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Large second harmonic generation enhancement in
SisN4 waveguides by all-optically induced quasi-
phase-matching
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Efficient second harmonic generation in integrated platforms is usually achieved by resonant
structures, intermodal phase-matching or quasi-phase matching by periodically poling fer-
roelectric waveguides. However, in all these structures, it is impossible to reconfigure the
phase-matching condition in an all-optical way. Here, we demonstrate that a Watt-level laser
causes a periodic modification of the second-order susceptibility in a silicon nitride wave-
guide, allowing for quasi-phase-matching between the pump and second harmonic modes for
arbitrary wavelengths inside the erbium band. The grating is long-term inscribed, and leads to
a second harmonic generation enhancement of more than 30 dB. We estimate a 4@ on the
order of 0.3pm/V, with a maximum conversion efficiency of 0.05% W™". We explain the
observed phenomenon with the coherent photogalvanic effect model, which correctly agrees
with the retrieved experimental parameters.
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ver the last decade, integrated photonics allowed the

demonstration of micrometre-scale and low power opti-

cal nonlinear devices. In particular, complementary
metal-oxide-semiconductor (CMOS) compatible materials such
as silicon and silicon nitride (SiN) are the most promising for
nonlinear optical signal processing based on third-order
processes”” 2. However, integrated waveguides showing sig-
nificant second-order optical nonlinearity are key to enabling a
new range of on-chip applications such as self-referencing of
chip-based frequency combs?>, or telecom signal up-conversion in
order to perform direct detection with integrated silicon photo-
diodes®. On-chip frequency down-conversion for quantum
optics® is also an option, as second-order processes facilitate the
pump rejection in photon-pair generation experiments®.

SiN exhibits a very large transparency window, from ultraviolet
to mid-infrared, and moderate second-order nonlinearity due to
interface symmetry breaking, higher multipole bulk terms and a
non-isotropic distribution of the SiN dipoles inside the amor-
phous matrix’~?. To enhance second harmonic generation (SHG)
in SiN, researchers used resonant structures like micro-
resonators'’ and waveguide gratings'!, but at the expense of
using fixed operational wavelengths. Moreover, momentum
conservation for SHG in integrated waveguides is generally
achieved through intermodal phase-matching, implying that the
effective index of the pump mode is equal to the second harmonic
one, ie. n,=ng, Phase-matching is therefore constrained by
waveguide design. To overcome this restriction, quasi-phase-
matching (QPM) techniques are routinely employed by periodi-
cally poling waveguides made of polar materials such as lithium
niobate!?, lithium tantalate!> or suitable polymers'4. However,
their integration on silicon photonic circuits still faces limita-
tions!>. Up to now, none of the presented integrated platforms
allows the all-optical and permanent configuration of the phase-
matching condition in the waveguide, nor its dynamic update.

Here we demonstrate an optically induced and dynamically
reconfigurable SHG enhancement in an integrated photonic
platform. We report the growth of the SHG signal over time when
pumping a SiN waveguide with a pulsed laser in the
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communication band (designated as pump). By probing the
waveguide with a tunable continuous wave (CW) laser (desig-
nated as probe) following the SHG growth, we observe a clear
phase-matching peak centred on the pump wavelength. Shifting
the pump to another arbitrary wavelength in the 1534-1550 nm
range, we notice a similar SHG growth as well as a subsequent
phase-matching peak at the new wavelength. Moreover, the
waveguide features the same SHG level when probed over a few
days, demonstrating a persistent change in the phase-matching
condition caused by the pump. Our experimental observations fit
well within the framework of the coherent photogalvanic the-
ory'%, developed to explain the poling occurring in optical fibres
illuminated by kilowatt near-infrared lasers'”.

