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The fluorination effect of fluoroamphiphiles in
cytosolic protein delivery
Zhenjing Zhang1, Wanwan Shen1, Jing Ling1, Yang Yan1, Jingjing Hu1 & Yiyun Cheng1

Direct delivery of proteins into cells avoids many drawbacks of gene delivery, and thus has

emerging applications in biotherapy. However, it remains a challenging task owing to limited

charges and relatively large size of proteins. Here, we report an efficient protein delivery

system via the co-assembly of fluoroamphiphiles and proteins into nanoparticles. Fluorous

substituents on the amphiphiles play essential roles in the formation of uniform nano-

particles, avoiding protein denaturation, efficient endocytosis, and maintaining low cyto-

toxicity. Structure-activity relationship studies reveal that longer fluorous chain length and

higher fluorination degree contribute to more efficient protein delivery, but excess fluor-

ophilicity on the polymer leads to the pre-assembly of fluoroamphiphiles into stable vesicles,

and thus failed protein encapsulation and cytosolic delivery. This study highlights the

advantage of fluoroamphiphiles over other existing strategies for intracellular protein

delivery.
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Numerous human diseases arise from mutations or other
abnormalities on proteins owing to their essential func-
tions in enzyme catalysis, signal transduction, gene reg-

ulation, maintaining the delicate balance between cell survival,
and programmed cell death, etc1,2. During the past decades,
protein biotherapeutics including peptide hormones, growth
factors, cytokines, and monoclonal antibodies have been dis-
covered or engineered to treat these diseases3. Protein ther-
apeutics offer several advantages over small molecule drugs, such
as higher specificity, limited adverse effects, and faster clinical
development4. However, proteins are generally membrane-
impermeable due to their relatively large size, hydrophilicity
and limited positive charges, which make them difficult to reach
the intracellular targets5. Therefore, most current protein drugs
are developed based on extracellular targets. To expand the family
of protein therapeutics, it is of great importance to develop effi-
cient strategies for cytosolic protein delivery6,7.

Cytosolic protein delivery is challenging since the vehicle
should efficiently bind the protein, protect it against degradation,
initiate efficient internalization, trigger endosomal disruption,
and release the proteins into cytosol8. In retrospect, the most
studied approach has been fusing proteins with protein trans-
duction domains (PTD)9–12. However, PTD-based strategies
displayed a certain number of limitations that most of them
require chemical modification of target proteins13. The covalent
conjugation of PTD to cargo proteins might be involved with
reduced bioactivity and safety concerns. Besides, many other
delivery systems have been developed based on liposomes14,15,
peptides16, polymers17,18, and inorganic nanoparticles19,20. These
approaches still possess some limitations such as the need of
protein modification, complicated synthesis, and limited trans-
duction efficacy.

Recently, fluoroamphiphiles such as fluorinated dendrimers
and polyethylenimines (PEIs) were reported to have promising
features like no other non-viral carriers21–25. These materials
encountered multiple hurdles during gene delivery. In addition,
the fluoroamphiphiles possess excellent self-assembly prop-
erty22,26–31. Combining these features together, it is rational to
develop fluoroamphiphiles for cytosolic protein delivery. Proteins
could be fabricated into nanoparticles via the co-assembly of
fluoroamphiphiles and proteins. The fluorocarbons could
improve the affinity of polymers to cell membranes and facilitate
the endocytosis32–34. In addition, the fluorous ligands are gen-
erally lipophobic and bioinert, and this property is beneficial for
the avoidance of protein denaturation and the retention of pro-
tein bioactivity. Finally, the replacement of hydrocarbons on
traditional amphiphiles with fluoroalkyls is responsive for less
cytotoxicity and hemolytic activity35.

