the selective
aminonucleoside inhibitor EPZ567622. Consistent with the
previous study, H3K79me2 was reduced in both cell lines
(Fig. 2e). Importantly, EPZ5676 treatment dramatically reduced
SHARP1 expression at both mRNA and protein levels in ML-2
cells, whereas no significant change was observed in MOLM-14
cells at mRNA level (Fig. 2f, g). Collectively, these results
demonstrate that MLL-AF6 and MEN1/LEDGF directly bind to
the SHARP1 gene locus to positively regulate its expression
through DOT1L activity.

SHARP1 maintains clonogenic growth of MLL-AF6 AML cells.
To elucidate the role of SHARP1 in human MLL-AF6 leukemia,
we performed knockdown experiments using two independent
lentiviral shRNAs against SHARP1 (shSHARP1 #1 and #2) and a
shRNA against GFP (shGFP) as a control in ML-2, CTS and SHI-
1 cells. Knockdown efficiency was confirmed by qPCR and
Western Blotting (Fig. 3a and Supplementary Fig. 3a). Equal
number of the cells was injected intravenously into sublethally
irradiated (240 rads) NOD-SCID common gamma chain deficient
(NSG) mice. Recipients of ML-2 or CTS shSHARP1 showed
significantly extended survival length than those of shGFP
(median survival; ML2 shGFP 41.5, shSHARP1#1 45,
shSHARP1#2 58.5 days, shGFP vs shSHARP1#1 p= 0.0008,
shGFP vs shSHARP1#2 p= 0.0003, CTS shGFP 22, shSHARP1#1
25, shSHARP1#2 25.5 days, shGFP vs shSHARP1#1 p= 0.0185,
shGFP vs shSHARP1#2 p= 0.0065) (Fig. 3b). Consistently,
downregulation of SHARP1 increased apoptotic cells (AnnexinV+

DAPI−or PI−) (Fig. 3c), while granulocytic and monocytic dif-
ferentiation was not observed, assessed by flow cytometry and
morphological analysis (Supplementary Fig. 3b). We also
observed attenuated cell growth (Fig. 3d) and colony formation
(Fig. 3e). However, transduction of the two SHARP1 shRNA
neither induced apoptosis nor attenuated cell growth and colony-
forming ability in MOLM-14 (MLL-AF9) and MV4-11 (MLL-
AF4) (Supplementary Figs. 3c to 3e). Collectively, our results
demonstrate a critical role of SHARP1 in maintaining clonogenic
growth and preventing apoptosis of MLL-AF6 AML cells.

Deletion of Sharp1 attenuates MLL-AF6 AML progression. To
further investigate the role of SHARP1 in the development of

MLL-AF6 AML, we transduced fluorescence-activated cell sorting
(FACS)-sorted lineage (Lin)- Sca1+ c-kit+ (LSK) cells from bone
marrow (BM) cells of Sharp1 +/+ and Sharp1−/− mice23 with the
MLL-AF6 fusion gene as described previously12. A total of
200,000 transduced cells were transplanted into sublethally irra-
diated (650 rads) congenic mice (Fig. 4a). In the long-term follow
up, the recipients of MA6/S1KO demonstrated significantly
longer survival than those of MA6/WT (median survival; MA6/
WT 111.5 vs MA6/S1KO 77 days, p= 0.0002) (Fig. 4b). Inter-
estingly, peripheral blood (PB) taken 2 months after the trans-
plantation revealed that 14 out of 17 recipients of MA6/WT
presented with AML cells (CD45.2+ CD11b+) higher than 20 %
of all nucleated cells, as compared to only 5 out of 17 MA6/KO
recipients. Recipients of MA6/WT demonstrated higher white
blood cell (WBC) counts (median 26.5 vs 7.18 × 103/μL,
p < 0.001) and lower red blood cell (RBC) counts (median 6.51 vs
8.74 × 106/μL, p < 0.01), as compared to MA6/S1KO (Fig. 4c),
suggesting that Sharp1 deletion decreased disease aggressiveness.
Moribund recipients from both groups displayed liver and spleen
enlargement (Fig. 4d). The majority of the BM cells were
immature Gr1+ CD11b+ myeloblasts (Fig. 4d, e and Supple-
mentary Fig. 4a) and had similar differentiation status between
the two groups (Fig. 4e). To assess the propagative ability of the
leukemia cells, 200,000 whole BM cells from leukemic mice were
injected into sublethally irradiated (650 rads) congenic mice
(Fig. 4a). Recipients of MLL-AF6 AML Sharp1−/− presented
significantly longer survival than those of Sharp1+/+ (median
survival; 25 vs 17 days, p < 0.0001) (Fig. 4b). Consistent with these
findings, the colony-forming replating assay, commonly used as a
surrogate for assessing leukemic transformation, demonstrated
fewer numbers of colonies from the second plating of Sharp1−/−

cells compared to Sharp1+/+ (Supplementary Fig. 4b). Collec-
tively, these findings demonstrate that Sharp1 contributes to the
development and propagation of MLL-AF6 AML.

To investigate whether Sharp1 deletion affects the initiation of
other subtypes of MLLr-AML, the MLL-AF9 fusion gene15 was
retrovirally transduced into LSK cells from Sharp1+/+ or
Sharp1−/− mice and subsequently 200,000 cells were transplanted
into sublethally irradiated (650 rads) CD45.1+ congenic mice
(Supplementary Fig. 4c). Recipients from both groups succumbed
to leukemia with a similar median survival in primary
transplantations (median survival; 74 vs 70 days, p= 0.302).
Secondary transplantation was performed by injecting 200,000
leukemic whole BM cells into sublethally irradiated (650 rads)
congenic mice, which did not exhibit any survival difference
(median survival; 23.5 vs 23 days, p= 0.848) (Supplementary
Fig. 4d), demonstrating that Sharp1 deletion does not affect
development or propagation of MLL-AF9 AML. Consistent with
these findings, Sharp1 mRNA was elevated in MLL-AF6 AML
cells compared to BM Granulocyte-Macrophage Progenitor
(GMP) and granulocytes, which are the phenotypic normal

