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Sequential forward and reverse transport of the
Na+ Ca2+ exchanger generates Ca2+ oscillations
within mitochondria
Krishna Samanta1, Gary R. Mirams2 & Anant B. Parekh1

Mitochondrial Ca2+ homoeostasis regulates aerobic metabolism and cell survival. Ca2+ flux

into mitochondria is mediated by the mitochondrial calcium uniporter (MCU) channel

whereas Ca2+ export is often through an electrogenic Na+–Ca2+ exchanger. Here, we report

remarkable functional versatility in mitochondrial Na+–Ca2+ exchange under conditions

where mitochondria are depolarised. Following physiological stimulation of cell-surface

receptors, mitochondrial Na+–Ca2+ exchange initially operates in reverse mode, transporting

cytosolic Ca2+ into the matrix. As matrix Ca2+ rises, the exchanger reverts to its forward

mode state, extruding Ca2+. Transitions between reverse and forward modes generate

repetitive oscillations in matrix Ca2+. We further show that reverse mode Na+–Ca2+ activity is

regulated by the mitochondrial fusion protein mitofusin 2. Our results demonstrate that

reversible switching between transport modes of an ion exchanger molecule generates

functionally relevant oscillations in the levels of the universal Ca2+ messenger within an

organelle.
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M itochondrial Ca2+ import shapes the pattern of cytosolic
Ca2+ signals and regulates ATP production and cell
survival1. The porous outer mitochondrial membrane is

freely permeable to Ca2+ but the inner membrane is not and
therefore requires transporters to shuttle Ca2+ between the
cytosol and mitochondrial matrix2. A major route for
mitochondrial Ca2+ uptake is through the mitochondrial Ca2+

uniporter (MCU), a highly Ca2+-selective low conductance ion
channel3,4. MCU is part of a larger complex involving regulators
MICU1 and MICU2, MCUR1 and EMRE5. Flux through the
MCU complex is determined by the prevailing electrochemical
Ca2+ gradient6, with a major factor being the large electrical
driving force that arises from the negative potential (~−200 mV)
across the inner mitochondrial membrane.

Ca2+ transporters that extrude Ca2+ from the matrix have also
been characterised at a molecular level and include Letm1 (leu-
cine zipper-EF-hand-containing transmembrane protein 1)7 and
mitochondrial Na+–Ca2+ exchange (NCLX)8. Letm1 is a Ca2+/2H
+ electroneutral antiporter whereas NCLX is thought to be elec-
trogenic9, although the precise Na+:Ca2+ stoichiometry is
unclear10. In one study where the relative contributions of Letm1
and NCLX to mitochondrial Ca2+ export was investigated, NCLX
was found to play the dominant role11.

Mitochondria are dynamic organelles, undergoing fusion and
fission with the capacity to form reticular networks12. The precise
architecture of mitochondria is important for cell viability,
growth, proliferation and signalling13. Mitochondrial fusion is
regulated by dynamin-related protein (Drp1) where outer and
inner mitochondrial membrane fusion depend on mitofusin 1
and mitofusin 2, and OPA1, respectively12. Mitofusin 2 is also
found on the endoplasmic/sarcoplasmic reticulum surface and is
therefore thought to act as a physical tether bringing mitochon-
dria and endoplasmic/sarcoplasmic reticulum together at spe-
cialised regions called mitochondrial associated membranes14.
Close apposition of the two organelles allows for rapid and
effective local Ca2+ signalling15,16. Ca2+ release from the
endoplasmic reticulum by the Ca2+-releasing second messenger
inositol trisphosphate (InsP3) leads to a high local Ca2+ signal
that can be transported into mitochondria by the MCU. The rise
in matrix Ca2+ stimulates rate-limiting enzymes in the Krebs
cycle17, resulting in accelerated ATP production. In the heart, for
example, mitochondrial fusion dynamics depends on contractile
activity18. In cardiac myocytes, shuttling of Ca2+ released
from the sarcoplasmic reticulum by ryanodine receptors into
mitochondria drives rapid bioenergetic responses that are
important for cardiac function19.

Stimulation of Gq protein-coupled receptors activate phos-
pholipase C to generate InsP3 (ref. 20). Low concentrations of
agonist, which are thought to mimic physiologically relevant
doses, typically evoke oscillations in cytosolic Ca2+. The oscilla-
tions arise from regenerative Ca2+ release from the endoplasmic
reticulum by InsP3-gated Ca2+ channels followed by store-
operated Ca2+ entry20. Previous work has shown cytosolic Ca2+

oscillations following stimulation of native cysteinyl leukotriene
type I receptors in mast cells with the natural agonist leukotriene
C4 are propagated rapidly and faithfully into mitochondria to
generate oscillations in matrix Ca2+ (ref. 21). Knockdown of the
MCU or mitochondrial depolarisation, which impairs Ca2+ flux
through the MCU, suppressed mitochondrial Ca2+ uptake21. Loss
of mitochondrial Ca2+ buffering resulted in rundown of cytosolic
Ca2+ oscillations, which arose through enhanced Ca2+-dependent
inactivation of InsP3 receptors.

Cytosolic Ca2+ oscillations are sustained by Ca2+ entry through
store-operated Ca2+ channels, which refill the endoplasmic reti-
culum with Ca2+ following InsP3-evoked Ca2+ release20. In mast
cells and T lymphocytes, mitochondrial Ca2+ uptake sustains Ca2

+ entry by reducing Ca2+-dependent slow inactivation of the
store-operated Ca2+ channels22,23. In addition, mitochondria also
regulate the redistribution of STIM1, a molecule necessary for the
activation of store-operated Ca2+ channels, from the endoplasmic
reticulum to the plasma membrane24. In mast cells, inhibition of
store-operated Ca2+ influx following mitochondrial depolarisa-
tion can be rescued by knockdown of the mitochondrial fusion
protein mitofusin 2 (ref. 24). In this study, we show that
mitochondrial Ca2+ oscillations induced by leukotriene receptor
stimulation that are lost following mitochondrial depolarisation
can be rescued when mitofusin 2 levels are reduced. We find that
the mitochondrial Ca2+ oscillations under these conditions arise
from mitochondrial Na+–Ca2+ exchange, operating sequentially
in reverse and forward transport modes. Our data show that the
same transport molecule can both raise and lower matrix Ca2+ in
response to receptor stimulation. More generally, our results
reveal that an ion transporter can compensate for impaired
activity of an ion channel and thereby sustain functionally rele-
vant Ca2+ signals within an organelle.

