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The genomic landscape of pediatric
myelodysplastic syndromes
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Myelodysplastic syndromes (MDS) are uncommon in children and have a poor prognosis. In

contrast to adult MDS, little is known about the genomic landscape of pediatric MDS. Here,

we describe the somatic and germline changes of pediatric MDS using whole exome

sequencing, targeted amplicon sequencing, and/or RNA-sequencing of 46 pediatric primary

MDS patients. Our data show that, in contrast to adult MDS, Ras/MAPK pathway mutations

are common in pediatric MDS (45% of primary cohort), while mutations in RNA splicing

genes are rare (2% of primary cohort). Surprisingly, germline variants in SAMD9 or SAMD9L

were present in 17% of primary MDS patients, and these variants were routinely lost in the

tumor cells by chromosomal deletions (e.g., monosomy 7) or copy number neutral loss of

heterozygosity (CN-LOH). Our data confirm that adult and pediatric MDS are separate

diseases with disparate mechanisms, and that SAMD9/SAMD9L mutations represent a new

class of MDS predisposition.
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Myelodysplastic syndromes account for <5% of pediatric
hematologic malignancies with an incidence of 2–4
cases/million1. The prognosis of pediatric MDS is

typically poor, because cytotoxic chemotherapies like those used
to treat acute leukemia are not successful, thus leaving only bone
marrow transplantation as a curative option1,2. Much has been
learned about adult MDS through next-generation DNA
sequencing. Multiple large cohort studies of adult MDS patients
found recurrent mutations in genes important in epigenetic
regulation (e.g., TET2, ASXL1, and DNMT3A), and RNA splicing
(e.g., SF3B1 and U2AF1)3–7. However, in limited studies on
pediatric MDS, mutations in these genes are uncommon8,9. This
is not surprising as there are well-accepted clinical and mor-
phologic differences between pediatric and adult MDS (e.g., bone
marrow hypocellularity is more common in children) leading the
World Health Organization (WHO) to classify MDS differently
in adults and in children10.

It is becoming increasingly recognized that germline variants in
different transcription factors, such as GATA2, RUNX1, ETV6, or
CEBPA, can lead to familial MDS/AML11–14. In particular,
germline GATA2 variants have been shown to occur in 7% of
pediatric primary MDS15. In contrast, other studies using targeted
sequencing of children with idiopathic bone marrow failure or
MDS found pathogenic variants in only approximately 10%
of patients16, suggesting the need for more comprehensive
sequencing. The spectrum of genes harboring germline variants
in pediatric MDS has also recently begun to expand beyond
transcription factors, including ANKRD2617 and SRP7218.
Recently, germline variants in SAMD9 and SAMD9L have been
reported in clinical syndromes affecting multiple organ systems
that are also associated with MDS and monosomy 719-22, as well
as isolated familial MDS23.

Despite this progress, no study to date has performed com-
prehensive sequencing on a pediatric MDS cohort to fully
understand somatic and germline variation in this neoplasm.
In this study we perform tumor and normal whole exome
sequencing (WES) on 32 pediatric primary MDS patients and
targeted sequencing on another 14 cases through a single
institution study focused on defining the genomic landscape of
pediatric MDS. For comparison, we similarly characterize 23
cases with overlapping features of MDS and myeloproliferative
neoplasm (MDS/MPN), namely juvenile myelomonocytic
leukemia (JMML), and 8 cases of AML with myelodysplasia-
related changes (AML-MRC). We show that Ras/MAPK pathway
mutations are common in pediatric primary MDS (45%) while
mutations in RNA splicing genes are rare (2%), and that germline
SAMD9/SAMD9L mutations are present in 17% of primary MDS
patients. These data suggest that pediatric MDS is separate from
adult MDS with disparate underlying mechanisms.

Results
Sequencing of pediatric MDS samples. We performed next
generation sequencing on a cohort of 77 pediatric patients with
diagnoses of primary MDS (n= 46), MDS/MPN (n= 23, 19 of
which were JMML), and AML-MRC (n= 8) (Fig. 1, Supple-
mentary Data #1 and Supplementary Fig. 1). Patients with a
confirmed bone marrow failure syndrome, Down syndrome, or
therapy-related MDS were excluded from this cohort. Three
siblings with MDS that we recently described were included23. Of
the primary MDS patients, 50% were classified as refractory
cytopenia of childhood (RCC) and 50% as refractory anemia with
excess blasts (RAEB). Paired tumor-normal WES was performed
on 54 of these cases with a median coverage of ×96 in the normal
and ×92 in the tumor (Table 1, Supplementary Datas #2 and 3).
A subset of the variants was then validated by amplicon

