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Microelectromechanical systems (MEMS) enable many modern-day technologies, including

actuators, motion sensors, drug delivery systems, projection displays, etc. Currently, MEMS

fabrication techniques are primarily based on silicon micromachining processes, resulting in

rigid and low aspect ratio structures. In this study, we report on the discovery of MEMS

functionality in fibres, thereby opening a path towards flexible, high-aspect ratio, and textile

MEMS. The method used for generating these MEMS fibres leverages a preform-to-fibre

thermal drawing process, in which the MEMS architecture and materials are embedded into

a preform and drawn into kilometers of microstructured multimaterial fibre devices. The

fibre MEMS functionality is enabled by an electrostrictive P(VDF-TrFE-CFE) ferrorelaxor

terpolymer layer running the entire length of the fibre. Several modes of operation

are investigated, including thickness-mode actuation with over 8% strain at 25MVm−1,

bending-mode actuation due to asymmetric positioning of the electrostrictive layer, and

resonant fibre vibration modes tunable under AC-driving conditions.
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A lthough the potential for miniature machines was appre-
ciated as early as the 1960s, most famously in Richard
Feynman’s seminal lecture1 “There is plenty of room at

the bottom”, the key enabler of microelectromechanical systems
(MEMS) proved to be the vast knowledge on silicon processing
technologies2 developed for the integrated circuit industry in the
1970s and 1980s. By applying silicon micromachining technology
to mechanical devices such as cantilevers and membranes,
researchers have been able to fabricate increasingly sophisticated
miniaturized electromechanical transducers. Today, MEMS have
extended the applications of electromechanical transduction well
beyond traditional actuation and motion sensing into new fields
such as inkjet printing, accelerometers, drug delivery, and
projection displays3. However, while silicon has been matured for
high-throughput MEMS fabrication, the rigidity of conventional
Si substrates presents limitations, particularly for non-planar,
conformable actuation. Textiles on the other hand are conform-
able yet to date serve primarily passive functions. In this study, we
present a textile MEMS enabled by all-fibre flexible MEMS
devices, opening a path towards large-area, conformable, and
weavable electromechanical systems.

In the past decade, a new approach for drawing multimaterial
polymer-clad fibre devices from preforms has emerged, where
fibres are not used as simple longitudinal conduits but instead as
transverse devices that operate radially from their surface4. The
thermal drawing process offers a scalable and controllable means
of producing kilometers of uniform functional fibre with inner or
outer features of sub-micron dimensions5–8. This approach has

led to the successful development of optical, optoelectronic,
electronic, and thermal fibre devices4, and presents an opportu-
nity to realize MEMS in a novel form.

Here we report a novel thermally drawn MEMS fibre device
based on electrostrictive P(VDF–TrFE–CFE) ferrorelaxor terpo-
lymer. Electromechanical actuation capabilities of this fibre device
are established using high voltage atomic force microscopy
(HVAFM) and strain values as high as > 8% are demonstrated.
For a fibre with a free length of 3.5 cm and an asymmetric
geometry with respect to placement of the electrostrictive layer, a
maximum transverse deflection of ~ 80 µm under an applied
voltage of 200 V DC is established using contact profilometry.
Furthermore, by applying AC fields, frequency and amplitude-
tunable cantilever-like resonant vibrations are observed in the
fibre. We use this AC-driving scheme to demonstrate a fibre
optical modulator, which is used to deflect an optical beam
incident transverse to the fibre axis. Modulation of incident light
through electric field induced deflection is demonstrated up to the
second harmonic of the fibre at 158.3 Hz for a fibre that is ~ 6 cm
long. Moreover, we demonstrate a hybrid fibre device woven into
a textile consisting of a surface sub-wavelength photonic structure
and an internal MEMS domain.