Results
Mitochondrial depolarisation impairs Ca2+ signals to agonist.
Stimulation of native G-protein-coupled cysteinyl leukotriene
type I in RBL-1 mast cells receptors with the agonist leukotriene
C4 (LTC4) increases the levels of the second messenger InsP3,
which triggers oscillations in cytosolic Ca2+ (Fig. 1a)25. The
oscillations decrease somewhat in number (Fig. 1c) and ampli-
tude (Fig. 1d) over a 600 s period, due to receptor desensitisa-
tion26. Measurements of matrix Ca2+, using ratiometric pericam
that is genetically targeted to the mitochondrial matrix, revealed
oscillations in matrix Ca2+ following LTC4 challenge (Fig. 1e, g,
h) that closely mirrored those in the cytosol (Fig. 1a). Mito-
chondrial depolarisation with the protonophore carbonilcyanide
p-triflouromethoxyphenylhydrazone (FCCP) abolished pro-
longed oscillatory Ca2+ signals both in the cytosol (Fig. 1a, c, d)
and mitochondrial matrix (Fig. 1e, g, h)21. Similar results were
obtained after knockdown of the MCU21.

Knockdown of Mitofusin 2 rescues matrix Ca2+ signals. siRNA-
directed knockdown of mitofusin 2, a dynamin-related GTPase
protein involved in mitochondrial fusion27,28, had no effect on
LTC4-evoked oscillations in cytosolic (Fig. 1b–d) or matrix Ca2+

(Fig. 1f–h) in cells with an intact mitochondrial membrane
potential. However, knockdown of mitofusin 2 fully prevented the
loss of cytosolic (Fig. 1b–d) and matrix Ca2+ oscillations
(Fig. 1f–h) that occurred after mitochondrial depolarisation with
FCCP and oligomycin. Western blots confirmed that knockdown
of MFN2 led to a significant decrease in protein levels of ~80%
(Fig. 1i). Qualitatively similar results were obtained in HEK293
cells expressing the cysteinyl leukotriene type I receptor
(Supplementary Figures 1 and 2).

We considered the possibility that the mitochondrial mem-
brane potential repolarised in the presence of FCCP when
leukotriene receptors were activated in mitofusin 2-deficient cells.
However, this was not the case. Following treatment with FCCP
and oligomycin, the potential (measured with TMRE) depolarised
and remained low after stimulation with LTC4 for the duration of
agonist exposure, both in the presence of mitofusin 2 (control,
Fig. 1j) or after knockdown (Fig. 1k).

Mitofusin 2 plays an important role in regulating mitochon-
drial fusion29. However, the rescue of cytosolic Ca2+ oscillations
that was achieved by knockdown of mitofusin 2 in cells with
depolarised mitochondria (Fig. 1b–d) was not mimicked by
knockdown of another fusion protein, Optic atrophy 1 (OPA113
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Fig. 1Mitofusin 2 knockdown rescues oscillatory Ca2+ signals in cells with de-energised mitochondria. a Cytosolic Ca2+ oscillations (measured with fura 2)
to LTC4 (120 nM) are suppressed by FCCP (2 μM) and oligomycin (0.5 μg per ml; depicted as F/O), pre-treated for 5–10min. bMitofusin 2 knockdown has
little effect on cytosolic Ca2+ oscillations in a cell with energised mitochondria but sustains the response in a cell pre-treated with FCCP and oligomycin. c
The number of oscillations in each 200 s bin (measured from the application of LTC4) are compared for the conditions shown. Each point is the mean of
15–20 cells from three independent experiments. Control trace (black) is offset upwards by 0.1, to resolve it from other traces. d Oscillation amplitude is
plotted against oscillation number. A peak number of 4 denotes the fourth oscillation. Control trace (black) is offset upwards by 0.04. e Matrix Ca2+

oscillations measured with the mitochondrially targeted pericam are shown for a control cell challenged with LTC4 and for one pre-treated with FCCP and
oligomycin. fMatrix Ca2+ oscillations are compared in the absence and presence of FCCP, following mitofusin 2 knockdown. g, h The number of matrix Ca2
+ oscillations (g) and the amplitude of each oscillation (h) are compared for the conditions shown. Each point is the mean of >14 cells from three
independent experiments. In panel g, the control trace (black) is offset upwards by 0.1. iWestern blot compares mitofusin 2 expression in control cells and
after siRNA-targeted knockdown. The histogram summarises aggregate data from two separate samples. j, kMitochondrial membrane potential, measured
with TMRE, is shown following exposure first to FCCP and oligomycin and then LTC4 in a control cell (j) and in one following mitofusin 2 knockdown (k).
FAU denotes fluorescence, arbitrary units. lWestern blot compares OPA1 protein expression in control cells and after siRNA-targeted knockdown.m OPA1
knockdown does not rescue cytosolic Ca2+ oscillations in FCCP-treated cells. n Number of Ca2+ oscillations per 200 s bin are compared for the conditions
shown. All data are from RBL-1 mast cells. **p< 0.01 (unpaired Student’s t-test). Error bars denote SEM
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(Fig. 1l, n). Hence the involvement of mitofusin 2 on matrix Ca2+

is distinct from its well-documented role in mitochondrial fusion.