As a proof-of-concept, we synthesize a small library of fluor-
oamphiphiles by grafting fluoroalkyls to branched PEI for cyto-
solic protein delivery. Traditional amphiphiles such as alkane-
and cycloalkane-grafted PEIs are also included to reveal the effect
of fluorination and highlight the advantages of fluoroamphiphiles
over other existing amphiphilic materials. Model proteins such as
bovine serum albumin (BSA), β-galactosidase (β-Gal), saporin,
and peptide (GRKKRRQRRREKIKRPRSSNAETL) with different
molecular sizes and charge properties (BSA and β-Gal are nega-
tively charged, saporin and the peptide are positively charged) are
employed to test the efficacy of developed fluoroamphiphiles. We
demonstrate that the discovered fluoroamphiphiles efficiently
deliver unmodified proteins into cells without inducing
cytotoxicity.

Results
Screening of efficient fluoroamphiphiles. Branched PEI was
grafted with fluoroalkanes (F1-F4), alkanes (A1-A4), and
cycloalkanes (C1-C4) via amine-epoxide or amine-isocyanate
reactions (Fig. 1)36,37. Each ligand was coupled to PEI at four
conjugation degrees. Take F3 for example, the average numbers of
conjugated F3 per PEI were 28, 54, 76, and 102, respectively, and
the materials were termed F3-1, F3-2, F3-3, and F3-4, respec-
tively. Unmodified PEI and a commercial reagent PulsinTM were
used as negative and positive controls, respectively. A total
number of 50 materials were used as the screening pool to dis-
cover efficient materials (Supplementary Table 1).

We first investigated efficacies of the 50 candidates in the
library using a fluorescein isothiocyanate labeled BSA (BSA-
FITC, 0.3 μM). The highest fluorescence intensity for each
material was shown in Supplementary Fig. 1 and Table 1.
The transfected cells at optimal condition for each material
were also treated with trypan blue to quench the BSA-FITC
physically adsorbed on cell membrane38. The fluorescence
intensity of cells after trypan blue quenching was shown
in Fig. 1c.

As shown in Fig. 1c, 11 materials (7 fluoroalkane-grafted and 4
alkane-grafted materials) showed superior efficacies to the
positive control PulsinTM. The top two performing fluoroamphi-
philes F4-1 and F3-3 are much more efficient than the others in
the library. When F4-1 and F3-3 mediated BSA-FITC delivery
was carried out at 4 °C, or added with sodium azide, fluorescence
from the cells decreased significantly (Supplementary Fig. 2),
suggesting endocytosis as the primary mechanism of internaliza-
tion. The endocytosis of F4-1 and F3-3 complexes is mediated by
both macropinocytosis- and caveolae-dependent pathways (Sup-
plementary Fig. 3). The cells treated with F4-1/F3-3 complexes
exhibited strong and evenly distributed fluorescence in the cytosol
after 1 h incubation, and the internalized proteins were not co-
localized with acidic organelles (Supplementary Fig. 4). These
results proved that F4-1 and F3-3 are capable of rapidly
transporting proteins into cells and releasing cargos in the
cytosol.

Fluorination effect of fluoroamphiphiles. Since the efficacies of
F4-1 and F3-3 are much superior to the non-fluorinated analogs.
We further investigated the effect of fluorination on cytosolic
protein delivery. It was reported that the contribution of a CF2
group to hydrophobicity was about 1.5 times that of a CH2

