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More effective use of targeted anti-cancer drugs depends on elucidating the connection

between the molecular states induced by drug treatment and the cellular phenotypes con-

trolled by these states, such as cytostasis and death. This is particularly true when mutation

of a single gene is inadequate as a predictor of drug response. The current paper describes a

data set of ~600 drug cell line pairs collected as part of the NIH LINCS Program (http://www.

lincsproject.org/) in which molecular data (reduced dimensionality transcript L1000 profiles)

were recorded across dose and time in parallel with phenotypic data on cellular cytostasis

and cytotoxicity. We report that transcriptional and phenotypic responses correlate with each

other in general, but whereas inhibitors of chaperones and cell cycle kinases induce similar

transcriptional changes across cell lines, changes induced by drugs that inhibit intra-cellular

signaling kinases are cell-type specific. In some drug/cell line pairs significant changes in

transcription are observed without a change in cell growth or survival; analysis of such pairs

identifies drug equivalence classes and, in one case, synergistic drug interactions. In this case,

synergy involves cell-type specific suppression of an adaptive drug response.
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Understanding why some tumor cells respond to therapy
and others do not is essential for advancing precision
cancer care. Pre-clinical cell line studies typically inves-

tigate the connection between pre-treatment cell state or genotype
and drug sensitivity and resistance1–4. This approach has proven
most effective when oncogenic drivers are themselves targeted by
drugs. For example, the presence of EGFRL858R (and related
mutations) in non-small cell lung cancer (NSLC) is predictive of
responsiveness to gefitinib, a drug that binds with high affinity to
mutant EFGR5,6; the presence of an EML4-ALK fusion protein in
NSLC is predictive of responsiveness to crizotinib, which inhibits
the ALK4 kinase domain7; and the presence of a mutant
BRAFV600E kinase in melanoma is predictive of responsiveness to
the BRAF inhibitors vemurafenib and dabrafenib8,9. The Cancer
Genome Atlas (TCGA) project and similar efforts are attempting
to identify other druggable cancer mutations through molecular
profiling of human cancers10,11, but there is growing evidence
that, for many types of tumors and drugs, there exists no simple

genetic predictor of response. For example, genes encoding
members of the Akt/PI3K/mTOR pathway are commonly
mutated in breast cancer, but the presence of these mutations is a
poor predictor of responsiveness to inhibitors of Akt/PI3K/
mTOR kinases12.

A complementary approach, pioneered by the Connectivity
Map (CMap)13 and currently being extended by the NIH LINCS
Program, involves collecting molecular data from cells following
exposure to drugs and other perturbations and then mining this
information for insight into response mechanism. In this paper
we report the collection of ~8000 gene expression signatures (in
triplicate) from a genetically diverse set of six breast cancer cells
exposed to ~100 small molecule drugs by using the low-cost,
second generation, CMap technology L1000 transcriptomic pro-
filing (https://clue.io/lincs)14,15; in parallel, we measured drug
sensitivity at a phenotypic level using growth rate (GR) inhibi-
tion16,17, a method that corrects for the confounding effects of
variability in cell division rates, plating density, and media
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Fig. 1 Drug responses based on transcriptional signatures can be cell type specific or universal. A network of consistent L1000 signatures (SCS> 1.3)
scored using the characteristic direction approach. Each node represents a unique perturbation (a combination of drug, cell line, time point and
concentration) and edges are drawn between perturbations having a cosine distance in the lower 2-percentile. Color is based on cluster identity, size
denotes concentration, and shape denotes the time point. For each cluster, a box labeled with the cluster number illustrates the distribution of the
perturbation by cell line (left bar) and drug target class (right bar). Target classes are assigned based on the nominal targets of a drug and do not consider
potential poly-pharmacology. The drugs assigned to each class are listed in Supplementary Data 1. An interactive version of this figure is available at http://
amp.pharm.mssm.edu/LJP
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composition. This data set differs from previous data sets of this
type by including transcript data for each drug/cell line pair
across dose and time, as well as six-point GR-based
dose–response curves based on measurement of viable cell
number; GR metrics have higher information content than con-
ventional IC50 or Emax metrics, and increase the reproducibility of
drug-response data2,16–19.

On the basis of previously published information, we expected
that each cell line would exhibit a significant phenotypic response
(e.g., cytostasis or death) to only a subset of drugs in our test
set1–4. The key question was therefore whether cell lines that
respond phenotypically to a particular drug do so in a similar way
at a molecular level. We found that this was true for some classes
of drug, such as inhibitors of cell-cycle kinases: cell lines had very
similar sensitivities to these drugs at the phenotypic level and
their L1000 signatures were also similar. In contrast, L1000
profiles for drugs such as inhibitors of MAPK or PI3K/Akt sig-
naling, or receptor tyrosine kinases (RTKs) were cell-type specific,
even among cell lines in which phenotypic responses were strong.
We also identified sets of drug/cell line pairs in which significant
changes in transcription were detected without any apparent
effect on cell growth. To understand how this might arise we
performed a follow-on study showing that BT-20 cells are
responsive to PI3K inhibition at a molecular level but that this
does not induce cell arrest or death due to the operation of an

adaptive resistance pathway. The adaptive pathway can be
blocked by several different drugs whose L1000 signatures co-
cluster. Thus, the application of inexpensive, high-throughput
transcript profiling combined with cellular phenotypic measure-
ments reveals similarities and differences in responsiveness to
anti-cancer drugs depending on genotype and, at least in some
cases, can guide the design of effective drug combinations.