Table 1 MLL-AF6 specific target genes

Gene Description Fold change(log2) p value(-log10)

SHARP1 Basic helix-loop-helix family, member e41 4.65 13.3
P2RY1 Purinergic receptor P2Y1 2.35 8.00
SSPN Sarcospan 0.81 5.65
FAM169A Family with sequence similarity 169, member A 1.71 5.21
TRPS1 Trichorhinophalangeal syndrome 1 1.89 5.02
MMRN1 Multimerin 1 2.82 3.43
SKIDA1 SKI/DACH domain containing 1 1.59 2.13
HOXA7 Homeobox A7 0.91 1.89
SLC35D1 Solute carrier family 35, member D1 0.58 1.39

A list of nine MLL-AF6 target genes presenting higher expression in MLL-AF6 AML than all the other subtypes of MLLr-AMLs
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hematopoietic counterparts for AML cells15, while the expression
in MLL-AF9 AML was comparable to normal BM GMP and
higher than granulocytes (Supplementary Fig. 4e), suggesting that
upregulated Sharp1 may confer oncogenic properties to murine
MLL-AF6 AML, but not to MLL-AF9 AML.

Sharp1 deletion reduces MLL-AF6 leukemia-initiating ability.
Leukemia cells are heterogeneous and organized as a hierarchy
that originates from a small fraction of cells that have self-renewal
potential, known as leukemic stem cell (LSC) or leukemia-
initiating cell (LIC)24. In MLLr-AMLs, MLL-FPs confer stem cell-
like properties on committed progenitor and leukemic GMP

(L-GMP) was defined as the cell population enriched for LSC in
murine MLL-AF9 AML15. To investigate the role of Sharp1 in
leukemia-initiating potential, we first assessed the frequency of L-
GMP (Lin− c-kit+ Sca1− CD34+ CD16/32+) in MLL-AF6 AML
cells by flow cytometry. Interestingly, MLL-AF6 AML Sharp1−/−

cells demonstrated significant reduction both in L-GMP and LSK
populations compared to Sharp1+/+ (Sharp1+/+ vs Sharp1−/−;
0.50 vs 0.18 %, p < 0.05 and 0.77 vs 0.24 %, p < 0.05, respectively)
(Fig. 5a). To assess the leukemia-initiating potential, we per-
formed limiting dilution assay (LDA) by injecting sublethally
irradiated (650 rads) congenic recipient mice with limiting
number of FACS-sorted L-GMP (5, 50, and 500 cells) or whole
BM cells (100, 200, and 2000 cells) from both groups.
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Remarkably, Sharp1−/− L-GMP harbored dramatically reduced
LSC frequency compared to Sharp1+/+ (Sharp1+/+ vs Sharp1−/−;
1:6.4 vs 1:307, p < 0.001) (Fig. 5b), whereas Sharp1−/− leukemic
BM cells showed 2.3-fold reduction compared to Sharp1+/+

(Sharp1+/+ vs Sharp1−/−; 1:531 vs 1:1,213, p < 0.05) (Supple-
mentary Fig. 5a). Consistent with the previous findings in the
study of MLL-AF9 AML15, L-GMP of MLL-AF6 AML cells were
markedly enriched for leukemia-initiating potential compared to
whole BM (L-GMP vs whole BM; 1:6.4 vs 1:531, p < 0.001)
(Fig. 5b and Supplementary Fig. 5a). Collectively, Sharp1 deletion
attenuated leukemia-initiating potential of MLL-AF6 AML cells,
and this effect was more profound in the L-GMP population. The
prolonged survival in the recipients of MLL-AF6 AML Sharp1−/−

in the secondary transplants could be explained by lower num-
bers of transplanted LSC.

Sharp1 is dispensable for steady-state hematopoiesis. Given
that Sharp1 plays a role in L-GMP maintenance in MLL-AF6
AML, we asked whether Sharp1 deletion affects normal hema-
topoiesis, especially the committed myeloid progenitor cells. We
first analyzed steady-state BM cells obtained from sex and age-
matched Sharp1+/+ and Sharp1−/− mice. We did not find any
differences in the number of hematopoietic stem cell (HSC=
CD150+CD48−LSK) and progenitor populations (MPP=multi-
potent progenitor CD150− CD48+ LSK; CMP= common mye-
loid progenitor Lin− c-kit+ Sca1− CD34+ CD16/32−; GMP=
Lin− c-kit+ Sca1− CD34+ CD16/32+; MEP=myeloid erythroid
progenitor Lin− c-kit+ Sca1− CD34− CD16/32−; and CLP=
common lymphoid progenitor, Lin− IL7R+ c-kit+ Sca1+ Flk2+)
between Sharp1+/+ and Sharp−/− mice. The frequency of mature
granulocytes (Gr1+ CD11b+) and B cells (B220+) was also
unchanged (Fig. 5c and Supplementary Fig. 5b).

To investigate the reconstitution ability of Sharp1−/− hema-
topoietic stem and progenitor cells (HSPCs), we performed
competitive transplantation assays by injecting 500,000 BM cells
from Sharp1+/+ or Sharp1−/− mice into lethally irradiated (900
rads) CD45.1+CD45.2+ congenic mice along with equal number
of BM cells from CD45.1+ congenic mice. In PB chimerism
analysis, no differences were observed in percentage of donor cells
in myeloid, B, and T cell lineages between recipients of Sharp1+/+

and Sharp1−/− BM cells over a period of 16 weeks after the
transplantation (Fig. 5d, Supplementary Figs. 5c and 5d).
Collectively, these results demonstrate that Sharp1 deletion does
not affect steady-state hematopoiesis, as well as the ability of
HSPCs to differentiate into multi-lineage cells and reconstitute
hematopoiesis.