NCLX rescues matrix Ca2+ signals in depolarised mitochon-
dria. Ca2+ flux through MCU is steeply dependent on the voltage
gradient across the inner mitochondrial membrane6 and MCU
open probability decreases as the membrane potential depo-
larises6. Depolarisation with FCCP almost fully suppressed
mitochondrial Ca2+ uptake following receptor stimulation
(Fig. 1e), demonstrating little flux through the MCU. The findings
that the amplitude and frequency of mitochondrial Ca2+ oscil-
lations induced by leukotriene receptor stimulation were similar
between control cells, where Ca2+ entry into the matrix is pro-
vided by the MCU, and in mitofusin 2-deficient cells with
depolarised mitochondria, where flux through the MCU had been
compromised (Fig. 1g, h), suggest an alterative Ca2+ influx
pathway operates under conditions of a depolarised mitochon-
drial membrane potential. A major route for Ca2+ efflux from the
matrix is through electrogenic Na+–Ca2+ exchange in the inner
mitochondrial membrane. In energised mitochondria and with
resting cytosolic and matrix Ca2+ and Na+ concentrations, the
exchanger operates in forward mode, exporting Ca2+ from the
matrix in exchange for cytosolic Na+. However, in depolarised
mitochondria, the exchanger switches to reverse mode importing
Ca2+ into and extruding Na+ from the matrix9. We designed
experiments to test whether reverse mode Na+–Ca2+ exchange
provided a route for mitochondrial Ca2+ uptake following
receptor stimulation in cells with depolarised mitochondria. After
knockdown of mitofusin 2, cells were treated acutely with FCCP
and oligomycin and then leukotriene receptors were activated
while matrix or cytosolic Ca2+ was measured. Agonist-evoked
cytosolic Ca2+ oscillations (Fig. 1b–d) were rapidly propagated
into the mitochondrial matrix (Fig. 1f–h). Three independent
lines of evidence suggest that mitochondrial Na+–Ca2+ exchange
is the main route for Ca2+ import under these depolarised con-
ditions. First, inhibition of the mitochondrial Na+–Ca2+

exchanger with the benzothiazepine CGP-37157 abolished
mitochondrial Ca2+ uptake following leukotriene receptor acti-
vation (Fig. 2a). Second, elevation of cytosolic Na+ concentration
should reduce the trans-mitochondrial Na+ gradient and this will
decrease reverse mode Na+–Ca2+ exchange activity. We raised
cytosolic Na+ levels by incubating cells with ouabain, an inhibitor
of the plasma membrane Na+–K+ ATPase pump. In the presence
of ouabain, mitochondrial Ca2+ oscillations were abolished fol-
lowing stimulation with LTC4 in mitofusin 2-deficient cells with
depolarised mitochondria (Fig. 2b). Three patterns of response
were observed after ouabain treatment (Fig. 2b, c): some cells
(45%) failed to respond at all to LTC4, others did so by giving a
modest rise in matrix Ca2+ (30%) and some responded by gen-
erating 1 or more small matrix Ca2+ spikes (25%). Ouabain had
no inhibitory effect when cells were stimulated with agonist in the
absence of FCCP and oligomycin (Supplementary Figure 3).
Thirdly, we used an siRNA approach to knock down the recently
discovered mitochondrial Na+–Ca2+ exchanger8. Significant
knockdown of the exchanger was seen in western blots (Fig. 2d;
knockdown was 68.3± 7.2% in two independent experiments). In
all siRNA-treated cells, mitochondrial Ca2+ uptake was reduced
but to differing extents (Fig. 2e). In some cells (labelled blank in
Fig. 2f), Ca2+ import was almost completely suppressed. In others
(labelled small response in Fig. 2f), a single matrix Ca2+ spike
occurred whereas in a third group (labelled >1 spike), a couple of
small Ca2+ oscillations developed followed by a quiescent period
and then one or two oscillations reappeared several tens of sec-
onds later (Fig. 2e, f). Despite the variability, each group was very
different from the corresponding control, which showed

repetitive Ca2+ oscillations for several tens of seconds. Collec-
tively, these experiments reveal a major role for mitochondrial Na
+–Ca2+ exchange in driving oscillations in matrix Ca2+ following
stimulation of cell-surface receptors.

To see whether the oscillations in matrix Ca2+ indeed reflected
transport through Na+–Ca2+ exchange, we expressed a catalyti-
cally inactive mutant in which threonine 468 was replaced by
serine8. In these experiments, endogenous exchanger protein was
first knocked down using siRNA and then either wild type or
mutant exchanger plasmid transfected 24 h later. Matrix Ca2+

oscillations to LTC4 stimulation were seen in ~50% (11/20) of
FCCP-treated cells overexpressing Na+–Ca2+ exchange but no
responses (21/21 cells) were observed when the catalytic mutant
was expressed instead (Fig. 2g).

We considered other possibilities that could account for the
increased mitochondrial Ca2+ uptake in FCCP-treated cells
lacking mitofusin 2. In mitofusin 2-knock out mouse embryonic
fibroblasts, MCU levels decrease by ~50%30. In HEK293 cells,
transient knockdown of mitofusin 2 had no significant effect on
MCU expression (Fig. 2h; measured using quantitative PCR 24 h
after mitousin 2 knockdown), suggesting alterations in MCU
expression are unlikely to explain the rescue of matrix Ca2+

signals in depolarised mitochondria. Dissipation of the mito-
chondrial potential can open the large conductance permeability
transition pore, providing a route for Ca2+ transport across the
inner mitochondrial membrane. However, the permeability
transition pore inhibitor cyclosporine A failed to affect agonist-
evoked oscillations in matrix Ca2+ in mitofusin 2-deficient cells in
the presence of FCCP (Fig. 2i; 10.3± 0.2 oscillations were
generated over 600 s in control cells and the corresponding value
in cyclosporine A-treated cells was 10.1± 0.2). FCCP and
oligomycin treatment could lower cytosolic pH and this might
explain why agonist-evoked Ca2+ signals are impaired. However,
FCCP and oligomycin had little effect on cytosolic pH (Fig. 2j).