Results
High-dimensional drug response profiling. Breast cancer cell
lines were selected from the three major subtypes (HER2amp,
HR+, and triple-negative/TNBC12) plus non-malignant MCF 10A
cells. A set of 109 investigational and clinically approved drugs
enriched in kinase inhibitors was selected to represent “targeted”
anti-cancer agents (Supplementary Data 1). Cells were exposed to
these drugs at six concentrations over a 250-fold range and
samples were collected for L1000 transcriptional profiling at 3
and 24 h. Cell number was measured by imaging at 0 and 72 h
and phenotypic responses computed using growth rate inhibition
(GR) metrics16,20,21 (Supplementary Data 2). L1000 profiling
measures the levels of 978 “landmark” transcripts in a bead-based
Luminex format14,15. The expression levels of other genes can be
inferred by a computational model trained on transcriptomic data
from the Gene Expression Omnibus (see https://clue.io/lincs for
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Fig. 2 Variation of molecular and phenotypic responses by cell line and concentration. a Dose–response curves across six cell lines for a subset of drugs
that exhibit significant responses at the level of L1000 signature and phenotype. A GR value of one represents growth at the same rate as the untreated
control, a value of zero denotes a complete cytostatic response, and a negative value denotes a cytotoxic response. b Differences in characteristic
directions with increase in drug dose as scored by the cosine distance between the characteristic directions of L1000 signatures. Data for ECM inhibitors
between 1.11 and 3.33 µM are shown in yellow (left panel) and receptor tyrosine kinase inhibitors between 3.33 and 10 µM are shown in red (middle panel).
For comparison, the data for all other inhibitor classes between 3.33 and 10 µM are shown (right panel). Each curve is a smooth density plot by class of
drug target. Each distribution is based on an average of 44, but at least 20, different conditions that generally comprises all cell lines. The black line in all
panels shows the distribution of all perturbations, colored lines show the distribution for each class of drug targets as indicated in the legend, and dashed
gray line the distribution for angles between drugs of different classes
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details). Differential expression analysis was performed on the
landmark genes themselves using the “Characteristic Direction”
method22; a multivariate geometrical approach in which each
perturbation is associated with a vector in the 978 dimensions of
the L1000 landmark genes. When L1000 profiles differ, char-
acteristic direction vectors point in different directions and the
magnitude of the difference can be quantified by the angle
between vectors. With large sets of expression profiles, the
characteristic direction method outperforms more conventional
univariate approaches22,23. To account for experimental noise,
L1000 signatures were collected in triplicate for each condition
and a signature consistency score (SCS) was computed by
assessing the degree of alignment of characteristic direction vec-
tors for replicates relative to randomly chosen vectors. We found
the SCS to be an effective means for quantifying the reliability of a
transcriptional response normalized by background experimental
noise (see Methods for details). SCS values correlated to a modest
degree with the amplitude of the characteristic direction vector
(the effect size; Spearman’s ρ= −0.32, p<10–30).

Clustering characteristic directions based on the cosine
distance (with k= 20 clusters) distinguished responses by drug
class, cell line, and time point (Fig. 1). Out of 7825 drug-cell line
pairs tested, we included only the subset (2864; 37%) whose
L1000 profiles were associated with an SCS> 1.3 value; this
served to filter out noisy, low confidence data. Changes in
transcription associated with each cluster were interpreted by
inferring the full transcriptome (~22,000 genes; https://clue.io/

lincs), averaging the results across all perturbations in the cluster
and applying the gene set enrichment tool Enrichr24 to find terms
enriched in up and down regulated genes. To facilitate data
exploration, we developed an interactive, on-line tool (http://amp.
pharm.mssm.edu/LJP).; in this tool, signatures are tagged with
user-selected metadata, drug identity for example, and external
transcript signatures are projected onto the network.

Inspection of cell lines and drugs in the most highly populated
clusters revealed two patterns of response. In one pattern,
multiple cell lines and one or more drugs were found in each
cluster. For example, cluster 13 comprised t= 3 h signatures from
all six cell lines exposed to drugs targeting protein chaperones,
and clusters 19 and 20 comprised cell lines exposed to inhibitors
of cell cycle kinases or components of the DNA repair machinery
(Fig. 1, Supplementary Fig. 1). Three clusters comprised the same
set of drugs, but assayed at a later time point (t= 24 h; clusters 12
and respectively 17/18); signatures from all six cell lines were
once again found in these clusters. Enrichment analysis showed
that components of the MAPK and GSK3β signaling cascades
were downregulated in the t= 3 h (clusters 19/20), whereas
cyclin-dependent kinases and genes involved in mitosis were
downregulated at t= 24 h (clusters 17/18), across all six cell lines.
Inhibitors of chaperones and cell cycle kinases were also broadly
active at a phenotypic level (Supplementary Fig. 1): for example,
the CDK2/5/7 inhibitor PHA-793887 (cluster 18) elicited a near-
identical mixed cytostatic/cytotoxic response in all cell lines
whereas the HSP 90 inhibitor NVP-AUY922/luminespib (cluster
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Fig. 3 Variation in L1000 signature and phenotypic response with drug class. a Boxplots of the distributions of the coefficient of variation of the signature
consistency score at 24 h, a measure of differences in L1000 signature at all tested doses, by drug target class sorted by the median across all six cell lines
(left). Boxplots of the distribution of the standard deviation of the GRAOC (a measure of phenotypic response across all doses for a particular drug) by drug
class sorted by the median across all six cell lines (right). Black lines represent the median, boxes the interquartile range, and upper and lower lines the 5
and 95% quantiles. b Distribution of standard variation of protein (left) and phospho-peptide (right) levels across six cell lines as measured by shotgun
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ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01383-w