Results
Fabrication of electrostrictive fibre MEMS. The primary
design consideration for producing a high-performance MEMS
fibre device concerns the selection of an electromechanical
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Fig. 1 Fabrication of electrostrictive fibres. a Schematic of the preform assembly for a multimaterial electrostrictive fibre. A P(VDF-TrFE-CFE) layer (red) is
assembled with CPE polymer electrodes (black), Bi–Sn electrodes (brown) and a PC cladding (beige), and consolidated. The surrounding shell incorporates
a multilayer As25S75/PC structure (top). b Schematic of the preform-to-fibre draw process. c Array of flexible electrostrictive fibres shows colored
reflections via the Bragg effect. d SEM micrographs of the overall structure and close-up of a multimaterial electrostrictive fibre and Bragg layers. Scale bars
for top, bottom left, and bottom right are 100, 20, and 2 μm, respectively. e We demonstrate the capability to integrate our fibre MEMS into the textile
using conventional weaving machines
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transduction mechanism and materials compatible with thermal
fibre drawing. Piezoelectric and electrostictive actuation
mechanisms are two potential candidates for achieving electro-
mechanical transduction in polymer-clad fibres. While electro-
striction was long considered a higher-order nonlinear effect
requiring stronger electric fields than typically used for piezo-
electrics, the emergence of a new class of highly electrostrictive
materials, known as relaxor ferroelectrics, has opened the path to
the use of electrostriction as an alternative to the piezoelectricity
for the large-strain actuation applications9. In addition to several
percent maximal achievable strain capabilities, a major advantage
of the electrostriction over the ferroelectric mechanism is that it
enables a reproducible, non-hysteretic response. Furthermore,
unlike ferroelectric piezoelectrics, electrostrictors do not require
high-field electrical poling, and are more stable over time. Owing
to these properties, in this work we take the advantage of the
electrostriction effect as an efficient electromechanical transduc-
tion mechanism and employ a relaxor ferroelectric material, P
(VDF–TrFE–CFE), known for exhibiting one of the largest elec-
tromechanical strain among PVDF-based terpolymers10. The
melting temperature of P(VDF–TrFE–CFE) is 125 °C. The other
materials comprising the device architecture are selected such
that all materials can flow at a common temperature when
thermally drawn.

The fabrication of multimaterial fibre devices starts with
constructing a preform, which is a macroscopic scaled-up version
of the fibre, with the same composition and cross-sectional
structure as the final device. This preform is then heated in a
cylindrical furnace and drawn into hundreds of meters of fibre.
The key to this process is the identification of a set of materials
that can be co-drawn, while conserving the device architecture

from preform to fibre by preventing capillary break-up and
mixing due to flow instabilities. Viscous forces are commonly
employed to kinetically avert these surface–tension driven
phenomena9. In particular, the use of the viscous conducting
materials such as carbon black polymer composites has been
reported for the integration of large aspect-ratio electrodes in
fibres11. Previous work has demonstrated that ferroelectric P
(VDF–TrFE) can be thermally drawn in a polycarbonate (PC)
cladding with carbon-loaded polyethylene (CPE) electrodes6.
Given that P(VDF–TrFE–CFE) has a melting temperature that is
25 °C lower than that of P(VDF–TrFE), it can be easily co-drawn
with the same materials system. We fabricate a preform by
contacting a 300 µm-thick layer of P(VDF–TrFE–CFE) with CPE
electrodes in a parallel-plate capacitor configuration and embed
this assembly within a polycarbonate (PC) matrix (Fig. 1a, see
Methods section for details). The small metallic buses of the low
melting temperature Bi–Sn alloy (Tm= 138 °C) are inserted
adjacent to the CPE to facilitate long-range electrical transport
along the length of the fibre. A multilayer structure composed of
PC and As25S75 glass are wrapped on the outer surface of the
preform. When drawn, these layers reduce in thickness leading to
a 1D photonic bandgap structure providing surface reflection
from the extended surface area of the fibre to facilitate the
deflection of the optical beams incident transverse to the fibre
axis. The preform is then consolidated in a vacuum oven and
drawn into extended lengths of the fibre using the draw
procedure described in the Methods section (Fig. 1b, c). SEM
micrographs of the cross-section of a multimaterial electrostric-
tive fibre show that the device structure is well preserved during
the draw (Fig. 1d). The materials show good adhesion and the
sharp angles in the device architecture are maintained. We have
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Fig. 2 Characterization of electrostrictive fibres. a Experimental set-up for HVAFM and contact profilometer measurements. b AFM cantilever tip
displacement at the surface of the fibre under increasing voltage. c Electrostrictive strain in the fibre calculated from tip displacement and applied electric
field in the terpolymer layer. The solid red line is a second order fit for the measured data and well-agreed with the electrostriction principle (i.e., quadratic
dependence of strain to the applied electric field). d Contact profilometry measurement of fixed-end fibre deflection at 200 V. The solid blue line is a
quadratic fit for the measured data and agreed with the beam deflection case (i.e., quadratic dependence of deflection to the fibre length) where cantilever
(fibre in our case) is subjected to bending moment
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demonstrated that the drawn fibres can be treated as textile fibres
and can be woven using the same equipment used to process
conventional textile fibres (Fig. 1e, Supplementary Fig. 1). MEMS
behavior of the fibres is confirmed after the weaving process.
Embedding MEMS actuation in a textile form factor can enable
active fabric materials which are conformable, soft and can cover
large areas.