Functional coupling between MCU and NCLX. We asked
whether LTC4-induced matrix Ca2+ oscillations in FCCP-treated
cells lacking mitofusin 2 were totally independent of the MCU.
Following knock down of both the MCU and mitofusin 2,
stimulation with agonist in cells with a depolarised mitochondrial
membrane potential now consistently failed to generate
oscillations in matrix Ca2+ (Supplementary Figure 4). We hypo-
thesised that, despite providing an exceedingly small Ca2+ flux
into the matrix under the depolarised conditions that occur in the
presence of FCCP6, the MCU nevertheless provided either trigger
or facilitory matrix Ca2+ for driving Na+–Ca2+ exchange activity.
To test this, we raised matrix Ca2+ very slightly by applying a low
dose of the Ca2+ ionophore ionomycin (2 nM) to intact cells. In
cells in which we reduced both MCU and mitofusin 2 expression
and then depolarised mitochondria, oscillations in matrix Ca2+ to
leukotriene receptor stimulation were rescued only if matrix
Ca2+ had been increased slightly by ionomycin prior to agonist
exposure (Fig. 3a; aggregate data are summarised in Fig. 3c). The
small increase in matrix Ca2+ induced by ionomycin per se did
not trigger Ca2+ oscillations (Fig. 3a). The oscillations in matrix
Ca2+ were suppressed by CGP-37157, confirming they were
mediated through Na+–Ca2+ exchange (Fig. 3a). Although LTC4

failed to elicit matrix Ca2+ oscillations in MCU-deficient cells,
subsequent application of ionomycin rescued the oscillatory
response and this was blocked by CGP-37157 (Fig. 3b; aggregate
data are summarised in Fig. 3c).

NCLX activity in permeabilised cells. To trap mitochondrial
Na+–Ca2+ exchange in forward or reverse modes, we clamped
cytosolic Na+ and Ca2+ at fixed concentrations using digitonin-
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permeabilised cells9. Ca2+ released from the endoplasmic reticu-
lum by application of exogenous InsP3 in permeabilised RBL cells
is rapidly taken up into mitochondria by the MCU31,32. In control
cells with 10 mM cytosolic Na+, mitochondria sequestrated Ca2+

that had been released by InsP3 to produce a sustained elevation
in matrix Ca2+ and this was prevented by pre-treatment with
FCCP and oligomycin (Supplementary Figure 5). The matrix Ca2
+ rise in response to InsP3 challenge was also prevented by pre-
incubation with the InsP3 receptor antagonist heparin or if stores
had been depleted of Ca2+ by prior exposure to thapsigargin
(Supplementary Figure 5), demonstrating the matrix Ca2+ rise is
due to InsP3-dependent Ca2+ release from the endoplasmic reti-
culum. After knockdown of MCU and MFN2, we raised matrix
Ca2+ slightly by exposure to 2 nM ionomycin and then applied
InsP3. InsP3 now failed to raise matrix Ca2+ (red trace in Fig. 3d;
aggregate data in Fig. 3f). However, if mitochondria were

depolarised by exposure to FCCP in MCU- and mitofusin 2-
deficient cells, matrix Ca2+ increased following InsP3 stimulation
(Fig. 3d, f), indicating reverse mode of the exchanger. This
increase in matrix Ca2+ was sustained for several seconds in the
continued presence of InsP3 but fell rapidly when cytosolic Ca2+

was lowered by perfusion with the Ca2+ chelator BAPTA (Fig. 3d;
decay half-time of 18.6± 2.0 s), indicating the Na+–Ca2+

exchanger was now in forward mode, transporting Na+ into the
matrix in exchange for matrix Ca2+. CGP-37157 prevented the
InsP3-induced rise in matrix Ca2+ in depolarised mitochondria
(Fig. 3d).

In MFN2- and MCU-deficient permeabilised cells bathed in
low (1 mM) Na+-solution and FCCP and oligomycin to trap the
exchanger in reverse mode, matrix Ca2+ rose upon exposure to
InsP3 (Fig. 3e; aggregate data are shown in Fig. 3f) and remained
elevated, even after addition of BAPTA to the cytosol (Fig. 3e;
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Fig. 2 Oscillations in matrix Ca2+ by mitochondrial Na+–Ca2+ exchange. In panels a–f, mitofusin 2 was knocked down and cells were pre-treated acutely
with FCCP and oligomycin prior to LTC4 challenge. Matrix Ca2+ was measured with ratiometric pericam. a Pre-exposure (10 min) to CGP-37157 (10 μM)
abolished matrix Ca2+ oscillations to LTC4 (control: blue trace, typical of 21/29 cells; CGP-treated: red trace, typical of 12/12 cells). b As in panel a, but
ouabain (25 μM; 15 min pre-treatment) was used to raise cytosolic Na+. Three types of matrix Ca2+ response to LTC4 were now observed; blank/no
response (orange), a small slow rise (blue) or at least one spike (magenta). c Bar plot shows the fractional responses, as in panel b. Total number of cells
analysed was 24. d Western blot compares Na+–Ca2+ exchanger expression in control cells and in cells after siRNA-directed knockdown. e Ca2+

oscillations to LTC4 are suppressed following Na+–Ca2+ exchanger knockdown. Three types of response were now observed (see panel f). f Bar plot shows
the types of responses of matrix Ca2+ to LTC4 following exchanger knockdown (as described in panel c). Total number of cells analysed was 20. g Matrix
Ca2+ oscillations to LTC4 were induced in control cells but not in those expressing a catalytic mutant of the exchanger. Two types of response were seen
when the wild type exchanger was overexpressed: no response (9/20 cells) and oscillatory responses (11/20 cells). The two oscillatory responses (dashed
blue and magenta traces) depict the two patterns of oscillatory response. h Histogram compares MCU expression before and after mitofusin 2 had been
knocked down. i Matrix Ca2+ oscillations to LTC4 are compared between a control cell and one pre-exposed (15 min) to cyclosporine A. In this experiment,
mitofusin 2 was knocked down and FCCP/oligomycin applied 8min before stimulation. j Cytosolic pH, measured with BCECF, is compared for control cells
(black trace) and cells acutely exposed to FCCP/oligomycin (as indicated; red trace). Acetate was applied at the end of the experiment to induce cytosolic
acidification. Each trace is the mean of between 16 and 21 cells. Error bars denote SEM
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decay half-time of 108.2± 4.8 s). Because Li+ can partially replace
Na+ in the transport cycles of the exchanger8, we added 9 mM Li+