4 NATURE COMMUNICATIONS |8:  1186 |DOI: 10.1038/s41467-017-01383-w |www.nature.com/naturecommunications

https://clue.io/lincs
https://clue.io/lincs
http://amp.pharm.mssm.edu/LJP
http://amp.pharm.mssm.edu/LJP
www.nature.com/naturecommunications


12) was uniformly cytostatic (Fig. 2a). We conclude that
responses of different cell lines to drugs targeting chaperones,
cell cycle kinases, and components of the DNA repair machinery
are frequently similar at a molecular level.

A second pattern of response was observed for drugs targeting
signaling kinases, such as the PI3K inhibitor alpelisib, MEK
inhibitor trametinib, or ErbB inhibitor neratinib. In these cases,
clusters frequently comprised (or were dominated by) signatures
from one or two cell lines and multiple drugs having closely
related targets (clusters 2–11). Phenotypically, responses to such
drugs varied with cell line: for alpelisib, this involved differences
in potency (GR50), whereas for trametinib, maximum effect
(GRmax) varied across cell lines. Even among cell lines that
responded similarly at a phenotypic level (for example Hs 578T
and MCF 10A treated with alpelisib), the characteristic directions
of L1000 signatures clustered the perturbations differently
(clusters 5 and 6, respectively). We conclude that responses of
cell lines to signal transduction kinase inhibitors differ at a
molecular level.

The effects of exposure to drugs at high concentrations might
either represent an intensification of responses observed at low
concentrations or, alternatively, they might differ qualitatively.
Across all drugs and cell lines we observed that with rising dose,
the amplitude of the characteristic direction vector weakly but
significantly correlated with rising drug concentration (the
Spearman correlation factor ranged from 0.13 to 0.32), while
the angle of the characteristic direction vector changed only

modestly (Supplementary Fig. 2b). Inhibitors of extracellular
matrix (ECM) receptors and receptor tyrosine kinases (RTKs)
were an exception to this rule: for these drugs, the angle of the
characteristic direction vector changed with dose to a greater
degree than for other drugs. For example, a significant change in
the distribution of cosine distances was observed for ECM
receptor inhibitors as concentration increased from 1.11 to 3.3
µM (Fig. 2b, left) or for RTK inhibitors from 3.3 to 10 µM
(Fig. 2b, middle) which stands in contrast to the remainder of the
drugs (Fig. 2b, right). Moreover, clusters 14, 15, were 17 were
highly enriched in drug/cell line pairs corresponding to the
highest dose tested (10 µM) for multiple RTK and ECM receptor
inhibitors (Supplementary Fig. 1; p< 0.005, binominal test).
These data suggest that responses to high and low doses of RTK
and ECM inhibitors differ at a molecular level and we hypothesize
that the selectivity of such drugs is lost at high doses, presumably
because they bind to multiple targets.

Cell type-specific responses of kinase inhibitors. How do var-
iations in molecular responses and drug-induced phenotypes
compare? Answering this question is not straightforward, since
the two types of data have different biological meanings and vary
in different ways. We settled on a simple comparison in which
variation in phenotype was assessed by the standard deviation
(SD) of the GRAOC (GR area over the curve), which captures
differences in both potency and efficacy (Fig. 3a), and variation in
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L1000 signatures was assessed by the coefficient of variation (CV)
of the SCS. The statistical power of this analysis is limited by
having only six cell lines per drug, but it is informative when
drugs are consolidated into classes. Sorting the two types of data

by the median levels of variability (black ticks in Fig. 3a) revealed
a consistent trend: inhibitors of cyclin dependent kinases, cha-
perones, and DNA repair kinases varied little either in
L1000 signature or phenotypic responses across cell lines whereas
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inhibitors of signal transduction kinases exhibited substantially
greater variation. By both measures, ErbB, MAPK, and MEK/
ERK inhibitors were the most variable of all (Fig. 3a). This sup-
ports our interpretation of Fig. 1: even when cells respond to an
inhibitor of a signal transduction kinase at a phenotypic level, the
underlying molecular events differ to a greater degree than for
other classes of anti-cancer drugs.