SHARP1 binds to actively transcribed genes. Given these
findings and the known functions of SHARP1 as a bHLH tran-
scription factor, we hypothesized that SHARP1 binds to target
genes and regulates their expression, which are important for the
development and maintenance of AML. To delineate the direct
transcriptional target genes, we performed ChIP-seq using anti-
bodies against SHARP1 in ML-2 cells and identified 7,443
SHARP1-bound genes. Consistent with the known binding to E-
box with high affinity as a homodimer25,26, CACGTG was the
most enriched motif in the binding regions across the genome,
and it was increased near the binding peaks (Fig. 6a and Sup-
plementary Fig. 6a). A large proportion of SHARP1 occupancy
was located at the proximal promoter (−1 kb, +100 bp from TSS,
36%), intronic (28%), and intergenic regions (27%) (Fig. 6a).
SHARP1 was considered to function as a transcriptional repres-
sor, either by direct or indirect binding to DNA, and interacts
with DNA-bound transcription factors, such as C/EBP or MyoD,
and recruits G9a, HDAC1, and SIRT1 to binding sites, resulting

in alteration of histone modifications27–29. To delineate chro-
matin accessibility within SHARP1 binding sites, we overlaid
them with the regions enriched with active enhancer and pro-
moter marks (H3K4me3 and H3K27ac)30 and the repressive
mark (H3K27me3)31. Remarkably, SHARP1 binding sites were
enriched in H3K4me3 and H3K27ac marks within the gene loci
(Fig. 6a), defined as the promoter region (−2 kb) and gene body,
of highly expressed transcripts (H3K4me3; 6459 genes, H3K27ac;
5840 genes), whereas the binding sites enriched in the
H3K27me3 sites are located within the gene loci of poorly tran-
scribed genes (1055 genes) (Fig. 6b). The genes that were known
to be bound by SHARP1 protein (CLOCK, PER1, SHARP2, and
MLH1)32,33 demonstrated a SHARP1 peak in their promoters
(Fig. 6c).

SHARP1 regulates target genes in MLL-AF6 AML cells. As the
majority of H3K27ac marks overlaps H3K4me3 profiles, we
focused our attention on gene loci enriched in H3K4me3, a
known active enhancer and promoter mark34. Interestingly,
biological pathway analysis revealed a significant enrichment in
genes related to metabolic pathways (adj. p= 1.71E−89), cell
cycle (adj. p= 1.68E−19), ribosome biogenesis (adj. p= 8.74E
−9), and DNA replication (adj. p= 8.76E−7) (Fig. 6d), indicating
that SHARP1 is involved in diverse biological processes crucial
for AML cells. Moreover, we performed RNA-seq analysis com-
paring expression profiles of ML-2 control to SHARP1 knock-
down cells and found that 319 genes of SHARP1-bound genes
were downregulated and 326 genes were upregulated upon
SHARP1 knockdown (Supplementary Fig. 6b). The down-
regulated genes were associated with cell cycle, TGF-β signaling,
FoxO signaling, HIF-1 signaling, and cancer (CDKN1B, FLT3,
PDK1, FOXO1, BCL2, ERG) (Supplementary Fig. 6c), suggesting
potential positive regulation of these pathways by SHARP1 to
maintain MLL-AF6 AML activity.

SHARP1 does not influence circadian clock genes expression.
SHARP1 is one of the regulators of the mammalian molecular
clock33. Circadian clock genes generally play a critical role in
cancer cells with tumor suppressive or oncogenic properties in a
context-dependent manner35,36. In leukemias, PER2 (period cir-
cadian clock 2) was identified as a downstream target of C/EBPα
and had its genitive impact in promoting AML initiation37. A
recent study demonstrated that perturbation of the core circadian
protein heterodimer, CLOCK/BMAL1, induced myeloid differ-
entiation of AML cells and depleted LSC, highlighting the
importance of clock genes in AML38. SHARP1 is regulated by the
CLOCK/BMAL1 and represses their transcriptional activity by
competing for DNA binding or direct interaction with BMAL133.
Thus, SHARP1 functions as a negative regulator for PER1,
SHARP2, and SHARP1 itself in a feedback loop. Consistently,
SHARP1 was bound to the promoter of the circadian clock genes
(CLOCK, PER1, and SHARP2) in ML-2 cells (Fig. 6c, d). We
asked whether upregulated SHARP1 induce the aberrant
expression of the clock genes, which have a potential to affect
AML activity. We investigated the expression of ten circadian
clock genes (SHARP2, BMAL1, CLOCK, CRY1, CSNK1E, PER1,
PER2, PER3, CUL1, and NR1D) in AML patients, comparing
MLL-AF6 to other MLLr or non-MLLr AML, none of which
exhibited aberrant expression (Supplementary Fig. 6d). This
suggests that SHARP1 does not affect the expression of other
clock genes in MLL-AF6 AML cells despite their interlocked
feedback control in other physiological contexts.

SHARP1 cooperates with MLL-AF6 to regulate target genes.
Having established that SHARP1 could contribute to
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development and maintenance of MLL-AF6 AML, we next
sought to determine whether it cooperates with MLL-AF6 to
regulate transcription of target genes. Intriguingly, Gene Set
Enrichment Analysis (GSEA) revealed that the downstream genes
of HOXA9/MEIS1, MLL, and MLL-AF4 are enriched in those
downregulated upon SHARP1 knockdown (Fig. 7a). To delineate
the correlation of genome-wide occupancy between SHARP1 and
MLL-AF6, we overlaid SHARP1 and MLLN bound regions
obtained from ChIP-seq analysis. Notably, 78 out of 92 MLL-AF6
target genes were SHARP1-bound (Fig. 7b, Supplementary
Table 3), and 14 of the co-target genes were downregulated upon

SHARP1 knockdown (Fig. 7c), whereas none of these genes were
upregulated (≥1.5-fold). The gene set includes previously identi-
fied oncogenic targets of MLL-FPs, such as MEF2C15, CDK639,
and RUNX28, which demonstrated co-localization of MLL,
MEN1, and SHARP1 within the promoter loci, accompanied with
enrichment of H3K79me2/3 (Fig. 7d). These results suggest that
SHARP1 cooperates with the MLL-AF6 protein complex, and
expression of some MLL-AF6 target genes depend on SHARP1.