to the low Na+ cytosolic solution. Stimulation with InsP3 led to a
rise in matrix Ca2+ but perfusion with BAPTA now reduced
matrix Ca2+ (Fig. 3e; decay half-time of 30.2± 2.7 s). The matrix
Ca2+ rise induced by InsP3 in the presence of Li+ was prevented
by CGP-37157 (Fig. 3e; aggregate data are shown in Fig. 3f).
Collectively, these data are consistent with a major role for the
exchanger operating in reverse mode to raise matrix Ca2+ and
then in forward mode to lower it.

To inhibit MCU fully, we used the permeabilised cell system to
apply the membrane-impermeable MCU inhibitor ruthenium
red. In control experiments, raising cytosolic Ca2+ to 10 μM led to
a large rise in matrix Ca2+ and this was suppressed by ruthenium
red (Supplementary Figure 6). Addition of 2 nM ionomycin in
200 nM Ca2+ to ruthenium red- and FCCP-treated cells deficient
in mitofusin 2 led to the typical small rise in matrix in Ca2+ and
InsP3 evoked a further increase in matrix Ca2+ (Fig. 3g). This
result confirms the existence of a ruthenium red-insensitive Ca2+

uptake activated under depolarised conditions. The Ca2+ signal
decayed to basal levels when BAPTA was subsequently added to
the cytosol (Fig. 3g). As was the case in intact cells, cyclosporine
A had no effect on the matrix rise induced by InsP3 (Fig. 3g;
control pericam ratio increase was 0.076± 0.003 and in
cyclosporine A it was 0.075± 0.002).

Modelling NCLX activity predicts matrix Ca2+ oscillations. Our
findings could be replicated by a mathematical model in which
the Na+–Ca2+ exchanger was the only functional Ca2+ transporter
in the inner membrane of depolarised mitochondria (Fig. 3h, i).
We fed into the model experimental data of oscillations in
cytosolic Ca2+ induced by LTC4 following application of 2 nM
ionomycin following the protocol used in Fig. 3a, but now
obtained from intact cells (Fig. 3h, upper panel). The simulations
revealed repetitive fluctuations in exchanger forward and reverse
modes (Fig. 3h, middle panel) that led to oscillations in matrix
Ca2+ (Fig. 3h, lower panel). The oscillatory rise in matrix free
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Fig. 3 Forward and reverse mode Na+–Ca2+ exchanger. a After knockdown of MCU and MFN2, matrix Ca2+ oscillations are induced by LTC4 in FCCP-
treated cells following a small rise in matrix Ca2+ by 2 nM ionomycin. Oscillations were seen in 15/24 cells. CGP-37157 suppressed this response (15/15
cells). b As in panel a but LTC4 is now applied first. Oscillations were seen in 10/15 cells. CGP-37157 blocked the response in 18/18 cells. c Aggregate data
are compared. All groups were pre-treated with FCCP and oligomycin and both MCU and MFN2 were knocked down. Ionom-LTC4 denotes ionomycin
followed by LTC4 (as in panel a). LTC4-Ionom denotes LTC4 then ionomycin, as in panel b. d Matrix Ca2+ is measured in permeabilised cells following
stimulation with InsP3. Cytosolic Na+ was 10mM and cytosolic Ca2+ was weakly buffered at 200 nM. Ionomycin was applied to raise matrix Ca2+, then
InsP3 was added. F/O denotes FCCP/oligomycin. BAPTA was perfused to rapidly reduce cytosolic Ca2+. e As in panel d, but cytosolic Na+ was 1 mM. In the
experiments with Li+, 9 mM Li+ was added to the 1 mM Na+ solution. f Aggregate data from experiments as in panels d and e are compared. Each bar
denotes between 15 and 23 cells. g Ca2+ signals in permeabilised cells are compared in the absence and presence of cyclosporine A (1 μM). Here, mitofusin
2 had been knocked down and FCCP/oligomycin added 5–10 min before simulation with InsP3. Control trace is in the absence of cyclosporine A. For both
traces, 1 μM ruthenium red was present throughout. h Simulations of Na+–Ca2+ exchanger flux (middle panel, with pink highlighted background showing
where NCX is operating in reverse mode) and matrix free Ca2+ (bottom panel) following a cytosolic Ca2+ rise (upper panel) obtained from fura 2-loaded
intact cells. Cells were exposed to 2 nM ionomycin (asterisk) before LTC4 challenge (marked by arrow; same protocol as in panel a). The cytosolic Ca2+

concentration indicated is the measured bulk concentration. i As in panel h but cytosolic Ca2+ has been estimated to reach 15 μM (see text). Error bars
denote SEM
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Ca2+ concentration depended on the amplitude of the cytosolic
Ca2+ rise. If we fed in the amplitude of measured bulk
cytosolic Ca2+ rise then the matrix oscillations were small in size
(Fig. 3h). Mitochondria sense high local Ca2+ from open InsP3
receptors at specialised regions where the ER is tethered to
mitochondria15,16. At these sites, mitochondria are exposed to
local cytosolic Ca2+ concentrations of tens of μM1,32. Cytosolic
Ca2+ signals of this size led to larger amplitude matrix Ca2+

fluctuations through forward and reverse mode Na+–Ca2+

exchange activity (Fig. 3i). Patch clamp recordings on mitoplasts
have reported ~1.5 pA unitary current through the MCU (Popen
of 0.99) and a whole mitoplast current of ~800 pA, suggesting a
single mitoplast expresses ~500 channels6. Therefore we simu-
lated matrix Ca2+ oscillations for between 1 and 10,000 exchan-
gers. The number of exchangers in Fig. 3h, i were set at 100, with
a mitochondrial Ca2+ buffering capacity of 100 (Fig. 3h) or 1000
(Fig. 3i). The simulations show qualitatively that forward and
reverse mode Na+–Ca2+ exchange is sufficient to generate oscil-
lations in matrix Ca2+ that replicate those seen experimentally.