group39, and thus the hydrophobicity of F3 and F4 could be
roughly equivalent to that of A3 and A4, respectively. In this case,
A4-1 and A3-3 in the library can be used as non-fluorinated
controls for F4-1 and F3-3, respectively. As revealed by the
confocal images in Fig. 2a, BSA-FITC delivered by F4-1 or F3-3
were mainly dispersed in cytosol, while those by A4-1 and A3-3
were observed in green dots and seemed to be absorbed on cell
membrane. The fluorescence quenching experiment in Fig. 2b
further confirmed this hypothesis, nearly 90% fluorescence
intensity from F4-1/F3-3 complexes was retained after the addi-
tion of trypan blue, a cell membrane-impermeable fluorescence
quencher38, while the values were less than 40% for non-
fluorinated controls. Even when the transfection time for non-
fluorinated polymers was increased from 4 to 24 h, the observed
fluorescence was scarcely increased, and only green dots were
observed on cell surface (Supplementary Figs. 5 and 6). Both non-
fluorinated complexes are internalized via macropinocytosis- and
caveolae-dependent pathways (Supplementary Fig. 7). Fluor-
ocarbons are both hydrophobic and lipophobic, and the mixing of
fluorocarbons and hydrocarbons is highly non-ideal40. Therefore,
the fluoroamphiphiles and phospholipids have limited miscibility,
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Fig. 1 Fluoroamphiphiles for cytosolic protein delivery. a Co-assembly of fluoroamphiphiles and proteins. b Structures of hydrophobic substituents coupled
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which ensures efficient cell internalization of fluor-
oamphiphiles41,42. In comparison, the non-fluorinated controls
are consisted of hydrocarbon chains, which are easily fused with
the membranes after cell attachment43. The fusion of phospho-
lipids and hydrogenated amphiphiles will lead to early release of
proteins and failed cytosolic delivery (Fig. 2c). It is worth noting
that all the cycloalkane-based amphiphiles showed poor efficacies,
and the materials were even less efficient than alkane-based ones.
BSA-FITC delivered by cycloalkane amphiphiles, such as C4-2
also showed significant membrane absorption (Supplementary
Fig. 8). These results suggested the beneficial effect of fluorination
in cytosolic protein delivery.

We further compared the behaviors of fluoroamphiphiles and
non-fluorinated controls in the aspects of nanocomplex forma-
tion, protein denaturation, cellular uptake and cytotoxicity. As
shown in Fig. 3a, fluoroamphiphiles and BSA formed uniform
nanoparticles (~200 nm) with a low particle dispersion index
(PDI) around 0.1, while the non-fluorinated A4-1 and A3-3 tend
to form anomalous aggregations (PDI > 0.5). This result can be
explained by the strong surface activity of fluoroamphiphiles
compared with non-fluorinated ones. It was reported that the
incremental change in the free energy of adsorption for the
transfer of a CF2 group from water to the air/water surface is
almost twice that of a CH2 group (−5.1 vs. −2.6 kJ/mol)44.
The strong surface activity of fluoroamphiphiles dramatically
increases the tendency to assemble in water26,27,40,45. In
comparison, hydrogenated amphiphiles possess relatively lower
surface activity, and the lipophilic chains also have high affinity

with proteins via hydrophobic interactions, which drives the
formation of large aggregates. The non-specific hydrophobic
interactions between alkanes and proteins may denature the
bound proteins. Circular dichroism results in Fig. 3b confirmed
this hypothesis. BSA complexed with A4-1 and A3-3 showed
significant changes in protein secondary structures, while those
bound by fluoroamphiphiles relatively approached native BSA.
The fluoroalkyl chains are relatively bioinert and usually used for
antifouling purposes46–49, therefore the F4-1 and F3-3 nanocom-
plexes showed limited protein denaturation. The partially
denatured BSA in the A4-1 or A3-3 complexes also explained
the long-term absorptions of BSA-FITC on cell membranes in
Fig. 2a and Supplementary Fig. 550.

Next, we tested the membrane permeability of fluoroamphi-
philes in the absence of proteins. As shown in Fig. 3c,
fluoroamphiphiles labeled with FITC showed much higher
internalization than non-fluorinated controls, which is in
accordance with results observed on fluorinated dendri-
mers21,51,52. Fluoroalkyl chains have a strong tendency to adsorb
on cell membranes due to exceedingly low fluoroalkyl-water
interactions53, and favorable cell adhesion is beneficial for
efficient cellular uptake43. In addition, the limited miscibility
between fluoroalkyl and phospholipids can minimize the fusion
of amphiphiles with cell membranes during endocytosis, which is
a dominant feature for hydrogenated amphiphiles54. Fusion of
hydrogenated amphiphiles not only leads to long-term retention
of materials on cell membrane, but may also cause membrane
disruption and cytotoxicity43. Therefore, the fluoroamphiphiles
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and their complexes showed much lower toxicity than the
hydrogenated controls (Fig. 3d and Supplementary Fig. 9).