To determine whether SHARP1 forms a complex with MLL-
AF6, we carried co-immunoprecipitation (co-IP) experiments in
nuclear extracts from MLL-AF6 cell lines ML-2 and SHI-1. AF6
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analysis for the genes in the SHARP1 and H3K4me3 co-bounded regions within the promoter and gene body
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or MLLN co-IPs failed to detect SHARP1, which may have been
obscured by heavy chain bands. To circumvent this issue, we
performed co-IP in 293 T cells that were transfected with MLL-
AF6 and SHARP1, and demonstrated a robust interaction
between the two proteins (Fig. 7e). Intriguingly, we also observed
interaction between SHARP1 and MLL-AF9 (Supplementary
Fig. 7a), indicating that SHARP1 interacts with the portion of
MLL that is present in both MLL fusions. Using a series of MLL
deletion mutants14, we identified a region, amino acids 541–1251
(541–1251aa) of MLL, which was responsible for interaction with
SHARP1. We did not observe an interaction with MLL (1–540aa),

while the interactions with other MLL mutants were comparable
to that of MLL (1–1251aa) (Fig. 7f, g), indicating that SHARP1
interaction with MLL-AF6 and MLL-AF9 is dependent on MLL
(541–1251aa). This region contains the transcriptional repression
domains, including a DNA methyltransferase domain (MT) that
shares homology to methyl DNA-binding proteins40,41 and
recruits repressor complexes containing HDAC141. Given these
findings, it is conceivable that the interaction with SHARP1 could
alter the constituents of the MLL-AF6 complex and influence the
regulation of target genes. Although SHARP1 interacts with
common portion of MLL-FP, its specific expression in MLL-AF6
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only might provide a unique mechanism in regulation of the
MLL-AF6 target genes.

Discussion
Our study reveals a unique mechanism in the leukemogenicity in
MLL-AF6 AML. We identified direct MLL-AF6 target genes that
are overexpressed in MLL-AF6 AML patients compared to other
subtypes of MLLr-AMLs and focused on the bHLH transcription
factor, SHARP1, the highest and most significantly upregulated
gene. We demonstrated that SHARP1 plays an oncogenic role to
maintain clonogenic growth and leukemia-initiating potential,
regulating the expression of genes crucial for leukemia cell sur-
vival including MLL-AF6 target genes (Fig. 8).

MLLr-leukemias present with related gene expression profiles
as a result of a common MLL-FPs driven activation of tran-
scriptional elongation machinery20,42. Recent genome-wide
ChIP-seq analyses identified various sets of direct target genes
of MLL-FP, which consistently included the master regulatory
factors (HOXA7, HOXA9, HOXA10, and MEIS1) required for the
development of MLLr-leukemias. In this study, we identified 101
genes bound by MLL-AF6, and this number is comparable to the
previous studies of other MLL-FPs, in which 165 genes were
identified in MLL-AF443, 139 genes in MLL-AF98, and 178 genes
in MLL-ENL44. In contrast to the recent ChIP-seq analysis which
used ML-2 cells45, using a different MLLN antibody, we were able
to identify SHARP1 as a direct target of MLL-AF6, and validate
this finding by ChIP-qPCR. Furthermore, we found that MEN1
and LEDGF, two major MLL-FP subunits, co-bound to SHARP1
gene loci, corroborating our findings.

MLL-FPs recognize their target gene loci through the CXXC
domain of MLL and the PWWP domain of LEDGF14,21,45,46. The
CXXC domain specifically binds to unmethylated CpG DNA,
which is enriched in active promoters, whereas the PWWP
domain recognizes H3K36me2/3, which generally associates with
transcriptionally active regions. Although MLL-FPs functions as
an epigenetic reader through these common subunits of the MLL-
FP complex, the majority of MLL-AF6 targets are not included in
the gene sets of MLL-ENL, MLL-AF9, or MLL-AF4 targets8,43,44,
raising the possibility that unknown mechanisms may be involved
in this process. It is conceivable that distinct cellular functions
and localizations of translocation partners may determine the
unique target genes. AF6 (MLLT4), also known as afadin, is the
most common MLL cytoplasmic partner protein and has a dual
residency protein in the plasma membrane and the nucleus47.
AF6 may be involved in the transcription of unique MLL-AF6
target genes by recruiting transcription factors or co-activators
within the nucleus48.

Given the high expression level of SHARP1 comparable to
those of pivotal oncogenic target genes, HOXA9 and MEIS1, in
MLL-AF6 AML patients, we hypothesized that SHARP1 plays an
oncogenic role in MLL-AF6 AML cells. SHARP1 may exert
contextual tumor suppressive or oncogenic functions, depending
on the type of cancer. A recent study demonstrated that SHARP1
is highly expressed in renal cell carcinoma cells and its over-
expression accelerated tumor progression in xenograft models49,
whereas in triple negative breast cancers, SHARP1 mediates the
anti-metastatic function of p63 by degrading HIF-1α, and its
overexpression is associated with a favorable prognosis50. In
physiological conditions, SHARP1 is expressed in various tissues,
though the expression level is generally low and is upregulated by
external stimuli such as cytokines, infection, and hypoxia26,
indicating its potent role as a positive regulator for cell survival
under stress conditions. A recent study demonstrated that
SHARP1 expression can be induced by DNA-damaging agents,
and that SHARP1 inhibits activation of the p53 pathway
including pro-apoptotic genes51, providing protection from
cytotoxic effects. In agreement with the anti-apoptotic role of
SHARP1, SHARP1 knockdown resulted in robust apoptosis in
human MLL-AF6 AML cells, accompanied by the upregulation of
p53 pathway and apoptosis associated genes (Supplementary
Fig. 6e). However, a recent study by Coenen et al. demonstrated
that shRNA-mediated SHARP1 knockdown did not have any
effect in SHI-1 cells52, in contrast to our findings. This dis-
crepancy might be explained by the difference in knockdown
efficiencies with the use of different shRNAs against SHARP1. In
fact, one of the shRNAs was common between their study and
ours, and has led to reduced growth and increased apoptosis in
SHI-1 cells, even though the differences were only significant in
our study. Also, cell lines may acquire mutations that alter ori-
ginal characteristics after long periods of culture, which could
explain differences in knockdown between these two studies.
Based on our findings in the three MLL-AF6 and the two other
MLLr-AML cell lines, as well as genetic deletion in murine AML
models, we concluded that SHARP1 plays an oncogenic role in
MLL-AF6 AML cells.