sequencing to a mean depth of ×7000. CD3 + or unfractionated
lymphocytes were flow sorted from the diagnostic sample to use
as the source of normal comparator genomic DNA (gDNA) as
other sources of normal gDNA were not available (Supplemen-
tary Fig. 2). This strategy has been successfully used in the past
for JMML24 and other myeloid neoplasms25. Tumor-only mate-
rial was available for the remainder of the cohort (n= 23), which
was sequenced using a custom amplicon strategy targeting
recurrent mutations identified in the WES cohort and other
hotspots from adult and pediatric myeloid neoplasms with
a median coverage of ×3000 (Supplementary Datas #4–6).
In addition, RNA-sequencing was performed on 43 cases with
available high-quality RNA (mean mapped reads: 107 million).
For the 54 cases with WES, the somatic mutation rate and allele
burden varied between the disease types (Fig. 2a, Supplementary
Fig. 3) with the lowest number of mutations observed in RCC
(mean: 4; range: 0–11). Out of the 18 RCC cases and 14 RAEB
cases sequenced by WES, 3 RCC cases and 1 RAEB case
demonstrated no somatic coding mutations, 2 of which contained
potential causative germline variants (see below). Furthermore,
our data show that mutations in genes important in the Ras/
Mitogen-activated protein kinase (MAPK) pathway are the most
common in our cohort while mutations in genes involved in RNA
splicing are rare (Fig. 2b). Several other patients have no somatic
mutations in genes typically implicated in myeloid neoplasms
(Fig. 2c). The mutational signature for these cases was similar to
that previously observed for AML (Signature 1A/1B), character-
ized by prominence of C> T substitutions at NpCpG trinucleo-
tides (Supplementary Fig. 4)26.
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Copy number alterations in pediatric MDS. Copy number
information, obtained from WES data and conventional kar-
yotyping, determined that deletions involving chromosome 7
were more frequent in primary MDS (n= 19, 41%) than in MDS/
MPN (n= 3, 13%) and AML-MRC (n= 2, 25%) (Fig. 3).
Approximately 60% of RCC cases had deletions involving chro-
mosome 7 (13 of 23), compared to only 26% of RAEB cases (6 of
23). Deletions involving chromosome 5 were infrequent (n= 4,
5%); all occurrences were in RAEB cases. Trisomy of chromo-
somes 8 (n= 8, 10%) and 21 (n= 3, 4%), and deletions or loss of
heterozygosity of 17 (n= 2, 3%) were present at low frequency
within the total cohort. In total, we detected 17 additional copy
number abnormalities (including 3 cryptic chromosome 7
abnormalities) with WES that were not reported by standard
conventional karyotyping with an average size of 40Mbp (Range:
0.02–159Mbp) (Supplementary Data #7). Alternatively, subclonal
copy number alterations identified by conventional karyotyping
(n= 12) were not found with WES. Notably, in 2 cases, subclonal

del(7) was identified in 3 of 20 metaphases analyzed, yet was
undetectable in the WES data. Copy number neutral events were
identified in the lymphocytes (source of germline) in 3 patients,
with involvement of chromosome 7 (x2) or 17 (Supplementary
Fig. 5). The 7q CN-LOH event in SJ18228 has been previously
reported by our group23.

Putative germline variants in pediatric MDS. We analyzed the
54 tumor-normal pairs for the presence of germline variants to
determine if any cases harbored pathogenic variants that may
predispose patients to a myeloid malignancy. It is important to
note that our normal sample is from flow cytometry purified
lymphocytes and thus cannot be used to definitively categorize a
variant as germline given that it is possible for somatic mutations
to arise in progenitor compartments affecting both myeloid and
lymphoid cells, as has been shown in JMML27,28. We first ana-
lyzed all coding variants in over 1000 genes that have been
implicated in pediatric cancer predisposition29, JMML30, familial
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Fig. 2 Somatic mutations in pediatric MDS and related neoplasms. a Total number of somatic variants per patient in the 54 patients with WES data
(includes silent, nonsense, missense, frame shifts, indels, ITD, and mutations within 3′ and 5′ UTR). **: p= 0.02; ***: p= 0.003 (student’s t-test).
b The most common genes with somatic mutations in the full cohort of 77 patients (includes WES and targeted amplicon sequencing). Only somatic
mutations with presumed functional consequences are shown. c Heat map showing the somatic mutational profile of the pediatric MDS cohort separated
by gene functional groups. Only somatic mutations with presumed functional consequences are shown. Split cells indicate multiple mutations. O, other
karyotype findings not listed separately; C, complex karyotype; N, normal karyotype
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MDS/AML31, and adult MDS/AML32 (Supplementary Datas #8
and 9) and a subset of these variants were classified according to
the American College of Medical Genetics (ACMG) criteria33. In
addition, we reported all loss of function variants (frameshift,
nonsense and splice site alterations) in all genes (Supplementary
Data #10). In this study we used a VAF cut off of> 40% in the
lymphocytes to classify variants as germline, unless there was
evidence of CN-LOH in the lymphocytes. We observed putative
germline variants in PTPN11, NF1, and NRAS in patients with
JMML, which are known associations30. Eight patients had
germline variants in SAMD9 or SAMD9L (discussed below).
Other potentially causative germline variants identified were in
RRAS and BRCA2 (Table 2 and Supplementary Data #9). The
RRAS p.Q87L variant, which has been previously shown to
increase MAPK activity and inhibit apoptosis34,35, has been
reported in rapidly progressive JMML, and other germline var-
iants in RRAS have been identified in Noonan Syndrome and
JMML36. Only one patient had a presumed GATA2 germline
variant (p.L375F). Resequencing of intron 4 of GATA2, a pre-
viously described mutation hotspot in pediatric MDS15, in all
cases of primary MDS subjected to WES did not identify any
additional germline events in these 32 cases. Of note, in the 14
primary cases with only tumor material available, there were 2
cases with GATA2 mutations at a variant allele frequency
(VAF) of> 40%, suggesting that they may be germline events
(Supplementary Fig. 6). One of these cases had two separate
GATA2 variants at a VAF> 40%. In addition, we identified 2
PTPN11 variants via targeted amplicon sequencing with VAF’s
suggestive of germline lesions (Supplementary Fig. 7). Although
material for normal comparator gDNA was not available to

confirm germline lesions in these patients, the variants with
VAF’s> 40% were significantly higher than other somatic
mutations present in the same patient.