Results
SHG enhancement in the pulsed regime. Figure 1a shows the
experimental setup, which consists of an amplified CW C-band
tunable laser shaped into a pulse train by a Mach-Zehnder
modulator. The pulse duration is 200 ps, at a repetition rate of 25
MHz. The modulator can be bypassed to probe SHG with CW
light. We couple light to the waveguide fundamental mode with a
lensed fibre and evaluate the in-coupling loss to 4.5 dB. At the
chip output, a microscope objective collimates the light towards a
silicon power detector. In order to attenuate the remaining pump
light, as well as the visible light from third-harmonic generation
(THG), we placed an assembly of short and long pass filters on
the beam path. Out-coupling losses at the second harmonic
wavelength are harder to estimate because of higher scattering at
shorter wavelengths. We consider a lower boundary of 5dB
including the attenuation coming from the filter assembly.
Alternatively, butt coupling the waveguide output to a multimode
fibre allows for the measurement of output spectra with an optical
spectrum analyser (OSA). An example of pump and second
harmonic spectra after enhancement is shown in Fig. 1b, which
illustrates the negligible pump broadening through the
waveguide.

The waveguides are fabricated according to the photonic
Damascene process18 (see Methods for fabrication details), which
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Fig. 1 Experimental setup and waveguides. a Experimental set-up. TLS, tuneable laser source; MZM, Mach-Zehnder modulator; EDFA, erbium-doped fibre
amplifier; BPF, fibre band pass filter; LF, lensed fibre; CCD, digital camera; BF, free-space block filter assembly; PD, power detector; SH, second harmonic;
TH, third harmonic. b Pump (magenta line) and second harmonic (blue line) spectra at the waveguide output for a coupled peak power of 90 W, after the
second harmonic growth. No significant pump broadening is observed. € Scanning electron microscope picture of a waveguide cross-section (scale bar: 0.5
pm). d Simulation of the pump profile, injected on the fundamental transverse magnetic mode
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Fig. 2 Second harmonic enhancement over time under pulsed pumping. a Growth curves of the second harmonic generation (SHG) average power over
time in waveguide (i), for pump wavelengths of 1539 nm (magenta line), 1544 nm (blue line) and 1549 nm (black line). The coupled peak power is 90 W.
The pictures show the light scattered at the end facet, coming either from second harmonic generation (SHG, red light) or third harmonic generation (THG,
green light) The edge of the chip is indicated by the dashed white line (scale bar: 20 pm). The labels (A)-(D) indicate the instant and for which pumping
wavelength the picture was taken. b Power of the transverse electric (TE) or transverse magnetic (TM) SHG component over time when the pump
polarization is switched, at the constant wavelength of 1544 nm, from the TE to TM mode, and back to TE in waveguide (i). At each switching point the
polarizer is first rotated by 90°, entailing a measured SHG power drop, then the pump polarization is aligned parallel to the polarizer axis, triggering the
growth of the second harmonic component. Blue line: power of TE SH under TE pump. Magenta line: power of TM SH under TM pump. ¢ SHG growth over
time, for pump wavelengths of 1537 (cyan line) and 1550 (black line) nm in waveguide (ii). The coupled peak power is varied between 60 (solid line) and
90 W (dash line). The inset shows the light scattered at the end facet once saturation is reached, with very little green emission

guarantees a crack-free nitride layer deposition and void-free
structures of high aspect ratio. The devices are made of
stoichiometric Si3N, buried in SiO, and exhibit a very low
attenuation (0.2 dB/cm). The waveguides are folded in meanders
and have trapezoidal cross sections (see Fig. 1c). We obtained
results with two different samples: waveguide (i) is 4 cm long and
1.5 pm wide, while waveguide (ii) is 5.8 cm long and 1.4 pm wide.
Both are 0.87 pm thick and terminated by an inverse taper mode
converter to ease light coupling and reduce Fresnel reflection at
the facets.