In contrast to a number of evidence for a transcriptional
repressive role25,27,28,53,54, SHARP1 activates JunB and Gata3
expression to induce naïve T cells to Th2 T cells, and genetic
deletion of Sharp1 leads to reduced histone H3 acetylation at the
JunB conserved non-coding sequence and Gata3 promoter55.
This indicates that Sharp1 regulates chromatin modification at
these two loci and functions as a transcriptional activator. We
demonstrated that SHARP1 binds to E-box motifs in active
chromatin that are marked by H3K4me3 and H3K27ac, which
suggests an interaction between SHARP1 and transcriptional

Fig. 7 SHARP1 interacts with MLL-AF6 and regulates gene targets. a Enriched gene sets in ML-2 shGFP cells over shSHARP1 on RNA-seq. b Venn diagram
showing overlapping of SHARP1-bound genes with MLL-AF6 target genes (MLLN+H3K79me2) in ML-2 cells. c Heatmap images representing the relative
expression levels of 14 MLL-AF6/SHARP1 co-target genes downregulated upon SHARP1 knockdown obtained from RNA-seq data. d Genome view of
MLLN, MEN1, LEDGF, H3K79me2, H3K79me3, and SHARP1 peak binding on three MLL-AF6+ SHARP1 target genes in ML-2 shGFP: MEF2C, CDK6 and
RUNX2 gene. e Co-immunoprecipitation studies of SHARP1 and MLL-AF6 with an anti-HA antibody in 293 T cells transfected with plasmids encoding MLL-
AF6 and/or HA-tagged SHARP1. Proteins present in immunoprecipitates (IP, lane 1–4) or whole cell lysates of transfected cells (input, lane 5–8) were
separated by SDS-PAGE and immunoblotted with antibodies specific for MLLN and SHARP1. Interaction of SHARP1 and MLL-AF6 was detected (lane 4)
and not observed in negative control lanes with either empty vector, SHARP1 or MLL-AF6 only (lane 1–3). f Schematic showing a series of MLL deletion
mutants. Interaction with SHARP1 is indicated by + sign and loss of interaction by − sign. Boxes indicate AT hook motifs (blue), nuclear translocation
sequences (NTS1 and NTS2) (orange), subnuclear localization domains (SNL1 and SNL2) (purple), and DNA methyltransferase domain (MT) (yellow). g
Domain mapping analysis of MLL required for interaction with SHARP1. 293 T cells are transfected with plasmids encoding FLAG-tagged MLL deletion
mutants and HA-tagged SHARP1. Whole cell lysates were prepared from the transfected cells and subjected to immunoprecipitation with anti-FLAG
antibody. Proteins present in immunoprecipitates (IP, lane 1–7) or whole cell lysates of transfected cells (input, lane 8–14) were separated by SDS-PAGE
and immunoblotted with antibodies specific for FLAG-tagged MLL deletion mutants and HA-tagged SHARP1. The arrows indicate MLL mutant proteins.
Western blots are representative of at least three independent experiments
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activators or co-activators, recruiting chromatin modifiers to the
binding sites. This process can be influenced by differences in
post-translational modifications of SHARP1 protein, which
allows association with distinct protein complexes in different cell
contexts. For instance, SHARP1 sumoylation regulates its asso-
ciation with G9a56, which determines the SHARP1-dependent
functions. We further demonstrated that physical interaction of
SHARP1 and MLL-AF6 and co-localization on the promoters of
the majority of the MLL-AF6 target genes, some of whose
expressions are sensitive to SHARP1 levels. It is also possible that
SHARP1 regulates these genes through interaction with con-
stituents of these complexes. Delineating the proteins interacting
with SHARP1 in MLL-AF6 AML cells will provide further
insights into the process of gene regulation by SHARP1 in
leukemia.

We identified a subset of (a) SHARP1 targets and (b) co-targets
of MLL-AF6 and SHARP-1 that are critical for leukemogenicity
using an integrative analysis of RNA-seq and ChIP-seq datasets in
ML-2 cells. However, these genes are not overexpressed in MLL-
AF6 AML patients compared to the other subtypes of MLLr-
AML. SHARP1 ChIP-seq analysis highlighted that various motifs
of potential co-factors are enriched in the promoter of SHARP1
targets (Supplementary Fig. 7B), suggesting a more complex
regulatory mechanism involving other transcription factors. It is
plausible that those genes are activated by other transcription
factors in different AML subtypes that generally do not express
SHARP1. It will be of future interest to investigate how over-
expressed SHARP1 influences the recruitment of transcriptional
regulatory factors to chromatin, providing a unique mechanism
for gene regulation in ML-AF6 AML.

Notably, SHARP1 played more profound role in maintaining
the leukemia-initiating potential of L-GMP than whole BM cells
in MLL-AF6 AML. This suggests that the pathways or genes that
SHARP1 regulates may differ with the differentiation stage of
leukemia cells, and may play a more significant role in LSC
activity. MLL-AF6 AML patients present with a dismal clinical
prognosis due to resistance to initial chemotherapy and high rate
of relapse57, which may be caused by residual chemotherapy-

resistant quiescent LSC58. Our finding that Sharp1 is dispensable
for normal HSPC function suggests that SHARP1 could be a
promising therapeutic target of MLL-AF6 AML LSC. Addition-
ally, we showed that SHARP1 expression is sensitive to treatment
with DOT1L inhibitor, indicating that inhibition of DOT1L could
be a promising therapeutic approach to eliminate LSC and
improve the prognosis in these patients by preventing relapse
after chemotherapy.