Structure-activity relationships of fluoroamphiphiles. We fur-
ther investigated the structure-activity relationships of fluor-
oamphiphiles in cytosolic protein delivery. As shown in Fig. 4a,
the fluoroamphiphiles with longer chains or higher grafting
degrees generally exhibited higher efficacies. However, this rule is
invalid for F3-4, F4-3, and F4-4. These fluoroamphiphiles possess
relatively long fluoroalkyl chains and high fluorination degrees,
but showed extremely low delivery efficacy. It is known that
longer fluoroalkyl chains and higher fluorination degrees lead to
higher gene delivery55. Considering differences between protein
and gene delivery, we hypothesized that the low efficacies of F3-4,
F4-3, and F4-4 are attributed to poor protein encapsulation. In
this case, we systemically investigated the self-assembly behaviors
of fluoroamphiphiles. As shown in Fig. 4b and Supplementary
Fig. 10, all the fluoroamphiphiles except F3-4, F4-3, and F4-4
failed to assemble into nanoparticles in the absence of BSA at
concentrations up to 15 μM, while F3-4, F4-3, and F4-4 could
form nanoparticles or vesicles (PDI < 0.3) even at 0.3 μM (Sup-
plementary Fig. 11). As previously reported, a decrease of
hydrophilic to hydrophobic segment ratio in amphiphiles lead to
the change of assembled nanostructures from spherical to
cylindrical micelles and finally to vesicles56. The assembly of
fluoroamphiphiles usually forms internal Teflon-like hydrophobic
and lipophobic films that increase the stability of assembles
and reduces its permeability to hydrophilic molecules40,53.

This process may hinder the encapsulation of protein within the
assembled nanostructures, and thus proteins only bind on the
surface of nanoassembles via electrostatic interactions. As a result,
the complexation of these fluoroamphiphiles with BSA, an
anionic protein at pH 7.4, leads to the decrease of zeta-potential
of formed nanoparticles. We further labeled BSA with platinum
(Pt) nanoparticles57. The TEM results in Fig. 4c confirmed that
the encapsulation of Pt-labeled BSA was hindered in F3-4 and F4-
4 nanoassembles. On the other hand, F3-3 and F4-1 co-assembled
with BSA to form nanocomplexes (PDI < 0.3). The binding of
anionic region of BSA to cationic PEI facilitate the assembly
process. The element mapping results in Supplementary Fig. 12
showed that Pt nanoparticles were homogeneously distributed in
the F4-1/F3-3 nanocomplexes. The failed protein encapsulation
by F3-4 and F4-4 is further confirmed by a BCA assay. As shown
in Fig. 4d, nearly 100% BSA complexed with F3-4 and F4-4 could
be detected by the BCA assay, while 70% proteins within the F4-1
and F3-3 complexes could not be measured, which is an indica-
tion of protein encapsulation. These results together confirmed
that excess fluorophilicity on the polymer leads to pre-assembly
of fluoroamphiphiles and failed protein encapsulation.

Robustness of fluoroamphiphiles. We further tested the effi-
cacies of F4-1 and F3-3 on other cell lines. As shown in Fig. 5a, b,
both materials successfully delivered BSA-FITC into NIH3T3 and
HEK293 cells. In addition, fluoroamphiphile-mediated BSA-FITC
delivery is much more efficient than TAT-conjugated proteins
(Supplementary Fig. 13). The materials are also efficient in the
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delivery of β-Gal, saporin, and a peptide (GRKKRRQRRRE-
KIKRPRSSNAETL-FITC). As shown in Fig. 5c–f, F4-1 and F3-3
showed impressive efficacies in the delivery of these biomolecules.
More importantly, the bioactivity of proteins such as β-Gal
delivered by the fluoroamphiphiles could be maintained (Fig. 5f
and Supplementary Fig. 14). These results confirmed that F4-1
and F3-3 can be used as vehicles for the delivery of various
proteins without the need of chemical modification.