Characterization of fibre MEMS in thickness-mode. Next we
characterize the performance of the fibre MEMS in thickness-
mode. When a voltage is applied across the CPE electrodes, the P
(VDF–TrFE–CFE) layer contracts in the thickness direction and
expands in the lateral direction. The amount of electrostrictive
strain achievable in these fibres is measured using a technique
based on high voltage atomic force microscopy (HVAFM).
Compared with traditional techniques where the voltage is
applied via the AFM tip, HVAFM has the advantage of enabling
higher and more uniform applied electric fields, and its use has
been demonstrated for piezoelectric coefficient measurements12.
The experimental setup is shown in Fig. 2a. The fibre sample is
affixed in epoxy on one face to a glass slide, connected to an
external DC high voltage power source, and placed under an
AFM tip in a contact mode. Figure 2b shows the AFM tip dis-
placement at the surface of the electrostrictive fibre as increasing
voltage steps are applied to the fibre through the external power
source. The slight data spread at high fields is due to the
relaxation phenomena in the fibre, which results in different step
heights when the voltage is turned on and off. The observed tip
displacement is consistent with electric field-induced contraction
of the electrostrictive layer. This measurement is repeated on
several samples with identical dimensions where similar

displacements are observed for all fibres at each voltage step. The
measured step heights are plotted against the applied voltage,
both normalized by the average P(VDF–TrFE–CFE) layer thick-
ness (Fig. 2c).

Electrostriction phenomenon is considered a higher-order
nonlinear effect where strain exhibits a quadratic dependence on
the applied electric field;

ε ¼ ME2 ð1Þ

where ε represents strain, E is applied electric field and
M electrostriction coefficient. Our experimental findings clearly
satisfy the quadratic relation between strain and electric field for
fields up to 25MVm−1. A maximum strain of> 8%, calculated
from known terpolymer layer thickness and tip displacement, is
achieved for an applied electric field of 25MVm−1; this
corresponds to a contraction of 1.3 µm for a 16 µm-thick
terpolymer layer. While> 7% percent of lateral strain has
been reported under ~ 150MVm−1 for free-standing
P(VDF–TrFE–CFE) films13, the electrostrictive strain in fibre
form exhibits remarkably better performance under significantly
lower electric fields. Note that this strain value is also around two
orders of magnitude larger than strains achievable with piezo-
electric polymers, which are on the order of 0.1%. We derive
the electrostriction coefficient in the thickness direction
(M33= 1.28 × 10−16 m2 V−2) by performing a second order
polynomial fit of measured data. In general, electrostriction
coefficients of relaxor ferroelectric materials are highly dependent
on the particular processing conditions13–16 such as heat
treatment, stretching, structure dimensions, or external irradia-
tion. In our case, the electrostriction coefficient is one order of
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Fig. 3 Electrostrictive fibre resonances. a Fiber width is utilized to adjust resonance frequency of the fibre MEMS. b Amplitude of oscillation is shown both
for on and off-resonance frequency points. c Optical setup to measure amplitude modulation under applied voltage and driving frequency. d Modulation
depth measured in the vicinity of the first harmonic, approximately 26.6 Hz. Solid line is a fitted Lorentzian curve. e Modulation depth measured in the
vicinity of the second harmonic, ~158.3 Hz. Solid line is a fitted Lorentzian curve. Error bars in d, e represent a width of one standard deviation about the
mean of the measured sample set, which contains three measurements for each frequency point
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magnitude higher relative to previously reported value for
PVDF–TrFE–CFE film prepared via solution-based processing.
We attribute this difference to lower material thickness and both
heat-treatment and stretching processes which are present during
the fibre drawing process. Higher coefficient provides the ability
to achieve much higher strains for a given field. We expect even
higher strain rates to be potentially achievable by changing the
fibre design such that the P(VDF–TrFE–CFE) layer would be
constrained in the lateral direction by a softer material, for
example low density polyethylene or a thermoplastic elastomer
which can have a Young’s modulus at least one order of
magnitude smaller than polycarbonate. The driving voltage
required to achieve a given strain can also be further lowered
by adopting a stacked-layer geometry6.