Germline SAMD9 and SAMD9L variants are frequent in pri-
mary MDS. We previously described a germline SAMD9 variant
(p.E1136Q) in three siblings with isolated familial MDS23, and
others have described SAMD9 and SAMD9L variants as causative
lesions in MIRAGE syndrome19,20 and Ataxia-Pancytopenia
Syndrome (APS)21 or a syndrome resembling APS but with less
severe neurological manifestations22, respectively. In total
(including the previously reported three siblings), eight patients
(17%) in our primary MDS cohort had presumed SAMD9 (n= 4)
or SAMD9L (n= 4) germline variants (RCC: 7, RAEB: 1). Within
the primary MDS cohort, 42% of the patients with loss of material
on chromosome 7 have germline SAMD9 or SAMD9L variants.
With the exception of the SAMD9 p.E1136Q variant, all variants
identified were previously unreported missense variants (SAMD9:
p.T778I; SAMD9L: p.W1180R, p.S626L (n= 2), and p.R1281K)
and have variable predicted impacts on protein function (Fig. 4a
and Supplementary Data #11). The two patients (SJ018222 and
SJ018225) with the SAMD9L p.S626L variants are relatives and
culture of bone marrow fibroblasts from SJ018222 confirmed the
germline status of this variant. Similar to previous studies eval-
uating SAMD9 and SAMD9L variants, all variants showed gain-
of-function activity that leads to decreased cell proliferation
(Fig. 4b, c, and Supplementary Fig. 8). Furthermore, SAMD9/
SAMD9L gain-of-function variants inhibit the induction of ERK
phosphorylation in response to serum (Supplementary Fig. 9).
Depending on the extent of monosomy 7 observed in the tumor
cells, the VAF of the SAMD9/SAMD9L variant decreased
accordingly, suggesting a preferential loss of the allele harboring
the deleterious variant (Fig. 4d). Previous studies showed the
existence of acquired mutations in SAMD9 or SAMD9L that can
serve to rescue the deleterious effects of a gain-of-function var-
iant. Further, we previously reported on similar mechanisms in
the included family with the germline p.E1136Q SAMD9 var-
iant23. In the remaining five patients, we observed a subclonal
CN-LOH event in the lymphocytes of SJ018225 that removes the
pathologic p.S626L variant (see Supplementary Fig. 5). No other
clear rescue mutations were observed in the remaining four
patients.

Ras-MAPK pathway mutations are most common in pediatric
MDS. Genes involved in the Ras/MAPK pathway were the most
common mutations (including both germline and/or somatic) in
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Table 1 Characteristics of the Pediatric MDS Cohort

Total DNA Seq. Technique RNA Seq.

Tumor/Normal Pairs (n= 54)
Primary MDS 32 WES 25
MDS/MPN 14 WES 12
AML-MRC 8 WES 6

Tumor Only (n= 23)
Primary MDS 14 TSCA Not Done
MDS/MPN 9 TSCA Not Done
AML-MRC 0 TSCA Not Done
Total 77 43

TSCA, TruSeq Custom Amplicon; WES, Whole-exome sequencing
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our cohort, most notably PTPN11 (15 mutations in 14 patients)
and NRAS (10 mutations in 9 patients) (Fig. 5a, Supplementary
Datas #3, 6, and 9). In addition to the genes commonly mutated
in myeloid malignancies (e.g., NRAS, KRAS, NF1, CBL, and
PTPN11), we also identified mutations in RRAS (germline),
BRAF, and SOS1 (Supplementary Fig. 10). In total, we identified
Ras/MAPK mutations in 55% of the total cohort and 43% of
primary MDS cases with VAF’s ranging from 2 to 85% (Sup-
plementary Fig. 11). Interestingly, Ras/MAPK mutations were
enriched in the higher-grade primary MDS, RAEB (RAEB: 65%
vs RCC: 17%, p= 0.002, Fisher’s exact test). In particular for
PTPN11, the variant was frequently detected in the lymphocyte
“normal” sample, suggesting that these are a result of tumor-in-
normal contamination, or variants that are either germline or
mosaic (Supplementary Fig. 12). Due to low number of somatic
coding mutations in these cases it is difficult to confidently make
this distinction. This pattern was not limited to JMML cases.
The BRAF mutations found in our MDS cohort (p.G469A and
p.D594N) induce some level of constitutive ERK phosphorylation
and confer IL3 independence in the murine Ba/F3 cell line37

(Fig. 5b, c, and Supplementary Fig. 13).