We first injected the pulsed pump in waveguide (i) with 90 W
of coupled peak power into the transverse magnetic (TM) mode,
which corresponds to an intensity of about 9 GW/cm?. The weak
initial second harmonic, reaching the detector with an average
power of 150 nW, is generated by intermodal phase-matching on
a higher order mode. The SHG increased to approximately
200-250 pW average power on the detector (corresponding to
40-50 mW peak) within 25-30 min. In this interval, we kept the
pump power constant and observed that any second harmonic
generated was TM polarized, as the pump. The SHG growth as a
function of time can be triggered by different pump wavelengths,
even widely separated, in the same waveguide. This behaviour is
illustrated in Fig. 2a for three pump wavelengths within the
amplifying band of the erbium-doped fibre amplifier (EDFA),
namely 1539, 1544 and 1549 nm. Once saturation of the SHG is
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reached for a given pump wavelength, changing the pump
wavelength results in systematic growth of its second harmonic.
In all cases, we observe at saturation more than 30dB SHG
enhancement over time. All the saturation levels are comparable,
and slight variations come from non-identical coupling condi-
tions. A visible camera, placed above the chip, images the light
scattered out-of-plane at the end facet. Images of this scattered
light at different growth points are shown in Fig. 2a. As a function
of time, we observed a constant third harmonic generation
(THG) (green light) together with an overall growing of the SHG
(red light).

Owing to the waveguide birefringence, changing the pump
polarization alters the phase mismatch between the pump and the
second harmonic, similar to what happens when changing the
pump wavelength. To test this behaviour, we alternatively
pumped the transverse electric (TE) and TM modes of waveguide
(i), keeping the same pump wavelength (1544 nm) and peak
power (90 W). At the output of the chip, we measured the SHG
component parallel to the pump polarization using a polarizer
positioned after the filter assembly. We first pumped the TE
mode, and observed the TE second harmonic component growth
until saturation. Rotating the polarizer by 90°, we observed that
the TM component of the SHG was 30 dB weaker than the TE.
Setting the pump to the TM mode, the TM component of the
second harmonic grew by three orders of magnitude. After
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saturation of the TM SHG, the output polarizer was rotated by
another 90° transmitting only a negligible TE SHG component.
However, switching the pump back to the TE mode systematically
re-triggered the SHG growth on the TE polarization, which went
back to the initial saturation level in an identical amount of time.
Figure 2b shows the corresponding SHG curves. This experiment
is a further demonstration that the SHG enhancement can be
dynamically updated when the coherence length between the
pump and the second harmonic is changed. The slight differences
in saturation levels can be explained by the difference in mode
overlap in the TE and TM cases.

We then tested waveguide (ii) by pumping in the TE
fundamental mode. In this configuration, green light generation
is greatly suppressed, as THG is not phase-matched. As for
waveguide (i), SHG growth with a pulsed pump is observed.
Figure 2c shows that keeping the coupled pump power constant
(60 W), we measured similar saturation levels (about 280 pW)
and growth durations for different C-band pumping wavelengths
(1548 and 1535 nm), as in the case of waveguide (i). Increasing
the pump power to 90 W leads to a higher SHG saturation,
reaching an average power of 600 pyW (120 mW peak) onto the
detector, about twice the value reported in waveguide (i). This
higher saturation is expected as waveguide (ii) is 45% longer than
waveguide (i). However, contrary to waveguide (i), no oscillations
in the growth curves were observed and saturation is reached
about five times faster.

Phase-matching evidence in continuous-wave regime. After
SHG saturation, we probed the waveguides with a CW tunable
laser, keeping the coupled probe power constant at 350 mW.
Under such light exposure, we did not notice any SHG evolution
over time. We plot the second harmonic power as a function of
wavelength in Fig. 3a. We probed waveguide (i) after four pump
wavelengths: 1539, 1542, 1544 and 1549 nm. In all cases, one
notices a clear peak near the pulsed pump wavelength. This is an
indication that the strong pulsed pump modulates the waveguide
second-order nonlinearity with the correct periodicity to quasi-
phase match the SHG. Therefore, the resulting y? grating derives
from an all-optical poling mechanism. This QPM condition is
fulfilled every time the pump wavelength is changed, in spite of
the waveguide dispersion. The peak 3 dB bandwidth (FWHM) is
about 2.5nm (at the pump wavelength) while their maxima are
located 10 dB higher than what can be considered as the floor
level for SHG.