Methods
Microarray Data. Gene expression data of AML patients were obtained from
GSE19577, GSE14468, and GSE61804, and NBM CD34+ cells were from
GSE19429, all from the NCBI Gene Expression Omnibus (GEO) database. The
probe-set expression data were generated using robust multichip average (RMA)
and then normalized using the cross-correlation method59. Differentially expressed
genes were then derived using the log2 fold change cutoff of 0.5 and the (t-statistic)
p value cutoff of 0.05. For each gene, the p value between 14 cases of MLL-AF6 and
42 cases of other subtypes of MLL-rearranged AMLs [MLL-AF9 (n= 16), MLL-
AF10 (n= 12), MLL-ENL (n= 4), MLL-ELL (n= 3), MLL-SEPTIN6 (n= 3),
MLL-AF4 (n= 2), and MLL-AF1q (n= 2)] samples against the mean of log2 fold
change was used to generate volcano plots. Unsupervised hierarchical gene-
expression clustering of AML cells from GSE1159 and GSE6891 was performed as
described previously20.

Cell lines and DOT1L inhibitor. HEK293T (ATCC, CCL11268) and BOSC23
(ATCC, CRL11270) cells were maintained in DMEM (Biowest) supplemented with
10% heat-inactivated FBS (Biowest). ML-2 (DMZ, ACC 15), CTS60, SHI-1 (DMZ,
ACC-645), MOLM-14 (DMZ, ACC 777), MV4-11 (ATCC, CRL9591) and Kasumi-
1 (ATCC, CRL2724) cells were maintained in RPMI-1640 (Biowest) supplemented
with 10% heat-inactivated FBS (Biowest). DOT1L inhibitor EPZ5676 (Epizyme)
was prepared in DMSO at 10 mM stock solution. ML-2, SHI-1, MOLM-14, MV4-
11, and Kasumi-1 identities were confirmed by STR profiling (Genetica DNA
Laboratories, NC, USA). All cell lines were tested negative for mycoplasma con-
tamination by MycoAlert PLUS mycoplasma detection kit (Lonza).

shRNA lentivirus transduction and transplantation. Lentiviral plasmids
(pLKO.1-puro) encoding shRNA targeting SHARP1 or MLLN were either obtained
from Sigma MISSION [TRCN0000016946 (shSHARP1 #2), TRCN0000005954
(shMLL #2), TRCN0000234741 (shMLL#1)], or cloned into pLKO.1 (sh sequence:
CGAGACGACACCAAGGATA, shSHARP1 #1)50. Lentivirus packaging was per-
formed in 293 T cells by co-transfecting shRNA lentiviral plasmids with pCMV-
dR8.91and pCMV-VSVG using Lipofectamine 2000 (Invitrogen). ML-2, CTS, SHI-
1, MOLM-14, and MV4-11 cells were exposed to viral particles with multiplicities
of infection (MOI) ranging from 1 to 2, in the presence of 6 μg/mL polybrene
(Santa Cruz) for 24 h. Cells were selected in media containing 0.5 μg/mL pur-
omycin at 48 h post-transduction, and checked for knockdown efficiency by qPCR
and immunoblotting at 5 to 7 days post-transduction and then 5 × 104 ML-2 and
1 × 105 CTS cells were injected into sublethally irradiated NSG mice.

Cell growth and Apoptosis assay. ML-2, CTS cells, and SHI-1 cells were
transduced with lentiviral shRNA, shGFP, shSHARP1#1, or shSHARP1#2, selected
with puromycin (0.5 μg/mL), and 4 × 104 cells seeded per well in 96-well plates and
counted every 2 days by hemocytometer. Trypan blue was used to exclude dead
cells. Apoptosis assay were performed according to the manufacturer’s instructions
using the FITC Apoptosis Assay Kit (BD Biosciences) and analyzed by LSRII flow
cytometer.

Serial replating assay and CFC assay. Serial replating assays were performed by
plating 20,000 cells of murine LSK cells transduced with MLL-AF6 on methyl-
cellulose M3234 (Stem Cell Technologies) supplemented with 6 ng/mL interleukin
(IL)-3, 10 ng/mL IL-6, and 20 ng/mL SCF (Peprotech). Colony numbers were
counted every 7 days and subjected to replating. Colony-forming cell (CFC) assays
were performed by plating 5,000 ML-2 or CTS cells transduced with the indicated
shRNAs on methylcellulose H4531 (Stem Cell Technologies) after puromycin
selection (0.5 μg/mL). Colony numbers were counted after 7 days.

Mice. Mice were housed at in a sterile barrier facility within the Comparative
Medicine facility at the National University of Singapore. All mice experiments
performed in this study were approved by Institutional Animal Care and Use
Committee (IACUC). Sharp1−/− mice were described previously23. CD45.1+

congenic mice (B6.SJL) and NSG mice were purchased from Jackson Labs.