Additional somatic mutations in pediatric MDS. In addition to
mutations in the Ras/MAPK pathway, we also observed somatic
mutations in SETBP1. As previously reported, these mutations

were present in both the JMML cohort30 and MDS cohort38.
CEBPA (n= 1, 1%), RUNX1 (n= 2, 3%), and ETV6 (n= 4, 5%)
somatic mutations were also identified. Somatic TP53 mutations,
all within the DNA-binding domain, were present in three cases
(4%). DNMT3A, ASXL1, and TET2 mutations were notably
absent from our cohort. In contrast to adult MDS5, RNA splicing
genes (SRSF2: n= 1, U2AF2: n= 1, U2AF1: n= 1) were rarely
mutated in our cohort (n= 3, 4%) (Fig. 2c and Supplementary
Fig. 14). Collectively, our comprehensive somatic and germline
sequencing illustrates new patterns of mutations in pediatric
primary MDS (Fig. 6) and highlights differences between MDS/
MPN and AML-MRC (Supplementary Figs. 15 and 16). Within
the primary MDS cohort, the presence of Ras/MAPK mutations,
monosomy 7 or germline SAMD9/SAMD9L variants do not
impact patient outcome (Supplementary Fig. 17). Consistent with
other studies, the presence of SETBP1 mutations did appear to be
associated with inferior outcome despite small numbers of
patients39 (Supplementary Fig. 17f).

Fusion events are rare in pediatric MDS. RNA-sequencing of
high-quality RNA material from 43 cases demonstrated that
fusion events are rare in pediatric MDS. Only 2 fusions (RUNX1-
MECOM and CSNK1A1-LECT2) were identified in 25 primary
MDS patients (Supplementary Fig. 18). RUNX1-MECOM is a
known fusion in AML/MDS40. The CSNK1A1-LECT2 fusion is
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gain-of-function SAMD9L mutations. SAMD9L p.H880Q (positive control) is a gain-of-function mutation previously reported in Ataxia-Pancytopenia
syndrome21. c EdU incorporation assay showing that gain-of-function SAMD9/SAMD9L mutations inhibit cells from progressing through the cell cycle as
depicted by the relative absence of cells in S-phase. SAMD9 p.R1293W (positive control) is a previously reported gain-of-function mutation in MIRAGE
syndrome19. SAMD9 p.D881G is a common SNP that is not predicted to be pathogenic. **: p< 0.01, ***: p< 0.001, ****: p< 0.0001 (student’s t-test). Error
bars indicate standard deviation. Data in B & C are representative of 2–3 experiments completed in triplicate. d VAF plot, obtained from targeted deep
sequencing, showing the preferential loss (decrease in VAF) of the SAMD9/SAMD9L mutations in the tumor population. Black lines: SAMD9; Blue lines:
SAMD9L; dashed lines indicate cases where a subclonal (3/20 metaphases) del(7) was detected only by conventional karyotyping
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the result of an intrachromosomal deletion of chromosome 5 and
results in a fusion transcript that removes the kinase domain of
CSNK1A1, and is likely similar to other previously reported loss
of function alterations in CSNK1A141. Two presumed novel
fusion transcripts (NUP98-JADE2 and SNRNP70-FGFR1) were
identified in patients with MDS/MPN. JADE2 contains two Plant

Homeo-Domains (PHD), which are common features for
translocation partners with NUP9842, and thus is predicated to
function similar to NUP98-PHD fusions, like NUP98-NSD1 and
NUP98-KDM5A43. Likewise, the SNRNP70-FGFR1 preserves the
kinase domain of FGFR1, like other FGFR1 translocations in
cancer44. Four fusion events were detected and validated for
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Fig. 5 Ras/MAPK pathway mutations in pediatric MDS, MDS/MPN, and AML-MRC. a Heat map showing all Ras/MAPK pathway mutations, both somatic
and presumed germline (cells with hatched lines indicate presumed germline variants from WES tumor/normal cases), in the pediatric MDS cohort
(n= 77). b Growth curves of Ba/F3 cells transduced with retrovirus containing BRAF mutations. Blue curves indicate mutations found in the pediatric MDS
cohort, and black curves are positive (V600E) and negative controls. Error bars indicate standard deviation. c Western blots of BRAF, total ERK, and
phosphorylated ERK from lysates of 293 T cells transiently transfected with each BRAF mutation. Data are representative of three biological replicates

Table 2 Presumed germline mutations linked to disease

Case Diagnosis Gene RefSeq Accession Mutation
Type

Nucleotide Change Amino Acid
Change

VAF
(lymphocytes)