Characterization of fibre MEMS in bending-mode. The preform
design space permits the placement of the electromechanical
transducer anywhere within its cross-section. By deliberately
introducing this layer off-centre, asymmetric strain fields can be
induced in the fibre, leading to the emergence of transverse-
deflection bending modes. We investigate this phenomenon using
contact profilometry. The experimental setup is shown in Fig. 2a,
bearing resemblance to the HVAFM measurement setup but with
cantilever tips designed for larger displacements. For an applied
voltage of 200 V DC and stylus pressure of 2 mg, transverse
deflection (δ) is measured along the axial direction (x) of a 3.5 cm
fibre fixed flat on one end to a silicon wafer. The measurement is
repeated on several fibres of the same length and the results are
shown in Fig. 2d. The deflection profile of the fibre is well-fit into
a quadratic shape as expected from the following beam deflection
case:

δ ¼ Mx2

2EI
ð2Þ

where M is the bending moment, E is Young’s modulus, and I is
the moment of inertia of the cross-section about its neutral axis.
This quadratic profile is originated from the balancing of the
bending moment generated by the misfit strain (i.e., due to
electrostrictive strain) against the opposing moment offered by
the fibre cladding. A maximum transverse displacement of ~ 80
µm is measured for a fibre fixed on one end and with a free length
of 3.5 cm; the fibre is observed to bend opposite to the face
containing the electrostrictive device (see Supplementary
Movie 1). We use beam deflection equations to derive the elec-
trostriction coefficient M31 for PVDF-TrFE-CFE material, which
is found to be around ~ 10−17 m2·V−2 (Supplementary Fig. 2).
This asymmetry in the placement of the electrostrictive device is
shown to be key in inducing a bending behavior that resembles a
cantilever.

Resonant mode of fibre MEMS. The above-described modes of
operation both utilized DC driving fields. By driving the fibre
under AC voltage, the electromechanical energy conversion
process becomes frequency-dependent and can take advantage of
resonance effects. Unlike purely longitudinal vibrations which
would be expected from a free-standing electrostrictive layer, here
by sandwiching the electrostrictive material between cladding
material in a fibre, we shift the direction of vibrations and pro-
duce cantilever-like flexible MEMS device that can oscillate at
resonance frequencies of the fibre. To this end, the one edge of
the fibre is fixed while another is allowed to vibrate. The reso-
nance characteristics, which are based on the fibre dimensions,
are modeled using beam harmonics equations (see Methods
section). Since the fibre-drawing technique allows us to alter fibre
dimensions during the fabrication stage, we can characterize a

range of fibre sizes and produce flexible fibre MEMS resonators
over a broad spectrum of frequencies. We explore the resonance
effect with several fibres of fixed lengths and distinct cross-
sectional dimensions and show how the resonance frequency
increases with increasing fibre width (Fig. 3a, see also Supple-
mentary Movie 2). In particular, the amplitude of the oscillations
at 18 Hz (on-resonance) and 30 Hz (off-resonance) frequency
points can be clearly observed from Fig. 3b (see also Supple-
mentary Movie 3). It is also possible to control the magnitude of
the oscillation from nm-scale to cm-scale by altering the mag-
nitude of the applied electric field. We demonstrate the tuning of
the resonance amplitude for a 7 cm-long fibre by changing the
voltage between 0 and 350 V for a fixed resonance frequency of
20 Hz (see Supplementary Movie 4).