Retrovirus transduction and generation of leukemia. The MLL-AF6 construct,
consisting of 35-347 amino acids of the AF6 portion12, was cloned into MSCV-
puro. MLL-AF6 and MLL-AF915 retroviruses were produced in BOSC23 cells. For
transduction, FACS-sorted LSK cells were seeded in Retronectin (Takara)-coated
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Fig. 8 Oncogenic role for SHARP1 in MLL-AF6 AML MLL-AF6 protein binds
to and activates the SHARP1 gene in a DOT1L-dependent manner.
Upregulated SHARP1 binds to E-box motifs in active chromatin, and also
interacts with MLL-AF6 to regulate a subset of genes critical for
leukemogenicity. This unique transcriptional machinery contributes to the
maintenance of MLL-AF6 AML leukemic stem cells
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dishes containing retroviral supernatants for 48 h and the transduced cells were
expanded for 7 days in methylcellulose M3234 (Stem Cell Technologies) supple-
mented with cytokines (6 ng/mL IL-3, 10 ng/mL IL-6, and 20 ng/mL SCF). For
MLL-AF6 AML, after puromycin selection (2 μg/mL) 2 × 105 cells were injected
into sublethally (650 rads) irradiated CD45.1 congenic mice to generate leukemia.
For MLL-AF9 AML, 2 × 105 cells after transduction were injected into sublethally
irradiated congenic mice. For generation of secondary leukemia, 2 × 105 primary
leukemic cells were injected into sublethally (650 rads) irradiated congenic mice.
PB was obtained every month after transplantation and analyzed by Hemavet
HV950FS (Drew Scientific) and FACS. Cells were stained with anti-CD45.1 and
CD45.2 antibodies to distinguish donor-derived cells from the host cells, as well as
anti-CD11b and Gr1 antibodies to identify leukemia cells. A recipient mouse was
considered positive if donor-derived cells were present and also constituted more
than 0.3% of the cells in the PB. BM cells harvested from moribund mice were
cytospun and stained with Giemsa’s azur-eosin-methylene blue (Merck Millipore).

Limiting dilution assay. Unfractionated BM (2000, 200, 100) or FACS-sorted L-
GMP (500, 50, 5) cells from leukemic mice were injected into sublethally (650 rads)
irradiated congenic mice. PB was obtained each month after transplantation and
analyzed by FACS for chimerism. Calculation of the frequency of LSC and the
statistical p value was performed using the extreme limiting dilution analysis
(ELDA) online software (http://bioinf.wehi.edu.au/software/elda/). A recipient
mouse was considered positive if CD45.2+ cells constituted more than 0.3% of the
all nucleated cells in the PB.

Competitive transplantation assay. 500,000 unfractionated BM cells from
CD45.2+ Sharp1+/+ or Sharp1-/- mice were injected into lethally (900 rads) irra-
diated CD45.1+ and CD45.2+ congenic mice along with an equal number of
CD45.1+ BM cells. PB was obtained every month after transplantation and ana-
lyzed by FACS. Cells were stained with anti-CD45.1 and CD45.2 antibodies to
distinguish donor-derived cells from the host cells, as well as lineage-specific
antibodies CD11b, Gr1, B220, CD4 and CD8 to identify myeloid, B, and T lineages.

Quantitative PCR. RNA was extracted using RNeasy kit (QIAGEN), reverse
transcribed using the QuantiTech Reverse Transcription kit (QIAGEN), and
quantitatively assessed using an ABI7500 (Applied Biosystem). For each sample,
transcript levels of tested genes were normalized to β-actin using the delta CT
method. The highest expression was arbitrarily set to 1 and expressions in the other
samples were normalized to this value. All experiments were performed with three
replicates. PCR was performed on cDNA using following primers: MLL-AF6 fusion
gene: 5′-GTCCAGAGCAGAGCAAACCAG-3′, 5′-CTGACATGCACTTCATAGA
GTG-3′, SHARP1 (human): 5′-TAACCGAGCAACAGCATCAG-3′, 5′-TTTGAA
ATCCCGAGTGGAAC-3′, HOXA9 (human): 5′-GTATAGGGGCACCGCTTT
TT-3′, 5′-AATGCTGAGAATGAGAGCGG-3′, β-ACTIN (human): 5′-ACCCT
GAAGTACCCCATCGA-3′, 5′-CTCAAACATGATCTGGG-3′, Sharp1 (mouse):
5′-ACCGAATTAATGAATGCATTGCTCAG-3′, 5′-GTAAATACACCCCGGA
GTCCATCA-3′, β-actin (mouse): 5′-GGTCCACACCCGCCACCAG-3′, 5′-TTGC
TCTGGGCCTCGTCACC-3′.

Chromatin immunoprecipitation assays. Chromatin immunoprecipitation
(ChIP) (for both qPCR and sequencing) were performed as previously described61,
with the following modifications: ML-2 cells were fixed using a 1% formaldehyde
(FA) fixation protocol for 10 min for histone marks and SHARP1. For the other
proteins, the cells were fixed using a 1% FA fixation protocol for 10 min, while a 45
min, 2 mM disuccinimidyl glutarate (DSG) and a 30 min 1% FA double fixation
protocol was used. The antibodies used included SHARP1 (a mixture of H-72
Santa-Cruz, 12688-1-AP Proteintech, and ab175544 Abcam), H3K79me3 (Diag-
enode, pAb-068-050), MLL1 (Bethyl, A300-086A), H3K4me3 (Active Motif,
39159), H3K27me3 (Millipore, 07-499), H3K27ac (Millipore, 07-360), LEDGF
(Bethyl, A300-848A), and MEN1 (Bethyl, A300-105A). Fixed chromatin samples
were fragmented using a Bioruptor sonicator (Diagenode) for 30 min at high
power in a constantly circulating 4 °C water bath to an average size of 200-500 bps.
Antibody:chromatin complexes were collected with a mixture of protein A and
Protein G Dynabeads (Life Technologies) collected with a magnet, and washed 2 ×
with a solution of 50 mM HEPES-KOH, pH 7.6, 500 mM LiCl, 1 mM EDTA, 1%
NP-40, and 0.7% Na-Deoxycholate. After a TE wash, samples were eluted, RNase
and Proteinase K treated, and purified using a QIAGEN PCR purification kit. The
primer sequences were HOXA9 promoter: 5′-TGGCTGCTTTTTTATGGCTTCA
ATTATTG-3′/5′-CCGCGTGCGAGTGCG-3′, GAPDH promoter: 5′-CCCCTCC
TAGGCCTTTGC-3′/5′-GCTGAGAGGCGGGAAAGTT-3′, and SHARP1 pro-
moter: 5′-TGGGTAAACTTGAGTCCCAAAGGAAATT-3′/5′-TGCAAGTTG
CTTCTTCTCGAGGC-3′. ChIP samples were quantified relative to inputs as
described61. Briefly, the amount of genomic DNA co-precipitated with antibody is
calculated as a percentage of total input using the following formula ΔCT= CT
(input)− CT (chromatin IP), % total= 2ΔCT × 5.0%. 50 μl aliquot taken from each
of 1 ml of sonicated, diluted chromatin before antibody incubation serves as the
input, thus the signal from the input samples represents 5% of the total chromatin
used in each ChIP. CT values were determined by choosing threshold values in the
linear range of each PCR reaction. The % input values of MLLN and H3K79me2

enrichment on HOXA9 (positive control) and SHARP1 loci were normalized
against that of the GAPDH locus (negative control) in the respective samples for
comparison.