ACMG
Classification

SJ018213 Primary MDS BRCA2 NM_000059 nonsense c.G3922T p.E1308X 0.47 P
SJ017914 Primary MDS RRAS NM_006270 missense c.A260T p.Q87L 0.47 VUS
SJ015855 Primary MDS SAMD9 NM_017654 missense c.G3406C p.E1136Q 0.47 VUS
SJ015856 Primary MDS SAMD9 NM_017654 missense c.G3406C p.E1136Q 0.5 VUS
SJ018211 Primary MDS SAMD9 NM_017654 missense c.C2333T p.T778I 0.49 VUS
SJ018228 Primary MDS SAMD9 NM_017654 missense c.G3406C p.E1136Q 0.29 VUS
SJ018198 Primary MDS SAMD9L NM_152703 missense c.T3538C p.W1180R 0.5 VUS
SJ018222 Primary MDS SAMD9L NM_152703 missense c.C1877T p.S626L 0.54 VUS
SJ018225 Primary MDS SAMD9L NM_152703 missense c.C1877T p.S626L 0.34 VUS
SJ040280 Primary MDS SAMD9L NM_152703 missense c.G3842A p.R1281K 0.49 VUS
SJ018219 MDS/MPN NF1 NM_000267 frameshift c.3457_3460del p.L1153_N1154fs 0.51 P
SJ018223 MDS/MPN NF1 NM_000267 nonsense c.C2446T p.R816X 0.51 P
SJ040275 MDS/MPN NRAS NM_002524 missense c.G34A p.G12S 0.44 LP
SJ018227 MDS/MPN PTPN11 NM_002834 missense c.A182G p.D61G 0.47 P
SJ018203 MDS/MPN RUNX1 NM_001754 missense c.C425A p.A142D 0.51 VUS
SJ040268 AML-MRC GATA2 NM_001145661 missense c.C1123T p.L375F 0.49 P

VAF, variant allele frequency; P pathogenic; LP, likely pathogenic; VUS, variant of unknown significance
Includes only mutations identified by WES in 54 tumor/normal pairs. Note: the VAFs for SJ018228 and SJ018225 are <40% because a LOH event is present
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AML-MRC. With the exception of an NF1-RHOT1 fusion that
would result in NF1 loss-of-function, the remaining 3 fusions
identified (NUP98-KDM5A, DEK-NUP214, ETV6-MECOM) are
known to be associated with myeloid malignancies (Supplemen-
tary Fig. 19).

Discussion
Previous studies on pediatric MDS have focused mostly on gene
panels31,38, which have been guided based on our understanding
of adult MDS and inherited bone marrow failure syndromes. In
this study we sought to more comprehensively define genetic
variation in pediatric MDS through a combination of WES,
amplicon sequencing, and RNA-sequencing and our data show a
complex pattern of germline and somatic mutations (Fig. 6).
We also expanded our analyses to include other pediatric
myeloid neoplasms with potentially overlapping morphologic
(e.g., dysplasia) or cytogenetic (e.g., del (7)/(7q)) features, such as
juvenile myelomonocytic leukemia (n= 19), unclassifiable mye-
lodysplastic/myeloproliferative neoplasms (n= 4), and acute
myeloid leukemia with myelodysplasia-related changes (n= 8).

We identified germline variants in SAMD9 or SAMD9L in 8 of
the 46 cases of primary MDS. SAMD9 and SAMD9L are sterile

acid domain containing genes located at 7q2145, in a region
frequently deleted in myeloid tumors46,47, and their protein
products have been implicated in endosomal function and
interferon signaling22,48. Loss of murine Samd9l can lead to a
MDS-like disease in mice49. Recently, germline variants in these
genes have been associated with multisystem disorders with a
range of systemic abnormalities, including neurologic, endocrine,
gastrointestinal, immune, and hematopoietic systems19,21,22.
A subset of these patients also developed MDS with monosomy 7.
It has been proposed that loss of chromosome 7 is a cellular
adaptation to the growth suppressive properties of the mutant
SAMD9 or SAMD9L protein-referred to previously as “adapta-
tion by aneuploidy”19. In all cases, we similarly see selective loss
of the chromosome that harbors the heterozygous germline var-
iant. The patients included in this study lack the profound extra-
hematopoietic phenotypes of MIRAGE and Ataxia-Pancytopenia
patients, rather they appear to have isolated MDS. Seven of the 8
patients presented with RCC and had few somatic cooperating
events (total somatic mutations: 26, range: 0–10/patient),
including 2 cases with no somatic coding mutations. The one
patient with RAEB had multiple somatic events, including
mutations in PTPN11, ETV6, SETBP1, and deletion of
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Fig. 6 The genomic landscape of pediatric primary MDS. a Heat map indicating primary MDS patients, subdivided into RCC and RAEB categories, with
somatic mutations, germline variants (cells with hatched lines), and transcript fusions. Ras/MAPK mutations are enriched in the RAEB subgroup (65% vs
17%, p= 0.002, Fisher’s exact test) b Ribbon plot showing associations between cytogenetic abnormalities and recurrent mutations in myeloid neoplasms.
Data from WES and targeted amplicon sequencing of the primary MDS cohort (n= 46) was used to build the plot. Associations between a cytogenetic
abnormality and a mutation are connected by a ribbon, the width of which is proportional to the frequency of that association
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chromosome 5 (resulting in the previously mentioned CSNK1A1-
LECT2 fusion). Although our findings here clearly need to be
expanded to a larger cohort, we suggest that germline variants in
SAMD9 and SAMD9L are a new class of lesions that need to be
screened for in children with MDS and monosomy 7.