Having established that the strain in the electrostrictive layer
results in transverse deflection of the fibre, we proceed to
illustrate and characterize the harmonic properties of an
integrated photonic MEMS fibre system—a fibre that contains
both a Bragg mirror and an electrostrictive device. This system is
demonstrated in the context of optical beam deflection. Here the
fibre plays a dual role—the Bragg structure reflects an incoming
optical beam, while the MEMS structure controls the deflection
angle. To measure the deflection of the incident optical beam, a
laser is directed onto the face of a fibre that contains a photonic
mirror (i.e., a Bragg layers designed to reflect at the wavelengths
of 1300–1800 nm). The signal reflected back from the fibre
surface is detected by a photodetector and recorded with an
oscilloscope. The fibre is driven by an external high voltage power
amplifier and function generator (Fig. 3c, see Methods section for
details). The measurement is performed by maintaining a fixed
applied voltage amplitude and sweeping the voltage driving
frequency while recording the photocurrent at the detector. The
optical beam deflection (and associated optical flux incident at the
detector) is registered as a modulation depth ((Vmax−Vmin)/Vavg)
in the photocurrent at the detector. The greatest modulation
depth coincides with the resonance frequency point, where the
fibre vibration amplitude is the largest. We measure a maximum
modulation depth of 22.5% at the first harmonic (Fig. 3d) with an
applied voltage of 90 V, and 2.5% at the second harmonic
(Fig. 3e) with an applied voltage of 150 V. Note that although the
magnitude of the modulation depth is affected by the distance
between the fibre and the detector, the Lorentzian line shape
which characterizes the harmonic behavior of the fibre is
invariant to the experimental setup. The experimentally extracted
first and second harmonic frequencies were 26.58± 0.02(2σ) (Hz)
and 158.3± 0.1(2σ) (Hz), respectively, and they are shown to fall
within the predicted values of 24.3± 2 (Hz) and 152± 10 (Hz),
respectively. The harmonic frequencies were predicted using
solutions from the well-known Euler–Bernoulli beam theory
(see Methods section for details), and the range of values in the
predicted harmonic frequencies is dominated by the uncertainty
in the Young’s modulus of the composite fibres.

The above-described work focused on individual fibre
characterization and highlights the novelty in the degrees of
freedom available in the fibre design. Extending the individual
fibre case to a woven structure or fibre array further extends the
capabilities to the level of an integrated fibre system, paving the
way towards more complex functionality. We illustrate this
potential by embedding fibres in a polydimethylsiloxane (PDMS)
matrix and using the resulting composite (Supplementary Fig. 3a)
to deflect an incident optical beam at low frequencies. Modula-
tion depth is measured using the previously described single fibre
setup, and incident light is focused on the centre of the fibre
array. The output of the photodetector over time for a driving
frequency of 1 Hz and an applied voltage of 300 V is shown in the
lower half of Supplementary Fig. 3b. The top half is an illustration
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of the relationship between driving frequency and fibre response
frequency for an electrostrictive material, showing the character-
istic frequency-doubling effect that can distinguish electrostric-
tion from other forms of electromechanical transduction, such as
piezoelectricity9.

Besides the surface modulation, we also show the potential for
direct modulation of the sub-wavelength photonic cavity in the
fibre. Application of an electric field results in spectral tuning
from the direct compression (or expansion) of the multilayer
structure (Supplementary Fig. 4). The wavelength shift is mainly
influenced by the stiffness of the cladding material. Larger
spectral shifts can be achieved by employing more elastic cladding
materials such as elastomers and can be useful for the
applications such as dynamical color tuning or spectral filtering.

Discussion
We note several potential future research directions and potential
applications based on the unique fibre MEMS features. First, the
axially symmetric and indefinitely long fibre platform can open
the door for MEMS textiles, initiating novel opportunities in
advanced functional fabrics, such as holographic display tech-
nologies17. Furthermore, electrically controllable microfluidic
pumps18 can be enabled by integrating electrostrictive polymer
devices with microfluidic channels in fibres19, which present
novel on-demand material (e.g., drug, solvent) release schemes in
textiles.20 Second, the realization of long, thin, and flexible fibres
with electromechanical transduction capabilities could enable
new sensing and actuation applications in inaccessible regions or
over extended lengths. For instance, the demonstrated actuation
mechanism can provide the ability to navigate through the
branches of narrow lumens of the body. Furthermore, other
functions (such as sensing) can be integrated into the same fibre
while keeping the diameter of the device as low as required paves
the way for the development of novel types of steerable catheters.
Third, the ability to assemble fibre devices into grids or arrays
makes them particularly well-suited for the coverage of large non-
planar surfaces11,21, an important feature for applications such as
solar energy harvesting systems22,23. For instance, flexible fibre
MEMS with low power consumption can be embedded into
flexible polymeric solar panels with integrated solar tracking
capabilities. Finally, monolithic integration of electrodes into the
fibre enables straightforward connection with external electrical
circuits24. This could enable electrically controllable artificial
muscles which resemble human muscles, especially if elastomeric
materials are utilized in the cladding of fibre MEMS.