We also observed that, by cell type, responsiveness to RTK
inhibitors was more variable than for any other class of drugs, but
molecular and phenotypic responses were correlated (Spearman’s
ρ=–0.65, p<10−30). Whole-cell shotgun mass spectrometry
showed that many intracellular signaling kinases were present
at relatively high levels in their active, phosphorylated state in all
cell lines, but in contrast, RTKs had variable abundance and
degree of phosphorylation across lines (Fig. 3b). Cells sensitive to
a specific RTK inhibitor generally expressed the targeted receptor
at a higher level relative to other cell lines. In contrast, no such
correlation was evident for intracellular signaling kinases, which
were expressed and active at relatively constant levels across cell
lines. For example, Hs 578T cells expressed high levels of PDGF
receptor and were sensitive to nintedanib (and polyselective
inhibitor of PDGF/VEGF/FGF receptors), whereas MCF7 cells
expressed IGF1R and were sensitive to the IGF1R inhibitors
linsitinib and NVP-AEW541 (Supplementary Fig. 2a). High RTK
abundance was not sufficient for sensitivity at a phenotypic level,
as illustrated by BT-20 cells, which express high ErbB1 levels, but
were nonetheless resistant at a phenotypic level to the ErbB
inhibitors neratinib and lapatinib. These data suggest that RTK
expression is necessary, but not sufficient, for responsiveness to
RTK inhibitors; we have previously demonstrated that the same is
true of receptor level and ligand response25. However, additional
studies involving more cell lines will be necessary to determine
the statistical significance of this correlation.

Identification of synergistic drug combinations. The simplest
way to conceptualize the relationship between L1000 and phe-
notypic data across drugs, concentrations, and cell lines is as a
two-by-two matrix with four response classes: (I) cell line/per-
turbation pairs with no effect by either measure, representing
drug resistance; (II) pairs in which responses were observed at
both molecular and phenotypic levels, representing drug sensi-
tivity; (III) pairs with measurable phenotypic response, but weak
or noisy L1000 signature; and (IV) pairs with substantial changes
in L1000 signature, but little or no discernable effect on cell
growth. To divide the landscape of SCS and GR values (which are
unimodally distributed) into quadrants, we set GR= 0.66 and
SCS= 1.3 (Fig. 4). Under these conditions, Class I and II
responses were roughly equally probable both for the data set
overall and for each cell line and drug class (see Supplementary
Data 3 and 4).

Class III responses, representing ~16% of cell line-perturbation
pairs, represent cases in which no significant change was detected
by L1000 assay, even when significant changes in phenotype were
observed. MDA-MB-231 and MCF7 cells were enriched in Class
III responses, but when we re-examined the underlying L1000

data, we observed a high level of sample-to-sample variability. We
therefore suspect that many Class III responses in our data set
arise from poor experimental repeatability (and thus a low SCS
score; Fig. 4c and Supplementary Fig. 3a). However, a few drugs
were enriched in Class III responses across all cell lines, including
cell cycle inhibitors (e.g., barasertib, tozasertib) and extracellular
matrix inhibitors (e.g., dasatinib, XMD16–144, PF-431396, PF-
562271). These may represent cases in which the L1000 assay
does not adequately measure changes in cell state (Fig. 4c and
Supplementary Fig. 3b).

Class IV responses represent situations in which a signaling
pathway was functional as reflected by a substantial change in
L1000 signature, but there was little or no effect of targeting the
pathway on cell growth (GR values were high). These responses
were the rarest, all, representing only ~3% of drug/cell line pairs.
This class was enriched in BT-20 and Hs 578T cell lines and
drugs targeting RTKs and the MEK/ERK pathways, which are
known to play an important role in the proliferation of breast
cancer cells (Fig. 4c). BT-20 cells are known to respond strongly
to ErbB ligands such as EGF or heregulin25 and L1000 data
showed that inhibitors of ErbB receptors or MAP kinases (e.g.,
lapatinib, trametinib) elicited substantial changes in
L1000 signatures (Fig. 4d). The effects of lapatinib or trametinib
on the growth of BT-20 cells was much weaker than for other cell
lines however.

We reasoned that weak phenotypic responses to MAPK or
ErbB inhibitors might be due to the presence in BT-20 cells of an
activating mutation in the kinase domain of the PI3Kα signaling
kinase. Such mutations are common in breast cancer and are
known to be powerful oncogenic drivers10,11,26. However, BT-20
cells exhibited only a partial cytostatic response to the PI3K
inhibitor alpelisib with no cell death observed even at the highest
drug concentration tested. We therefore asked whether MAPK
signaling might play a role in rescuing BT-20 cells from PI3K
inhibitors and vice versa. This is precisely what we observed:
when BT-20 cells were treated with a combination of alpelisib and
trametinib the effect of the two drugs was synergistic (Fig. 5) as
quantified by viable cell number and excess over Bliss
independence (GREOB= 0.56± 0.07; p< 0.05 by t-test; Fig. 5a,
left; Supplementary Fig. 4a, left). More dramatically, drugs used in
combination elicited a qualitative shift from growth rate
reduction to cell death, as evidenced by negative GR values over
a wide range of drug concentrations.