NCLX activity supports Ca2+dependent gene expression. We
asked whether mitochondrial Ca2+ import via reverse mode Na
+–Ca2+ exchange was of functional significance. Local Ca2+ influx
through CRAC channels following leukotriene receptor activation
induces Ca2+-dependent expression of the immediate early gene
c-fos in RBL-1 mast cells25,33. Stimulation with LTC4 increased c-
fos transcription and this was suppressed by mitochondrial
depolarisation following pre-exposure to FCCP and oligomycin
for 5 min (Fig. 4a; aggregate data in lower panel), an effect that
arises from loss of mitochondrial Ca2+ buffering of Ca2+ entry
through CRAC channels and which then leads to enhanced Ca2
+-dependent slow inactivation of the channels22,34. Knockdown

of mitofusin 2 had no effect on c-fos expression induced by LTC4

but reversed the inhibitory effect of mitochondrial depolarisation
(Fig. 4a; aggregate data shown in lower panel). The recovery of c-
fos expression in mitofusin 2-deficient cells with depolarised
mitochondria was prevented either by exposing cells to CGP-
37157 prior to stimulation with LTC4 or knocking down the
mitochondrial Na+–Ca2+ exchanger (Fig. 4b).

Ca2+ microdomains near CRAC channels activated by LTC4

also stimulate the transcription factor NFAT, resulting in
expression of a GFP reporter gene driven by an NFAT
promoter35,36. Stimulation with LTC4 induced a substantial
increase in the number of GFP-positive cells (Fig. 4c; aggregate
data in lower panel) and this was suppressed by brief pre-
treatment with FCCP and oligomycin prior to agonist challenge.
Knockdown of mitofusin 2 rescued leukotriene receptor-evoked
NFAT-driven gene expression in cells with depolarised mito-
chondria (Fig. 4c).

Discussion
Our results show sequential cycling between reverse and forward
transport modes of the mitochondrial Na+–Ca2+ exchanger
results in bidirectional movement of Ca2+ across the inner
mitochondrial membrane. Bidirectional transport by mitochon-
drial Na+–Ca2+ exchange develops in response to physiological
levels of receptor stimulation and provides a mechanism whereby
cytosolic Ca2+ oscillations can faithfully reconvene within an
organelle. Reverse mode transport is regulated by mitofusin 2 and
requires depolarisation of the mitochondrial membrane potential.
A cartoon depicting this is shown in Fig. 5.

The reversal potential of Na+–Ca2+ exchange is determined by
the stoichiometry of ion transport and the Nernst potentials for
Na+ and Ca2+. With an inner mitochondrial membrane potential
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of ~−180mV and with typical resting cytosolic and matrix Ca2+

and Na+ concentrations, the exchanger will operate in forward
mode, transporting Na+ ions from the cytosol into the matrix in
exchange for a Ca2+ ion. Depolarisation with FCCP enables the
exchanger to operate in both forward and reverse modes,
depending on the ambient cytosolic Ca2+. FCCP induces a
depolarisation of ~100 mV9 and so quite marked depolarisation is
needed for the exchanger to operate in reverse mode. Depolar-
isation on this scale is not observed routinely in living cells and
reverse Na+–Ca2+ exchange is unlikely to be of physiological
significance for the entire mitochondrial pool. However, in patho-
physiological states such as oxidative stress induced by ischaemia
or strong local reactive oxygen species production, mitochondrial
membrane potential in cardiomyocytes can oscillate or even
collapse37,38. It is important to note that we found reverse mode
Na+–Ca2+ exchange to be effective only after the combination of
mitochondrial depolarisation and knockdown of mitofusin 2.
Although mitofusin 2 is widely expressed, it is not expressed
uniformly between cells. Muscle has very high levels compared
with other cell types. Mitofusin 2 expression is also under control
of circulating factors. For example, tumour necrosis factor-α and
interleukin-6 both significantly reduce mitofusin 2 expression39,
suggesting the levels expressed are dynamic. Interestingly,
expression of mitofusin 2 also alters in various states39. Expres-
sion falls significantly in skeletal muscle from type 2 diabetes
sufferers as well as in obese patients39. Hence it is possible that
mitofusin 2 levels might fluctuate sufficiently under certain
conditions for the protein to regulate Na+–Ca2+ exchange
activity.

The mechanism whereby mitofusin 2 regulates reverse mode
but not forward mode is currently unclear but does not require
mitochondrial fusion because knockdown of OPA1 did not
replicate the effects of reduction in mitofusin 2. Mitofusin 2 is in
the outer mitochondrial membrane and Na+–Ca2+ exchange is in
the inner membrane. It is possible that the two proteins physically
interact after mitochondrial depolarisation and this stabilises or
enables the reverse mode to operate. Co-immunoprecipitation
studies show that myc-tagged Na+–Ca2+ exchanger is present
following pulldown of mitofusin 2 and the amount of exchanger
increases in the presence of FCCP (Samanta and Parekh, data
presented to reviewers). Reverse mode Na+–Ca2+ exchanger
activity required a small increase in matrix Ca2+. This was
accomplished by the very low flux through the MCU in

depolarised mitochondria or after artificial elevation of matrix
Ca2+ by a low dose of ionomycin. Whether matrix Ca2+ directly
binds to the exchanger or its effects are mediated by an inter-
mediary mechanism is currently under investigation.

The mitochondrial Na+–Ca2+ exchanger, alternating between
transport modes generates oscillations in Ca2+ within the mito-
chondrial matrix and these faithfully reflect the cytosolic Ca2+

oscillations that trigger exchanger activity. Although the MCU is
the main route for mitochondrial Ca2+ uptake, our data reveal
that the exchanger can, under certain conditions, provide an
alternative route for Ca2+ entry. More generally, our data show
that forward and reverse mode activities of an ion transporter can
substitute for a Ca2+ channel in generating Ca2+ signals evoked
by a physiologically relevant agonist.