Discussion
In the library, the fluoroalkanes F1, F2, F3, and F4 have 7, 8, 9,
and 13 fluorine atoms, respectively. The striking difference
between F1/F2- and F3-based fluoroamphiphiles in protein
delivery can be explained by an additive fluorination effect. A
single or two fluorine differences in the structure may have sig-
nificant influence on its physicochemical properties and trans-
duction efficacy. Therefore, the length of fluoroalkyl chain
and the fluorination degree on a specific fluoroamphiphile need
to be optimized before use. Structure-activity relationship
studies reveal that a balance in fluorophilicity is beneficial for
efficient protein delivery. Pre-assembly of the fluoroamphiphiles
before protein encapsulation should be avoided. The lead fluor-
oamphiphiles F4-1 and F3-3 discovered in the library successfully

delivered various proteins with distinct isoelectric points and
molecular weights into the cytosol. The fluoroamphiphiles
showed robustness of nanoparticle formation with BSA, β-gal,
and saporin at different weight ratios (Supplementary Table 2).
Though saporin is a positively charged protein at physiological
conditions58, the binding of anionic region on saporin to the
cationic fluoroamphiphiles may help the formation of nano-
complexes. The nanocomplexes formed at different protein to
amphiphile weight ratios were tested on cells to confirm the
effectiveness. The fluorescence from HeLa cells increased in
proportion to protein concentration in the range of 2–20 μg/mL,
and the internalization is saturated at higher protein concentra-
tions (Supplementary Fig. 15), suggesting dose-dependent pro-
tein delivery. Though fluorinated substances were listed as
persistent and bioaccumulative materials59, the concentrations
of fluoroamphiphiles in cytosolic protein delivery are
minute, and further design of biodegradable fluoroamphiphiles
may resolve the bioaccumulation issues for in vivo protein
delivery.

In conclusion, we found the fluorination effect of polymers in
cytosolic protein delivery. The fluoroamphiphiles show advan-
tages in several aspects including improved protein encapsulation,
avoiding protein denaturation, facilitated cellular uptake, and
limited material toxicity in comparison with non-fluorinated
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images of HeLa cells transfected with the complexes for 4 h. A volume of 4 μg BSA-FITC or 1 μg peptide-FITC was complexed with 2 μg F4-1 and 2.5 μg F3-
3, respectively. A representative result from three independent experiments. d Concentration-dependent toxicity of saporin and fluoroamphiphile/saporin
complexes on HeLa cells. Data are presented as mean ± s.e.m. (n= 5). X-gal staining (e) and relative β-Gal activity (f) of HeLa cells treated with the
complexes for 4 h. 5 μg β-Gal, 2 μg F4-1, or 2.5 μg F3-3 were used. A representative result from three independent experiments for e, data are presented as
mean ± s.e.m. (n= 6) for f. ***p < 0.001 analyzed by Student’s t-test, one tailed. The scale bar in the figure is 50 μm
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materials. The fluoroamphiphiles allow the delivery of proteins
into cells without the need of protein modification.

Methods
Intracellular protein delivery. BSA-FITC (4 μg) was mixed with the amphiphiles
at different material to protein weight ratios. The yielding nanocomplexes were
diluted with 50 μL serum-free media and incubated at room temperature for 30
min. Then the complexes were replenished with 150 μL serum-free media and
added to the cells. After 4 h, the media were removed and the cells were washed
with PBS and analyzed by flow cytometry (BD FACSCalibur, San Jose) and laser
scanning confocal microscope (LSCM, Leica SP5, Germany). In a separate study,
trypan blue (0.2 mg/mL) was added to the transfected cells before flow cytometry
measurement. PulsinTM was used according to the manufacture’s protocol (4 μL
reagent for each well). For other proteins, 5 μg β-Gal or 1 μg peptide were com-
plexed with 2 μg F4-1 or 2.5 μg F3-3, respectively. The transfection procedure was
the same as described above, and the cells were observed by fluorescence micro-
scope (Olympus, Japan).

Materials and other methods are available in Supplementary Methods.

Data availability. The data supporting the findings in this study are available
within the article and its supplementary information files. All data are available
from the authors upon reasonable request.
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