In total from the cases with tumor and normal material, we
identified 10 primary MDS cases (out of 32) with germline var-
iants that may be causative (Table 2). Interestingly, none of these
variants were in GATA2, although in 14 primary MDS cases with
tumor-only material available there were 3 additional GATA2
variants (1 case with 2 separate mutations) with VAF’s> 40%
suggesting that they may be germline events. One AML-MRC
patient had a germline GATA2 variant. Five MDS/MPN patients,
all JMML, had germline variants, 4 of which were in genes of the
Ras/MAPK pathway. Surprisingly, we did not find any germline
variants in genes implicated in bone marrow failure syndromes
that have overlap with MDS, such as dyskeratosis congenita12,50.
Of note, our collective findings do show differences in the
genomic profiles of pediatric MDS from our single institution
cohort and those published by other groups. In addition to fewer
germline GATA2 variants, we also observed fewer somatic
SETBP1 mutations. We suggest these differences are largely due
to the heterogeneous nature of MDS coupled with small cohort
sizes.

Monosomy 7 is a known cytogenetic abnormality in many
myeloid tumors, and previous studies have demonstrated that it
occurs in nearly 25% of children with MDS15,51. The presence of
monosomy 7 has also been associated with somatic mutations in
SETBP138 and germline alterations in GATA215. Our analyses
confirmed the high frequency of deletions involving all or por-
tions of chromosome 7. In addition, we also observed an asso-
ciation between deletions involving chromosome 7 and two
distinct groups (Fig. 6b). In particular, 100% of patients with
SAMD9/SAMD9L mutations (7/8 were classified as RCC), and
71% of RAEB patients with a Ras/MAPK mutation were asso-
ciated with chromosome 7 deletions. Clearly, larger studies will be
needed to confirm these associations.

We further demonstrated that mutations in the Ras/MAPK
pathway are more common in pediatric MDS than adult MDS,
especially in children with RAEB. Makishima et al. recently
reported WES data for 124 adult MDS patients and Ras/MAPK
mutations were present in only 10% of those cases7 vs. our 45% of
pediatric primary MDS. Additionally, the mean mutation fre-
quency per patient (pediatric: 5/case vs. adult: 11.4/case) and the
frequency of deletions involving chromosome 5 (pediatric: 5% vs.
adult: 18%) were different. These differences are not surprising
given the disparate morphologic and clinical characteristics of
pediatric and adult MDS. Our data are consistent with the recent
study by Pastor et al., but due to the more comprehensive
sequencing in our study, we identified mutations in other Ras/
MAPK pathway genes that may not be included in typical panels
for genomic testing38. Germline and somatic Ras/MAPK muta-
tions largely define JMML24,30,52,53 and our data suggest a higher
degree of genomic similarity between JMML and pediatric RAEB
than previously appreciated, which could have beneficial clinical
implications given the new clinical trial with a MEK inhibitor in
JMML (Children’s Oncology Group ADVL1521). Pediatric MDS
is not only contrasted with adult MDS or chronic myelomono-
cytic leukemia (CMML) in regard to Ras/MAPK pathway
mutations but also in mutations of genes encoding epigenetic
regulators (more frequent in adult MDS/CMML), thus potentially
suggesting that the epigenetic landscape of pediatric MDS is more
permissive to transformation than adults.

In summary, we provide the first comprehensive view on the
genomic landscape of pediatric MDS. In addition to increasing
the spectrum of somatic mutations in pediatric MDS, some of

which suggest genomic similarity to JMML, we have expanded
the list of genes with potential germline variation in children with
MDS. In particular, we define SAMD9 and SAMD9L as new genes
linked to childhood MDS.

Methods
Patient sample details. Tumor and germline samples, when applicable, were
obtained with informed consent using a protocol approved by the St. Jude Chil-
dren’s Research Hospital Institutional Review Board. All patients with a diagnosis
of MDS, MDS/MPN, and AML-MRC between 1988 and 2016 were originally
evaluated for sample adequacy. Diagnoses were reviewed by a hematopathologist
(J.M.K.) and classified according to WHO 2008 criteria54. Detailed clin-
icopathological information is available in Supplementary Data #1. Samples were
de-identified before nucleic acid extraction and analysis. The study cohort com-
prises 46 primary MDS (23 refractory cytopenia of childhood/RCC and 23
refractory anemia with excess blasts/RAEB), 23 MDS/MPN (including 19 with
juvenile myelomonocytic leukemia/JMML), and 8 AML-MRC cases for a total
cohort of 77 patients. Germline samples were obtained from flow sorted total
lymphocytes or CD3 + T-cells from the diagnostic bone marrow samples (Sup-
plementary Fig. 2). Cryopreserved bulk bone marrow cells were thawed in a 37 °C
water bath and transferred to 20% FBS in PBS to remove residual DMSO according
to standard approaches55. Cells were lysed with ACK lysing buffer (ThermoFisher
A1049201) and washed with PBS prior to staining. The following antibodies were
used to immunophenotype the cells and facilitate flow sorting of myeloid and
lymphoid populations: CD15-FITC (eBioscience, clone HI98), CD71-BV711 (BD
Biosciences, clone M-A712), CD34 PE (Beckman, clones QBEnd10, Immu133,
Immu409), CD45R-PerCP-Cy5.5 (eBioscience, clone RA3-6B2), CD235a-PE-Cy7
(BD Biosciences, clone GA-R2), CD3-APC-Cy7 (BD Biosciences, clone SK7),
CD33-APC (eBioscience, clone WM-53).

