Fig. 3 | Nature Communications

Fig. 3

From: Thermal influences on spontaneous rock dome exfoliation

Fig. 3

Exfoliation dome instrumentation layout and schematic diagrams of deformation and force monitoring equipment. a A suite of instrumentation is deployed across the most active area of exfoliation. Symbols, instrumentation labels, and scale are as described in Fig. 1. b Instrument installations intersect several exfoliation sheet fractures at depth depending on their position across the dome. Fractures are open across the annotated depths and are to scale. Note that instrument positions along the cross-section are not to scale (i.e., the instrumentation is not in-plane as shown; see Fig. 1 and a for true spatial layout). Crackmeters, extensometers and rockbolts measure longitudinal strain, which is converted to deformations and force through linear elastic constants specific to the geometry and design of each instrument. c Crackmeters measure exfoliation sheet fracture aperture width by installation directly within fractures. d Extensometers measure exfoliation sheet fracture aperture width by installation across fractures through anchoring on either side of a fracture. In our extensometer installation, three instruments provide redundant measurements across the fractures. e Rockbolts measure exfoliation sheet uplift force generated along a steel rod that is grouted and fixed in bedrock at one end, and tightened to the surface of the deforming exfoliation sheet at the other end. Forces are converted to stresses through approximations of exfoliation sheet attachment geometry. See Methods for additional details for instrumentation installations

Back to article page