RNA/ChIP-sequencing. RNA-seq libraries were prepared using Illumina Tru-Seq
Stranded Total RNA with Ribo-Zero Gold kit protocol, according to the manu-
facturer’s instructions (Illumina, San Diego, California, USA). Libraries were
validated with an Agilent Bioanalyzer (Agilent Technologies, Palo Alto, CA),
diluted, and applied to an Illumina flow cell using the Illumina Cluster Station.
ChIP-seq libraries were prepared using Next ChIP-Seq library prep reagent set
(New England Biolabs), and multiplexed (New England Biolabs). Each library was
sequenced on an Illumina Hiseq2000 sequencer.

ChIP-Seq data analysis. In-house ChIP-seq data for SHARP1, MEN1, LEDGF,
H3K79me3, H3K4me3, H3K27me3, and H3K27ac in ML-2 and MLLN in SHI-1
were used in this study. ChIP-seq data for MLLN and H3K79me2 in ML-2 were
obtained from GSE83671, and those in MV4-11 and THP-1 were from GSE79899.
Sequencing quality check for every dataset was performed. Mapping of the reads
was performed using BWA to human genome version UCSC Hg19. MACS2 was
used for peak calling between the special ChIP samples and the corresponding
inputs with filtering parameters of cutoff p value at 0.05, minimal peak fold
enrichment of 5, and minimal peak height of 10 reads. Peak integration cross
different ChIP-seq datasets was done by utilizing the Bedtools. The Database for
Annotation, Visualization and Integrated Discovery (DAVID) v6.7 was used to
detect potential significantly altered pathways (https://david.ncifcrf.gov/). SHARP1
DNA binding motif enrichment was computed using the peak-motifs module from
the RSAT suite62 using oligomer length ranging from 6 to 8 nucleotides and the
“merge lengths for assembly” option. ChIP-seq heatmaps were generated using
ChAsE vers. 1.0.1163.

RNA-Seq data analysis. RNA-seq was performed for duplicates of shGFP,
shSHARP1#1 and shSHARP1#2. After mapping of RNA-seq data to human gen-
ome version UCSC Hg19, normalization among the samples was performed using
the total mappable counts. For identification of enriched gene sets or pathways, we
utilized the GSEA (Gene Set Enrichment Analysis) software with the tool for
preranked gene list (http://www.broad.mit.edu/gsea/) and the database MSigDB.
v5.0.

Co-immunoprecipitation. HEK293T cells were transfected with the following
plasmids: empty vector (control), HA-tagged SHARP1 (human), MLL-AF6, MLL-
AF915, and/or MLL deletion constructs14. The cells were lysed in co-
immunoprecipitation (co-IP) lysis buffer (10 mM Tris-Cl pH 7.5, 150 mM NaCl,
0.5 mM EDTA and 0.5% NP-40), supplemented with complete EDTA-free protease
inhibitor cocktail (Roche) for 30 min on ice. Lysates were cleared at 15,000× g for
15 min at 4 °C. Co-immunoprecipitation was performed in co-IP lysis buffer with
2 μg of anti-HA (Santa Cruz, sc-7392) or anti-FLAG antibodies (Sigma, F1804) for
3 h or overnight at 4 °C. Following which, three washes of immunoprecipitated
proteins were performed with wash buffer (10 mM Tris-Cl pH 7.5, 150 mM NaCl,
and 0.5 mM EDTA). The bound proteins were eluted with 2 × laemmli buffer for 5
min at room temperature with constant shaking. Samples were resolved on 7%
SDS-PAGE and subjected to Western blot analysis.

Immunoblotting, immunoprecipitation, and antibodies. For whole cell lysis, 1 ×
107 cells were lysed with radioimmunoprecipitation (RIPA) buffer. Protein con-
centrations were quantitated with Biorad Protein Assay (Bio-Rad). Proteins were
separated on 10% SDS-PAGE gels. Immunoblots were incubated with primary
antibody overnight at 4 °C, followed by a secondary horseradish peroxidase (HRP)-
conjugated antibody (1:2000 dilution) at room temperature for 1 h. Details on the
antibodies used and dilutions are described in Supplementary Table 5. Full blots
are shown in Supplementary Fig. 8.

Flow cytometry. Single-cell suspensions were analyzed by flow cytometry. Anti-
bodies conjugated with phycoerythrin (PE), PE-CY7, fluorescein isothiocyanate
(FITC), allophycocyanin (APC), APC-CY7, and Pacific Blue obtained from BD
Pharmingen, BioLegend, and eBioscience were used. Details on the antibodies used
and dilutions are described in Supplementary Table 4. Stained cells were analyzed
with an LSRII flow cytometer and sorted using a FACS Aria (BD Biosciences). Flow
Jo 7.5 (Tree Star) was used for data acquisition and analysis.

Statistical information. The statistical significances were assessed by two-sided
Student’s unpaired t-test using the GraphPad PRISM 5 unless otherwise specified.

Data availability. The data supporting the findings of this study are available in
the article or supplementary information files. Any other relevant data are available
from the authors upon request. The ChIP-seq and RNA-seq datasets have been
deposited in the Gene Expression Omnibus (GEO) repository with the accession
code GSE 95511.
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