We also probed waveguide (ii) by coupling a 130 mW CW
laser, after pumping at 1535 nm with 90 W peak power and at
1548 nm with 60 W peak power. We again observed phase-
matching peaks around the pump wavelengths (see Fig. 3b). In
addition, the power ratio of the SHG between the two cases is
comparable to that of the saturation powers in the pulsed regime,
as can be seen in Fig. 2c.

Microscopic model based on the coherent photogalvanic effect.
The effect reported here is qualitatively similar to the all-optical
SHG enhancement reported in silica fibres pumped by a kilowatt-
level pulsed Nd:YAG laser!”. Researchers identified the coherent
photogalvanic  effect (CPE) as the main underlying
mechanism!® 1, Optical poling has also been reported in poly-
mer fibers>® 2!, however in that case the physical origin of the
poling has been ascribed to an orientation mechanism of the
molecules inside the polymer matrix, with no apparent con-
tribution from a space-charge field?’.

The CPE consists in an asymmetric photoemission of electrons
from defect centres with energy levels lying inside the band gap of
the material (such as GeO,-related defects in silica). It takes place
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Fig. 3 Quasi-phase-matching evidence under continuous-wave probing. a

Detected second harmonic power as a function of the probe wavelength in
waveguide (i) for a continuous-wave (CW) coupled probe power of 350

mW. The waveguide was previously pumped at 1539 nm (magenta line),

1542 nm (cyan line), 1544 nm (blue line) and 1549 nm (black line). Phase-
matching peaks are observed around each pump wavelength. b Detected

second harmonic power as a function of CW probe wavelength for 130 mW
of coupled power in waveguide (ii), previously pumped at either 1537 nm
and 90 W coupled power (blue line) or 1550 nm and 60 W coupled power
(magenta line)

under illumination by a pump and its frequency-doubled
counterpart, as the result of the interference from different
coherent multiphoton absorption processes involving the two
waves. The spatially preferential emission of electrons gives rise to
a photogalvanic current (see Supplementary Note 1) which in
turns builds up a static space-charge field (Epc)?2. As
schematically illustrated in Fig. 4a, the weak initial SHG together
with the strong pump, triggers the increase over time of Epc by
the CPE process. Epc has a periodicity that directly depends on
the coherence length between the pump and its second
harmonic'®. The effective 2, which allows QPM of the SHG
at the pump wavelength?®, thus arises as the product of 7% and
the built-in field, a process known as electric field induced second
harmonic generation (EFISHG)?*. The gratings are long-term
inscribed. In fact, the ejected electrons, responsible for the built-in
Epc, are eventually trapped by deep and localized defect states'”.

The Si-Si defects in deposited SiN, extensively studied in the
frame of electronic memories>>~?, are good candidates to be
responsible for this trapping effect. According to these previous
works, localized defect energy levels lie inside the ~4.6eV
bandgap at about 1.4 and 3.2 eV from the valence band. These
localized states can act as electron emission sites and as long-lived
electron traps, and their energy location agrees well with the CPE
theory, for a pump laser at 1.55 pm (see Supplementary Note 1
for more details). We verified the persistence of the SHG by
probing the sample over multiple days. As seen in Fig. 4b, no
decrease in SHG efficiency was observed such that the grating is
indeed long-term inscribed. This model is also in agreement with
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Fig. 4 Grating dynamics and evaluation of its parameters. a Illustration of
the ;((2) grating inscription in a SiN waveguide. After irradiation, a spatially
periodic DC field builds up with a periodicity that is twice the coherence
length between the pump and second harmonic mode. w, indicates the
pump frequency. b Persistence measurement showing the continuous wave
probe (blue triangles) and second harmonic (green circles) power over
more than 80 h of operation. Both quantities were measured at the
waveguide output. € Second harmonic power (estimated in waveguide (i))
as a function of the coupled continuous wave probe power. The probe is
centred at 1544 nm, and the grating was previously inscribed at the same
wavelength. The squares are experimental points while the red line is a
linear fit with a slope of 2. The observed saturation at high power comes
from coupling instabilities

the adverse impact of THG on the SHG growth, as observed in
waveguide (i). In fact, green photons with a ~2.4 eV energy are
able to directly re-ionize the electrons trapped in acceptor states
below the conduction band?®. Such a linear absorption process
does not lead to any preferential emission and the electrons just
move accordingly to the Epc, opposite to the direction of the
photogalvanic current. Moreover, CPE can also involve multi-
photon coherent interference from one pump photon and one
photon at the THG frequency, albeit with the wrong periodicity.
We therefore ascribe the oscillations observed during the growth
of SHG in waveguide (i) to the counter-acting effects of CPE
involving photons from THG and direct re-ionization also due to
third harmonic photons.

