Fig. 1 | Nature Communications

Fig. 1

From: Spatially heterogeneous dynamics in a metallic glass forming liquid imaged by electron correlation microscopy

Fig. 1

Tilted dark-field electron correlation microscopy. a Schematic of the experiment. Tilted illumination shifts the transmitted beam off the optic axis of a microscope. A small, on-axis objective aperture selects one speckle in the diffraction pattern, forming a real-space image. Structural rearrangements cause fluctuations in the intensity of the image speckles. A time series of ~4000 dark-field images is recorded and then aligned to correct drift of the sample. b The time autocorrelation function g2(t) is calculated from the intensity time series at every pixel, then fit to the KWW equation to extract the relaxation time τ and stretching parameter β. The figure shows a typical g2(t), which is well converged. This calculation is repeated for every pixel in the image