The characteristic direction associated with trametinib expo-
sure in BT-20 cells co-clustered with that of the ErbB inhibitors
neratinib and lapatinib (Fig. 5b; red and green circles) and the Src
kinase inhibitor saracatinib (black circles). In addition, multiple
drugs in the PI3K, AKT, and mTOR classes co-clustered with
alpelisib. We asked whether drugs that co-cluster by
L1000 signature could substitute for each other in drug
combinations as judged by their effects on cell viability. We
found that this was true both for drugs that shared a characteristic
direction with alpelisib and for drugs that shared a characteristic
direction with trametinib as quantified both by synergy (GREOB)
and a switch from partial growth arrest to cell death (Fig. 5a

Fig. 5 Drugs falling into Class IV are synergistic with drugs targeting the PI3K pathway. a, b GR values for individual drug combinations a or over a range of
combinations b and excess over Bliss scores (bottom) for 72 h exposure of BT-20 cells to combinations of the PI3K inhibitor alpelisib with either the ErbB
inhibitors lapatinib (left) or neratinib (middle) or with the MEK inhibitor trametinib (right). Histograms in a show the mean of three biological repeats and
error bars indicate the standard error of the mean; p-value is based on a t-test. Heatmaps in b show data from one out of three biological replicates. c
Network of significant perturbations (SCS> 1.3) for BT-20 cells. Each node is a unique perturbation (combination of drug, time point, and concentration)
and edges are drawn between perturbations with a cosine distance in the lower 5-percentile. Nodes are colored by drugs targeting receptors, the MAPK
proteins or components of the PI3K/AKT pathways (left) or the GR value of the response (right). Node size reflects drug concentration. d Schematic of the
converging effect of drug treatments and illustration of drug equivalence classes in BT-20
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middle and right, Supplementary Fig. 4a middle and right,
Supplementary Fig. 4b). For example, the GREOB for alpelisib plus
lapatinib or neratinib at the concentrations used in Fig. 5a is 0.64
± 0.12 and 0.65± 0.12 respectively (p< 0.05, t-test based on GR
values). From these data we conclude that co-clustering of
characteristic directions highlights compounds that lie within an
equivalence class, making it possible to identify multiple
combinations of drugs having similar synergistic effects on cell
growth (Fig. 5c).

Mechanisms of drug synergy. Several recent papers have inves-
tigated how to best identify synergistic drug combinations27–31.
In the case of BT-20 cells, we found that synergy was sometimes
associated with combinations of drugs from different response
clusters (for example PI3K/AKT inhibitors with EGFR/MAPK
inhibitors as discussed above), but such non-overlapping or
“orthogonal” transcriptional signatures did not represent the only
way to obtain synergy. For example, in Hs 578T cells, the Akt
inhibitor A443654 synergized with both the ErbB inhibitor ner-
atinib and cMET/VEGFR inhibitor foretinib, both of which
clustered away from A443654 with respect to L1000 signatures
and therefore represent examples of potential “synergistic
orthogonality.” However, the combination of neratinib and
foretinib was also synergistic, even though the L1000 signatures
associated with these drugs co-clustered and were therefore
similar at a molecular level (Supplementary Fig. 5). We conclude
that synergy can be observed with combinations of drugs that
induce both similar and distinct changes in gene expression,
emphasizing our limited understanding of how drug synergy
arises.

To investigate the molecular basis of synergy in Class IV
responses in BT-20 cells we assayed nuclear translocation of the
FoxO3a transcription factor, which (i) is regulated by PI3K,
MAPK, and ErbB signaling cascades, (ii) serves as measure of

drug response at a single-cell level, and (iii) regulates key aspects
of breast cancer physiology such as cell cycle arrest and
apoptosis32–34. We found that Alpelisib induced nuclear
translocation of FoxO3a, as judged by immunofluorescence,
reflecting relief of FoxO3a-mediated gene expression. The
magnitude of FoxO3a activation by alpelisib was initially high,
but then decreased over a 48 h period, presumably due to the
previously described phenomenon in breast cancer cells of
adaptation to PI3K inhibiton35. Lapatinib and neratinib alone
had little effect on FoxO3a activity, but when either drug was
combined with the PI3K/Akt inhibitor alpelisib, FoxO3a activa-
tion was sustained (Fig. 6a, b) and cytostasis enhanced.
Trametinib had similar effects as ErbB inhibitors, but the effect
on FoxO3a was less strong (Fig. 6c). Thus, inhibition of a time-
dependent adaptive response mediated by, or correlated with,
FoxO3a translocation, might be the basis of synergy between
PI3K and MAPK inhibitors in BT-20 cells. Virtual Inference of
Protein activity by Enriched Regulon (VIPER)36 identified
FoxO3a as highly up-regulated following treatment of BT-20
cells with inhibitors of either the PI3K/Akt/mTOR pathway or
ErbB receptors, consistent with a role for FoxO3a as a “master
regulator”37 of BT-20 responsiveness to these drugs.

The ErbB inhibitors lapatinib and neratinib inhibited MAPK,
but not PI3K, signaling in BT-20 cells (Supplementary Fig. 6a),
potentially explaining why ErbB and MAPK inhibitors lie in an
equivalence class. Inhibition of MAPK signaling was also
transient, which may explain the limited effect of lapatinib and
neratinib as single agents. Adaptive responses are often complex
at a molecular level38, but L1000 data suggest that exposure of
BT-20 cells to alpelisib results in significant upregulation of the
lapatinib targets ErbB1 and ErbB3 (Supplementary Fig. 7), which
could be an underlying cause of adaptation. This may also explain
why lapatinib and neratinib are substantially more effective than
trametinib at preventing recovery of pAKT signaling
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(Supplementary Fig. 6b), and thus, why synergy between alpelisib
and ErbB inhibitors is so strong. From these data we conclude
that discordance between early transcriptional changes and
phenotypic responses could prove a generally useful way to
identify cases of counter-therapeutic drug adaptation, drugs that
can block or overcome such adaptation and phenotypic
equivalence across classes of drugs.