Methods
Cell culture and transfection. Rat basophilic leukaemia (RBL-1) and HEK293
cells were purchased from ATCC and were cultured (37 °C, 5% CO2) in Dulbecco’s
modified Eagle's medium supplemented with 10% fetal bovine serum, 2 mM L-
glutamine and penicillin–streptomycin. RBL cells were transfected with the
AMAXA system, using nucleofector cell line kit V solution (from Lonza, Cat. No.
VCA-1003) and program T-30 were used. Transfection of HEK293 cells was
achieved using the lipofectamine method35. For transfection of one dish (10 cm),
50 μl of Opti-MEM was mixed with 4 μl of Lipofectamine 2000 (from Invitrogen,
Cat. No. 11668-019) in one eppendorf tube and 50 μl of Opti-MEM was mixed
with the required amount of DNA or siRNA in another eppendorf tube. The
components were gently mixed by pipetting and after 5 min all the components
were mixed together. This transfection mixture was then incubated at room
temperature for 20 min to generate lipoplexes for transfection. Thereafter, 1 ml of
cell culture medium was added to the transfection mixture, which was then
pipetted into the dish. After 1 h incubation at 37 °C and 5% CO2, the transfection
mixture containing medium was replaced by 2 ml fresh medium. Cells were cul-
tured for 24–48 h in an incubator and then used for experiments.

Cytosolic Ca2+ measurements. Cytosolic Ca2+ was measured using the
Ca2+-sensitive fluorescent dye fura 2. All experiments were conducted at room
temperature, using the IMAGO CCD camera-based system from TILL Photo-
nics40,41. Cells were incubated with Fura 2-AM (1 μM) for 40 min at room tem-
perature in the dark and then washed several times in standard external solution of
composition (in mM): NaCl 145, KCl 2.8, CaCl2 2, MgCl2 2, D-glucose 10, HEPES
10, pH 7.4 with NaOH. After a 15 min de-esterification period, cells were alter-
nately excited at 356 and 380 nm (20-ms exposures) and emission collected >505
nm. Images were acquired every 2 s. Ca2+ signals are plotted as R, which denotes
the 356/380 nm ratio.

Cytosolic pH measurements. Cells were incubated with BCECF-AM (5 μg per ml)
for 30 min at room temperature in the dark and then washed three times in
standard external solution of composition (in mM): NaCl 145, KCl 2.8, CaCl2 2,

Cytosol Cytosol

MCU MCU
NCX NCX

Ca2+ Ca2+

Ca2+ Na+ Ca2+ Na+

Matrix Matrix

OMM OMM
IMM IMM

MFN2
MFN2

Depolarise

Fig. 5 Cartoon summarises Na+–Ca2+ exchanger transport in mitochondria under the conditions shown The left-hand panel depicts the situation in
energised mitochondria. The exchanger operates in forward mode, transporting cytosolic Na+ into the matrix in exchange for matrix Ca2+, which has
entered through the MCU. Mitofusin 2 is located in the OMM and functionally detached from the exchanger. After mitochondrial depolarisation (right-
hand panel), the exchanger is now functionally coupled to mitofusin 2 and can operate in both forward and reverse modes. OMM denotes outer
mitochondrial membrane, IMM inner mitochondrial membrane
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MgCl2 2, D-glucose 10, HEPES 10, pH 7.4 with NaOH. Cells were alternately
excited at 490 and 440 nm (20-ms exposures) and images were acquired every 5 s.
The 490/440 nm ratio was calculated and pH signals are plotted as R/R0, where R0
denotes the resting ratio.

Mitochondrial Ca2+ measurements. Matrix Ca2+ was measured using the
genetically encoded ratiometric pericam protein21. Following transfection, with
pericam, recordings commenced 24 h later using the TILL Photonics system. Cells
were illuminated alternatively at 430 and 488 nm (20 ms exposures) at 0.5 Hz and
the emitted light was filtered at >510 nm.

Mitochondrial membrane potential. Cells were loaded with TMRE (50 nM) in
standard external solution for 30 min in the dark, followed by several washes in
external solution. Cells were excited at 545 nm and emitted light was collected at
>560 nm.

Cell permeabilisation. Cells expressing pericam were permeabilised by exposure
to 5 μM digitonin for 5 min in an intracellular medium containing: 120 mM KCl, 9
mM NaCl, 2 mM KH2PO4, 10 mM HEPES, 1 mM MgCl2, 1 mM Na-pyruvate, 2
mM Mg-ATP, 50 μM EGTA (pH 7.2). Low Na+-based intracellular medium
contained 129 mM KCl, 2 mM KH2PO4, 10 mM HEPES, 1 mM MgCl2, 1 mM Na-
pyruate, 2 mM Mg-ATP, 50 μM EGTA (pH 7.2). Li+-based intracellular medium
contained: 120 mM KCl, 9 mM LiCl 2 mM KH2PO4, 10 mM HEPES, 1 mM MgCl2,
1 mM Na+-pyruvate, 2 mM Mg-ATP, 50 μM EGTA (pH 7.2). In a separate series of
experiments, the exposure time for digitionin was determined experimentally by
tracking the loss of the fura 2 fluorescence signal at 356 nm from the cytosol after
loading with fura 2-AM, as described for cytosolic Ca2+ measurements. Intracel-
lular solutions with different Ca2+ concentrations (200 nM; 10 μM) were perfused
onto the cells as indicated in the text.