We have demonstrated the first integration of a relaxor fer-
roelectric polymer in a thermally drawn fibre for electro-
mechanical actuation. Strain levels of >8% are measured for P
(VDF–TrFE–CFE) material in the fibre device using high voltage
atomic force microscopy and a maximum transverse deflection of
80 µm is demonstrated for 3.5 cm-long fibre under an applied DC
voltage of 200 V via contact profilometry. The potential of this
approach to realize complex electromechanical systems in fibres is
illustrated by the fabrication of a hybrid photonic electrostrictive
device capable of deflecting a laser beam reflecting off the surface
of the fibre. Deflection of incident light through electric field
induced fibre actuation is demonstrated up to the second har-
monic frequency of the fibre at 158.3 Hz.

Methods
Electrostrictive fibre fabrication. The P(VDF–TrFE–CFE) terpolymer is pur-
chased in powder form from Piezotech S.A.S. (France) and melt-pressed at 155 °C
under 110 bars to form 300 µm-thick films. It is then assembled into a preform
with 300 μm-thick CPE films, eutectic Bi58Sn42 electrodes (TM= 138 °C, Indium
Corporation), and PC bar cladding (McMaster) using traditional milling techni-
ques. The preform is consolidated in a vacuum oven at 185 °C for 20 min to
remove trapped gas and form high quality interfaces. This final preform is 38 mm

wide, 11 mm thick and 200 mm long. It is then thermally drawn in a three-zone
vertical tube furnace with the top-zone temperature at 150 °C, the middle-zone
temperature at 230 °C, and the bottom-zone temperature at 110 °C. The preform is
fed into the furnace at a speed of 1 mmmin−1, and the fibre was drawn at a speed
of 0.8–2.0 m s−1. The tension during the draw is 100–200 g, corresponding to an
average stress of 2–4 kPa. With this procedure, meters of fibres are drawn with
thicknesses ranging from 240 to 460 μm (widths ranged from 680 μm to 1.3 mm).

High voltage atomic force microscopy. HVAFM measurements is performed
with a Dimension 3100 Scanning Probe Microscope in contact mode with
Nanoscope V control station (Veeco). The AFM tip contacts on the fibre surface at
a frequency of 1 Hz, with the slow-axis scan disabled. The fibre is connected to an
external DC power source (Stanford Research PS350). There is an additional
connection between DC power source and AFM to record synchronized data of
voltage and deflection.

Contact profilometry. Deflection measurements are performed with a Sloan
Technology Corporation Dektak III surface profilometer using a 2 mg stylus
pressure. The fibre is fixed in epoxy on one end to a silicon wafer and the pro-
filometer scanned a 5 mm line in a direction perpendicular to the axis of the fibre
(i.e., across its width). The fibre is connected to an external DC power source
(Stanford Research PS350).

Optical measurement. A laser (ANDO AQ4321D—tunable laser with wavelength
range of 1520–1620 nm) is directed on the Bragg surface of the fibre. The signal
reflected back from the fibre is detected by a photodetector (Thorlabs PDA10CS
amplified InGaAs photodetector 700–1800 nm) and recorded with an oscilloscope
connected to a computer. The fibre and photodetector are placed at a distance
d= 11 cm apart, so that the photodetector is in the image plane of the fibre; for the
fibre array in PDMS, the distance d= 40 cm. For DC measurements, the fibre is
connected to a DC high voltage power supply (Stanford Research PS350). For AC
measurements, we use a high voltage amplifier (TREK 10/10B) connected to a
function generator. Modulation depth is calculated as signal amplitude divided by
mean voltage, and then reported as a percentage.

fibre Array in polydimethylsiloxane. Polydimethylsiloxane (PDMS) is purchased
from Dow Corning as two-part Sylgard 184 Silicone Elastomer Kit. Base and curing
agent are mixed in a ratio of 10:1 and placed under vacuum for 20 min to remove
air bubbles. The mix is then poured over fibres that had been overlaid to form an
array, and then cured in an over at 80 °C for 1.5 h.

Analytical derivation of the beam harmonic frequencies. The analytical deri-
vation is based on the Euler-Bernoulli beam theory. Applying this theory to our
fibre, the n-th harmonic frequency of the fibre is given by fn ¼ xn=ð2πL2Þ½ � ffiffiffiffiffiffiffiffiffiffi

EI=λ
p

,
where L= 5.8×10−2 (m) is the fibre free length, E= 2.3± 0.3 GPa is Polycarbonate
Young’s modulus, I = 4.2×10−15 (m4) is the fibre second moment of area,
λ = 4.6×10−4 (kg m−1) is the fibre mass per unit length, and x1≈3.51 and x2≈22.03.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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