Discussion
In this paper we describe the parallel acquisition of data on drug
response at a phenotypic level, as quantified using growth rate
inhibition (GR) data16, and at a molecular level, as quantified by
L1000 transcript signatures14,15, across ~600 drug-cell line pairs
and 8000 conditions. The data provide insight into connections
between drug-induced changes in intracellular signaling and
phenotypes such as cell growth and survival. Because such data
have many potential uses, only some of which are explored in this
paper, we have made the data available via an on-line browser
(http://amp.pharm.mssm.edu/LJP) and direct download (http://
www.lincsproject.org/LINCS/data/overview).

On the basis of a large body of prior literature we expected that
only a subset of cell lines would respond to a specific drug, but it
was not known how molecular changes and phenotypic responses
would relate to each other. Overall, we find that the occurrence of
drug-induced changes in transcription is generally well correlated
with the strength of the phenotypic response. Inhibitors of CDKs
or chaperones induced similar changes in intracellular signaling
across all cell lines as measured by L1000 signatures, whereas
inhibitors of intracellular MAPK and PI3K/Akt/mTOR kinases
induced cell-type specific changes. Cell line-specific responses are
likely a reflection of differential pathway activity or connectivity,
and we speculate that deeper understanding of these differences
will improve our ability to use kinase inhibitors in disease.
For example, high variability in the effects of PI3K/Akt/mTOR
kinase inhibitors in different cells lines might explain the current
difficulty in predicting which tumors will respond to these drugs.

Responsiveness to RTK inhibitors was also highly variable
across cell lines1–4, as is expression of RTKs themselves12. High
expression of a receptor appears to be a good, but not perfect,
predictor of responsiveness to drugs targeting that receptor;
we have previously found that this is also true of ligand
responsiveness12,25. When a receptor is present, L1000 signatures
elicited by inhibition of a specific RTK were generally similar
to signatures elicited by inhibition of either PI3K or MAPK,
suggesting preferential pathway engagement downstream of RTK
signaling. For example, EGFR/ErbB2 inhibitors clustered
with MAPK inhibitors in five out of the six cell lines, but with
PI3K/AKT inhibitors in SK-BR-3 cells. The number of cell lines
in the current data set is insufficient to determine the statistical
significance if such correlations, but future analysis might be
directed to larger numbers of cell lines and drugs representative
of each cluster in Fig. 1.

Among the most interesting drug/cell line pairs in our data set
are those in which a significant change was observed in tran-
scription with no significant effect on cell growth. In the case of
the MEK inhibitor trametinib, for example, we found that drug
exposure altered transcription in all cell lines, but cell division in
only a subset. Thus, MEK is active on its target in all cells, but
essential for proliferation only in some. MDA-MB-231 cells,
which carry a KRAS mutation, are the most trametinib sensitive,
implying possible RAS-MAPK addiction. In contrast, BT-20 cells
are the most resistant to MEK inhibition, even though trametinib
induces a significant change in transcription. Reasoning that this
might reflect the presence in BT-20 cells of an activating PI3KCA
mutation, we studied MEK and PI3K/AKT inhibitors in

combination and observed a synergistic effect on cell growth.
Synergy between MEK and PI3K/AKT has previously been
reported, but we have found this to be true only in a subset of
breast cancer cells lines. Synergy in BT-20 cells appears to involve
trametinib-dependent inhibition of an adaptive pathway that
makes PI3K inhibitors progressively less effective over a 48 h
period. Thus, L1000 profiling can uncover relatively subtle
mechanisms of drug sensitivity and resistance based on a com-
parison of transcriptional and phenotypic responses.

Combination therapy is increasingly regarded as essential for
treatment of cancer using targeted drugs27. The question arises
how best to identify combinations that are effective on specific
tumors. One approach is to inhibit the same protein or pathway
with multiple drugs to achieve better target coverage and func-
tional inactivation of oncogenic signaling. Examples of this
strategy include combining pertuzumab and trastuzumab to treat
HER2amp metastatic breast cancer39 and dabrafenib with trame-
tinib to treat BRAFV600E melanoma40,41. In other cases, it appears
that concurrent inhibition of parallel pathways that drive pro-
liferation or mediate adaptive resistance is the best
strategy38,42–46. Attempts to distinguish between these possibi-
lities using existing data and sophisticated computational
approaches have proven only marginally effective27,29–31. Our
data show that both “orthogonal” and “non-orthogonal”
approaches to drug synergy can be detected in cultured cells.
Transcriptional and phenotypic profiling also make it possible to
place drugs in equivalence classes based on co-clustering. In the
case of BT-20 cells, drugs in an equivalence class can substitute
for each other in a combination (lapatinib or neratinib for tra-
metinib in a combination that includes alpelisib). We have not yet
studied enough combinations to propose a general rule for the
construction of efficacious drug combinations, but the ability of
L1000 profiling to identify equivalence classes potentially pro-
vides a means for making drug substitutions within a cluster to
increase tolerability or effectiveness.