Western blot. Total cell lysates were separated on 10% denaturing sodium dodecyl
sulfate polyacrylamide gel electrophoresis. Membranes were blocked with 5%
nonfat dry milk in phosphate-buffered saline (PBS) plus 0.1% Tween 20 (PBST)
buffer for 1 h at room temperature, were washed with PBST three times and then
incubated with primary antibody overnight at 4 °C. ERK2 antibody was from Santa
Cruz Biotechnology (Cat. No. sc-154) and was used at a dilution of 1:5000. The
antibodies against mitofusin 2 and OPA1 were from Santa Cruz Biotechnology
(Cat. No. sc-100560) and BD Transduction Laboratories (Cat. No. 612606)
respectively, and used at dilutions of 1:250 and 1:1000. NCLX antibody was kindly
provided by Prof. Israel Sekler and was used at 1:1000–1:2000 dilution. The
membranes were then washed with PBST again and incubated with 1:2500 dilu-
tions of peroxidase-linked anti-rabbit IgG from Santa Cruz Biotechnology (Cat.
No. sc-2004) or anti mouse IgG from BD Bioscience (Cat. No. 554002) for 1 h at
room temperature. After washing with PBST, the bands were detected by an
enhanced chemiluminescence plus western blotting detection system (Amersham
Biosciences). Blots were analysed by UN Scan software.

RT-PCR and real-time quantitative RT-PCR. After treatment, cells were washed
with PBS and total RNA was extracted by using an RNeasy Mini Kit (Qiagen).
RNA was quantified spectrophotometrically by absorbance at 260 nm. Total RNA
(1 µg) was reverse-transcribed using the iScriptTM cDNA Synthesis Kit (Bio-Rad),
according to the manufacturer’s instructions. Following cDNA synthesis, PCR
amplification was then performed using BIOX-ACTTM. ShortDNAPolymerase
(Bioline) with primers specific for the detection of c-fos and beta-actin (Supple-
mentary Table) were synthesised by Invitrogen. The PCR products were electro-
phoresed through an agarose gel and visualised by ethidium bromide staining. We
performed real-time PCR using an ABI7000 instrument (Applied Biosystems) and
detected the fluorescence of samples in 96-well plates by using Taq Man Gene
Expression Assays (Applied Biosystems), according to the manufacturer’s
instructions. Each 10 μl PCR reaction contained the cDNA, H2O, the Master Mix
(Applied Biosystems) and Probe & Primer Mix (Applied Biosystems). The mRNA
levels of MCU were normalised to GAPDH. Data were analysed by using ABI7000
System Software.

Gene reporter assay. GFP under an NFAT promoter (gift from Dr Yuri Usachev,
University of Iowa) was used as a reporter of Ca2+-dependent gene expression. At
24–36 h after transfection with the GFP plasmid, cells were stimulated with LTC4

and the % of cells expressing GFP subsequently quantified ~24 h later per field of
view35. Cells were stimulated with LTC4 in culture medium for 8 min and then
medium was changed (to remove agonist) and cells were then maintained in the
incubator for ~24 h prior to detection of GFP. FCCP/oligomycin was applied 5 min
prior to LTC4 exposure and was washed out with agonist after 8 min stimulation.

siRNA knockdown. siRNA against rat mitofusin 2 was from Invitrogen (stealth
RNAiTM 5193986). siRNA against human mitofusin 2 was from Origene (Cat No:
SR306670). siRNA against OPA1 was from Origene (Cat No: SR505373). siRNA
against MCU was from Origene (Cat No: SR508660). siRNA against the rat
mitochondrial Na+–Ca2+ exchanger was from Invitrogen

(AACGGCCACUCAACUGUCU) and human mitochondrial Na+–Ca2+ exchanger
was from Origene (Cat No: SR312772). Sequences are listed in the Supplementary
Table.

Mathematical modelling. We denote concentrations with square brackets, e.g.
'[Ca2+]', and free mitochondrial matrix or cytosolic ion concentrations with the
subscripts ‘mito’ or ‘cyt’, respectively. We extended a model of NCX by Kim and
Matsuoka9 to model the accumulation/depletion of Ca2+ within the mitochondrial
matrix. The Kim and Matsuoka model predicts the net Ca2+ flux in ions per second
through a single NCX, and can be written as a single function ‘f’:

Ca flux ¼ f Ca2þ
� �

mito; Ca2þ
� �

cyt; Na
þ½ �mito; Na

þ½ �cyt
� �

: ð1Þ

Given a known concentration of Ca2+ on the cytosolic side of the mitochondrial
membrane ([Ca2+]cyt) we model the change in concentration of free mitochondrial
matrix Ca2+ ([Ca2+]mito) due to a given number of NCX in the mitochondrial
membrane. The mitochondria are modelled as having a volume of Vmito = 1.31 ×
10−15 l (a cylinder of length 1 μm and radius 0.5 μm with hemispherical caps at
each end). We model the mitochondrial matrix as a ‘well mixed’ single
compartment, so the change in total mitochondrial [Ca2+]mito_total is given by

d Ca2þ½ �mito total

dt
¼ NNCX Ca flux

Vmito NA
; ð2Þ

where NNCX is the total number of NCXes in the mitochondrial membrane, and NA

is Avogadro’s constant. [Ca2+]mito is then given by

Ca2þ
� �

mito¼ Ca2þ
� �

mito total=buffering factor: ð3Þ

[Ca2+]cyt is taken from our fluorescence measurements of cytosolic Ca2+ and
scaled logarithmically such that the low concentration is 100 nM and the high
concentration is either 1.5 or 15 μM (as described in the main text, and shown in
Fig. 3g, h). [Na+]mito is taken to be 4.54 mM and [Na+]cyt)as 10 mM. We do not
model changes in sodium concentrations as these levels are far above those for
[Ca2+]mito_total and are assumed to be roughly constant. Mitochondrial membrane
potential was set to −20 mV, and temperature to 298 K. The initial condition for
[Ca2+]mito_total was set to steady state before beginning the simulation. The code to
run the simulations shown in Fig. 3 is available as MatLab scripts upon request.

Statistical analysis. Results are presented as mean ± SEM. Data were compared
using Student’s t-test or by analysis of variance (ANOVA) for multiple groups.
Differences were considered statistically significant at values of p< 0.05.

Data availability. Data supporting the findings of this manuscript are available
from the corresponding author upon reasonable request.
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