Whole-exome and RNA-sequencing and analysis. DNA and RNA material was
isolated from bulk myeloid or isolated lymphocytes by standard phenol:chloroform
extraction and ethanol precipitation. Whole-exome sequencing was completed
using the Nextera Rapid Capture Expanded Exome reagent (Illumina) and ana-
lyzed as previously described56. RNA-sequencing was performed using TruSeq
Stranded Total RNA library kit (Illumina) and analyzed, as previously described56.
Structural variation detection was carried out using CICERO57, a novel algorithm
that uses de novo assembly to identify structural variation in RNA-seq data and
Chimerascan58. All identified fusions were validated by RT-PCR. Mapping statis-
tics and coverage data are described in Supplementary Data #2. Recurrent SNVs
identified via WES were validated by custom amplicon sequencing using the MiSeq
platform as previously described56 (Supplementary Data #12). All SNVs identified
by WES and subsequently validated are summarized in Supplementary Data #3.
For the 23 cases without a matched normal sample, DNA from whole bone marrow
was analyzed using a TruSeq Custom Amplicon (Illumina) approach (Supple-
mentary Data #4 for gene/target list). VarScan 259 was used for variant calling on
the TruSeq Custom Amplicon data with the following criteria: MAPQ > = 1;
minimum read depth at a position to make a call>= 100; minimum supporting
reads at a position to call variants >= 10; minimum base quality at a position to
count a read > = 23; VAF> = 0.02. The calls with reads showing strong bias or
present in majority of the samples were filtered out, and the remaining ones were
manually reviewed. The targeted sites (Supplementary Data #4) were also scanned
regardless of the above cutoffs for manual review. Further, the coding regions for
SAMD9 and SAMD9L were sequenced using a modified 16 S library protocol. Short
amplicons were used to validate the known variants. Oligonucleotides were
designed to amplify an ~350 bp fragment surrounding each variant and these
oligonucleotides included the following Illumina adapters: TCGTCGGCAGCGT-
CAGATGTGTATAAGAGACAG-[forward primer] and GTCTCGTGGGCTCGG
AGATGTGTATAAGAGACAG-[reverse primer]. The amplicons were then pur-
ified with Ampure XP beads, PCR-amplified (five cycles) to attach indices and
adapters, followed by an additional purification with Ampure XP beads and quality
assessment on a LabChip GX. The samples were run on a MiSeq with a 500cycle
nano kit. Discovery sequencing to identify any coding SAMD9 or SAMD9L
mutations in cases not subjected to WES was performed by amplifying ~1.5 kb
regions with> 50 overlapping bases. The amplicons were submitted to the Hartwell
Center for Nextera XT library preparation, per the manufacturer’s protocol, and
sequenced on a MiSeq with a 500cycle nano kit.

CNA detection using whole-exome sequencing data. Samtools60 mpileup
command was used to generate an mpileup file from matched normal and tumor
BAM files with duplicates removed. VarScan2 was then used to take the mpileup
file to call somatic CNAs after adjusting for normal/tumor sample read coverage
depth and GC content. Circular Binary Segmentation algorithm61 implemented in
the DNAcopy R package was used to identify the candidate CNAs for each sample.
B-allele frequency info for all high quality dbSNPs heterozygous in the germline
sample was also used to assess allele imbalance.
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Germline analysis. Whole exome sequencing (WES) data were analyzed using
internal workflow that were previously described29. Briefly, the sequencing data
were analyzed for the presence of single-nucleotide variants and small insertions
and deletions and for evidence of germline mosaicism. Germline copy-number
variations and structural variations were identified with the use of the Copy
Number Segmentation by Regression Tree in Next Generation Sequencing
(CONSERTING)62 and Clipping Reveals Structure (CREST)63 algorithms. For all
SNPs and INDELs, functional prediction (e.g., SIFT, CADD, and Polyphen) and
population minor allele frequency (MAF) were annotated. In this work, 3 databases
were used for population MAF annotation: (i) NHLBI GO Exome Sequencing
Project (http://evs.gs.washington.edu/EVS/); (ii) 1000 genomes (http://www.
internationalgenome.org); and (iii) ExAC non-TCGA version (http://exac.
broadinstitute.org/). A gene list of 1176 genes were composed from various
resources: (i) literature review of genes that are potentially involved in AML, MDS,
inherited bone marrow failure syndromes, as well as other cancer types16,29,31,32,64

(ii) genes that were involved in splicing from predefined pathways (e.g., splicing) in
KEGG, GeneOntology, Reactome, Gene Set Enrichment Analysis (GSEA), and
NCBI (Supplementary Data #6). Novel or extremely rare variants (MAF≤ 0.1%)
that passed sequence quality check were kept for subsequent analysis. All non-
synonymous mutations in 207 of these genes were comprehensively reviewed and
classified according to ACMG guidelines33 by a medical geneticist (C.K.). Non-
synonymous mutations in the remaining 969 genes were merely reported (Sup-
plementary Data #9). In addition, nonsense, frameshift, or splicing mutations in all
other genes covered by the exome capture were also reported (Supplementary Data
#10). Relevant germline variants were validated by targeted resequencing.