Methods
Cell culture and drug response. Six cell lines (BT-20, Hs 578T, MCF 10A, MCF7,
MDA-MB-231, and SK-BR-3) were obtained from the ATCC and grown as pub-
lished previously12. All cells were free of mycoplasma and their identity was ver-
ified by short tandem repeat (STR) profiling at the Dana-Farber Cancer Institute47.

For drug response screening cells were plated at 2000 cells/well (except Hs 578T
which was plated at 1000 cells/well) in 384 well plates. After 24 h cells were treated
with the indicated doses of small molecule inhibitors obtained from the HMS
LINCS drug collection (http://lincs.hms.harvard.edu/). Drugs in this collection are
sourced from commercial vendors and subjected to quality control by liquid
chromatography–mass spectrometry. Quality control data are available via the
HMS LINCS website. For the L1000 assay, supernatant was aspirated 3 and 24 h
after drug addition until only 15 µl remained. Cells were then lysed for 30 min at
room temperature by adding 30 µl of Buffer TCL (Qiagen). Plates were sealed and
stored at −80 °C until processing for L1000 transcriptional profiling. For cell
counts, cells were stained with a 1:1000 dilution of Fixable Far Red Dead Cell Stain
(Thermo Fisher Scientific) and 2 µM Hoechst 33342 (Thermo Fisher Scientific) for
30 min at room temperature and subsequently fixed with 3% formaldehyde (Sigma
Aldrich).

Analysis of single and dual-agent drug response in BT-20 cells involved growing
cells as described above followed by direct dispensing of one or two drugs using a
D300 Digital Dispenser (Hewlett-Packard). For immunofluorescence experiments,
cells were fixed at the indicated time points for 30 min in 3% formaldehyde,
permeabilized for 30 min in phosphate buffered saline (PBS) with 0.3% Triton X-
100 (Sigma-Aldrich), washed twice in PBS with 0.1% Tween 20 (Sigma-Aldrich;
PBS-T), and blocked for 60 min with Odyssey blocking buffer (LI-COR
Biosciences). Cells were incubated with antibodies against FoxO3a (Cell Signaling
Technologies; 1:200 dilution), phospho-Erk1/2 (Thr202/Tyr204, Cell Signaling
Technologies; 1:400 dilution), or phospho-Akt (Ser473, Cell Signaling
Technologies; 1:400 dilution) in Odyssey blocking buffer and incubated for 16 h at
4 °C. Cells were then washed three times in PBS-T for 5 min and incubated with
Alexa Fluor 647 conjugated donkey anti-rabbit secondary antibody for 60 min at
room temperature. Finally, cells were washed two times in PBS-T, once with PBS,
and stained for 30 min with whole cell stain (Thermo Fisher Scientific) and
Hoechst (Thermo Fisher Scientific), and washed three times in PBS.
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All fixed cells were imaged on an Operetta high content imaging system (Perkin
Elmer) and analyzed using the Columbus image data storage and analysis system
(Perkin Elmer) to determine the number of viable cells.

Mass spectrometry. The six cell lines listed above were plated in eight 15 cm
dishes at 10 × 106 cells per dish, except for Hs 578T which was plated at 4 × 106

cells per dish, and grown for 24 h. Cells were washed twice with cold PBS and
scraped off plates in the presence of 1 ml of PBS containing 1:100 Halt Protease and
Phosphatase Inhibitor Cocktail (Thermo Fisher Scientific) and then pooled in a one
tube per cell line. Cells were pelleted at 900 g, the remaining PBS was removed, and
the pellets frozen in liquid nitrogen and stored at −80 °C until lysis. Pellets were
lysed in 5 ml of 2% SDS, 150 mM NaCl, 50 mM Tris (pH 8.5), 5 mM DTT, 1:100
Halt Protease and Phosphatase Inhibitor Cocktail. Shotgun proteomic and
phospho-proteomic measurements were performed as described48 and the result-
ing data is reported in Supplementary Data 5 and 6. For each protein or phospho-
peptide, the standard deviation of the log10 of the value is evaluated across all cell
lines. Proteins and phospho-peptides are grouped based on their biological func-
tion according to the lists in Supplementary Data 7–9.

L1000 assay. Extensive information about the L1000 method used in this paper
can be found at https://clue.io/sop-L1000.pdf. Briefly, the L1000 assay is performed
by amplifying mRNAs from cell lysates by ligation mediated amplification14.
Probes containing gene-specific sequences are annealed to reverse-transcribed
cDNAs, ligated with Taq ligase, amplified by PCR and then hybridized to Luminex
beads. The unique fluorescence properties of these beads serve as bar codes. Beads
with hybridized PCR products are detected and quantified using a Luminex
FLEXMAP 3D reader. 80 transcripts are used to calibrate and normalize data.

Analysis and clustering of the L1000 data. For each technical replicate of each
drug-induced perturbation, the characteristic direction (CD) was evaluated by
comparing its L1000 QNORM vector to vectors for DMSO-treated controls on the
same plate22. L1000 data is provided at five levels in the data processing pipeline:

● Level 1: Raw unprocessed flow cytometry data from Luminex (LXB)
● Level 2: Gene expression values per 1000 genes after deconvolution (GEX)
● Level 3: Quantile-normalized gene expression profiles of landmark genes and

imputed transcripts (QNORM or INF)
● Level 4: Gene signatures computed using z-scores relative to the plate

population as control (ZSPCINF) or relative to the plate vehicle control
(ZSVCINF)

● Level 5: Differential gene expression signatures

The normalized values for landmark genes used in the current work correspond
in L1000 data sets to “level 3a” data (http://www.lincsproject.org/LINCS/tools/
workflows/find-the-best-place-to-obtain-the-lincs-l1000-data). Characteristic
direction signatures were calculated per batch. A batch is a group of experimental
conditions measured at the same time point and cell-line but on multiple plates as
described using the following notation:

● M, the number of experimental conditions.
● N, the number of control replicates.
● J, the number of plates.
● Xi,j, a vector of length 978 representing the jth replicate of the ith experimental

condition. Note that since the replicates of an experimental condition are
measured on different plates, j also, typically, denotes the plate.

● Cj,k, a vector of length 978 representing the kth control replicate on the jth

plate.

First, we calculated the CDs for each experimental condition J times, each time
using a replicate Xi,j and the controls from the same plate to obtain
Di;j ¼ f Cj;Xi;j

� �
, where f is the CD function and Cj is the control matrix [cj,1, cj,2 …

cj,K] for the plate. Then the final CD, Di, for an experimental condition is:

Di ¼
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JP
j
Di:j

J

����

����
To estimate the significance of the CD, we defined the null hypothesis as the
variation of the CDs between technical replicates (same cell line and same
treatment) is equal to the variation between the CDs of an equal number of
perturbations randomly selected from different cell lines and treatments. If the
replicates of a given condition show a significantly smaller variation than the
randomly selected perturbations, one can reject the null hypothesis. To calculate a
null distribution of appropriately matching characteristic directions we define Si as
the mean of the all possible pair-wise cosine distances between Di,j of the ith

experimental condition:

Si ¼ 1�
PJ

j′¼jþ1

PJ
j¼1 cos Di;j;Di;j′
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J

2

� �

To estimate the null distribution of Si, we randomly drew J number of Di,j from the
pool of M∙J conditions and calculated their average cosine distance as Sn. We
repeated the process for 10,000 times to obtain the null empirical distribution.

The Signature Consistency Score (SCS) is the negative log of the one-tail
comparison (on the lower end) of Si with the null distribution Sn. The distribution
of the M∙J Di,j used in the test is not exactly the isotropic distribution, but rather
was empirically determined by the aforementioned sampling process because gene
expression values are not independent from each other.

Clustering of CD signatures. Clustering is based on the cosine distance between
the CD signatures with SCS > 1.3 and relies on the algorithm fcm (fuzzy c-means
clustering) from MATLAB with an exponent for the membership function matrix
of 1.22. Perturbations with a membership of less than 55% in a single cluster were
set aside from the clusters (in black in Fig. 1b, right-most column in Supplementary
Fig. 1). We performed 101 independent clustering runs and perturbations were
assigned to the cluster in which they were found the most often. Using a fuzzy
clustering algorithm strongly improve the reproducibility of the results across
independent runs. Benchmarking the clustering parameters shows that clustering
consistency is high and not dependent on small changes in the parameter values
(Supplementary Fig. 8).

A ‘consensus signature’ is defined for each cluster as the average of the inferred
transcriptional signatures within the cluster. MATLAB scripts for all of these
calculations are available on https://github.com/sorgerlab/L1000chDir. The results
are qualitatively independent of the clustering parameters. Using 16 to 24 clusters
results in coarser or finer grouping of perturbations, but not in qualitatively
different interpretation of the results with the caveat that setting the number of
clusters larger than 20 can result in empty clusters (Supplementary Fig. 8). Network
illustrations were created with Cytoscape49 using the AllegroLayout. Other analyses
and figures were constructed using MATLAB.

Analysis of phenotypic drug response data. Cell counts were normalized to
DMSO-treated controls on the same plate to yield the normalized growth rate
inhibition (GR) for each plate (technical replicate) of each cell line at each drug and
concentration. Normalized growth rate inhibition was calculated according to the

formula: GR cð Þ ¼ 2
log2 xðcÞ=x0ð Þ
log2 xctrl =x0ð Þ � 1 where x(c) and xctrl are the cell counts in drug-

treated and, respectively, DMSO-treated control wells, and x0 is the 50%-trimmed
mean of the cell count from a day 0 untreated plate grown in parallel until the time
of treatment16,20,21. Within each experiment, technical replicates (generally three
plates) were averaged to yield the mean normalized growth rate inhibition for each
cell line, drug, concentration and condition for a given biological replicate.

Synergy of the combination of drugs A and B is evaluated on the GR value using
the following formula for the excess over Bliss independence (EOBGR):

EOBGR ¼ 1� GR combinationð Þð Þ � 1� GR drugAð Þð Þ � 1� GR drugBð Þð Þ
þ 1� GR drugAð Þð Þ 1� GR drugBð Þð Þ

VIPER analysis of the transcriptional signatures. The VIPER (Virtual Inference
of Protein activity by Enriched Regulon) was performed as described in Alvarez
et al.36. The regulon used for the inference was constructed based on the TCGA
data for breast cancer using all genes comprised in the inferred signature as inputs
and only transcription factor genes as outputs.

Data availability. The main data supporting the findings of this study are available
in the Supplementary Data files or by following the links listed in this article. For
additional data contact the corresponding author.
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