Cloning and mutagenesis. pBABE-bleo[BRAFV600E] was a gift from Christopher
Counter via Addgene (#53156). BRAF p.V600E was reverted back to wild-type
(NM_004333) using the GENEART® Site Directed Mutagenesis System (Invitro-
gen). The patient specific mutations found in our MDS cohort were then intro-
duced into the wild-type BRAF containing vector. The pCMV6-Entry[SAMD9]
(RC219076) and pCMV6-Entry[SAMD9L] (RC207886) vectors were purchased
from Origene. SAMD9 and SAMD9L were PCR amplified such that the resultant
amplicons contained a 5′-CACC overhang to allow for direct cloning into the
Gateway entry vector, pENTR/D-TOPO. SAMD9/L GFP fusions were created by
using the Gateway LR clonase II reaction with the pcDNA6.2/N-EmGFP-DEST
Gateway destination vector which was purchased from Lifetech (V35620). The
pcDNA6.2/N-EmGFP/GW/CAT vector was used as the GFP-empty vector control.
Mutagenesis and PCR amplification primers mentioned above are listed in Sup-
plementary Data #13.

Cell culture, transient transfection, & stable transduction. For BRAF functional
assays murine-specific retrovirus containing BRAF constructs was produced via
transient transfection (FuGene®, Promega) of HEK-293T cells (ATCC) with the
construct of interest and the EcoPak viral packaging vector, according to standard
procedures65. Briefly, 48 h following transfection Ba/F3 cells were transduced with
viral particles via spinfection/polybrene. For spinfection, 1.5 mL of virus particle
containing supernatant from 293 T culture was mixed with ~2 × 106 Ba/F3 cells in
a total volume of 3 mL of media containing HEPES buffer and 2uL of polybrene.
Cells and virus were then centrifuged at 2000×g at 30 °C for 90 min, after which
they were allowed to rest at 37 °C, 5% CO2 for an additional 90 min. Following the
rest period, the cells were washed with PBS, centrifuged, and suspended in fresh
media (RPMI 1640, 10% FBS). After 48 h of transduction Ba/F3 cells were counted
via hemacytometer and trypan blue exclusion every 2 days. For SAMD9/SAMD9L
functional assays 293 T cells were transiently transfected with constructs of interest
(FuGene®, Promega).

Dye dilution cell proliferation assays. Prior to SAMD9/SAMD9L transfection 293
T cells were stained with either CellTrace™ Violet (for dye dilution experiment
only) or CellTrace™ Yellow (for combination dye dilution and EdU incorporation
cell cycle assays) (Invitrogen) according to the manufacturer’s protocol. In total,
72 h following transfection 293 T cells were collected, fixed with 4% paraf-
ormaldehyde, and analyzed by flow cytometry.

EdU cell cycle assays. Following a 24–48 h transfection with SAMD9/L 293
T cells were treated with 10uM EdU for 2 h. Following the EdU incubation, 293
T cells were harvested and fixed with 4% paraformaldehyde. After fixing, the Click-
It® reaction (Invitrogen, C10635) was performed according to the manufacturer’s
protocol. Following the Click-It® reaction, total DNA was labeled with FxCycle
(Invitrogen, F10347), and analyzed by flow cytometry.

Immunoblotting and serum stimulation. For BRAF studies, 48hrs following viral
transduction, Ba/F3 cell lysates were prepared with Laemmli buffer and separated
on standard polyacrylamide gels. For SAMD9/SAMD9L studies, the induction of
phosphorylated ERK was assayed following serum stimulation. Twenty-four h after
SAMD9/L transfection, 293 T media (10% FBS) was replaced with serum deficient
(1% FBS) media for 18–24 h. Subsequently, cell lysates were prepared with
Laemmli buffer at three time points: 0 min (prior to 10% FBS replacement) and 10
and 60 min following full media replacement. The following antibodies were used

at a 1:1000 dilution for immunoblotting: SAMD9 (abcam, ab180575), GFP (Invi-
trogen, A11122), BRAF (Santa Cruz Biotechnology, sc-5284), and from Cell Sig-
naling Technologies: Total ERK (4695S), Phos-ERK (9101S), and GAPDH (2118S).

Statistical methods. The student’s t-test, two-tailed, assuming equal variances,
was used when comparing two experimental groups (e.g., SAMD9/SAMD9L
mutations) or diagnostic subgroups (e.g., mutation frequency). The Fisher’s exact
test was used to compare the frequency of Ras/MAPK mutations between RAEB
and RCC subgroups. Overall survival was defined as the time difference between
the date of MDS, MDS/MPN, or AML-MRC diagnosis and the date of death.
Patients who were alive at the time of last follow up were considered censored.
Survival curves between groups were compared via log-rank tests.

Data availability and accession codes. Genomic data have been deposited in the
European Genome-phenome Archive (EGA), which is hosted by the European
Bioinformatics Institute (EBI), under accession EGAS00001002202. All other
remaining data are available within the Article and Supplementary Files, or
available from the authors upon request.
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