We verified the quadratic relationship between the CW probe
power and the second harmonic power at the phase-matching
peak in the 1544nm pump case, as shown in Fig. 4c. The
retrieved conversion efficiency is 0.05% W, which corresponds
to about 3¢1072% W~!cm™. Assuming quasi-phase-matched
SHG with a sine-modulated y? grating®, we can also estimate
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the amplitude of the  in waveguide (i) by fitting the data from
Fig. 4c with Eq. (1). In this equation wg, is the second harmonic
frequency, P, the coupled pump power, L the waveguide length
and S the overlap integral between the pump and second
harmonic mode.

2047 PP,LS\
Py =|—"— (1)
Ichgy

With the help of a mode solver, we compute the effective
indices and the mode overlap of the TM modes at the pump and
SHG frequencies in waveguide (i). We assume that the SHG
occurs on the TM 8th dipolar mode (modes are numbered
according to their effective index), which features the best phase-
matching and mode overlap with the pump. Indeed, since the
natural initial SHG takes place on a higher order mode thanks to
intermodal phase-matching!’, the QPM grating period is twice
the initial coherence length. From the simulated mode profiles,
we estimate a peak y(? value of about 0.3 pm/V, and we calculate
the grating period to be A = 22/I8, — 2, & 43 pm (where f3 is the
mode propagation constant). For waveguide (ii), the SHG is
expected to happen on the 8" TE mode. In this case, we retrieve
from Fig, 3b that »® ~ 0.15 pm/V, consistent with the estimation
in waveguide (i), and a grating period of about 64 pm at 1535 nm.
As the second harmonic always has the same polarization as the
pump, these values refer to the diagonal y(? tensor element. All
the mode simulations and calculations are detailed in Sugpple—
mentary Note 2. Then, via the relation 22 =348Ep1, we
calculate a space-charge field ma%nitude of 10® V/m, assuming a
third-order susceptibility of 107! m?/V2%(. Finally, it has to be
noted that because of intermodal phase-matching, the FWHM of
the SH depends on the difference between the slopes of the
fundamental and the second harmonic effective index curves, at
the second harmonic wavelength. According to Supplementary
Fig. 2, the expected linewidth should be less than 1 nm for both
waveguide (i) and (ii). This value is smaller than the FWHM
reported in Fig. 3 for the tested waveguides (few nanometers). A
possible explanation could lie in a temperature gradient over the
waveguides’ length. In fact, despite the fast (microsecond range)
thermal relaxation time due to the thermo-optic effect in SiN
waveguides®®, different optical absorptions at different wave-
guide’s positions would lead to a deviation of the coherence
length between the pump and the second harmonic along the
waveguide. This coherence length distribution is equivalent to a
chirping of the QPM grating, known to broaden the SHG
conversion efficiency.

Discussion

We have experimentally demonstrated an all-optical and recon-
figurable SHG enhancement by more than 30 dB in a popular SiN
waveguide platform, ready to be fabricated on a large scale in
multi-project wafer runs. The enhancement results from the
persistent inscription of a second-order susceptibility grating in
the waveguide. The grating period automatically adapts to a
modified coherence length between the pump and the harmonic,
allowing for quasi-phase-matched SHG over the whole C-band.
The measured conversion efficiency of 0.05% W1 (341073% W~!
cm™2) is comparable to the one obtained in similar SiN wave-
guides designed to fulfil the intermodal phase-matching condition
at telecom wavelengths?!, or in SiN ring resonators'?. This shows
the effectiveness of the reported all-optical QPM method. The (%
value of few tenths of pm V1 is also in agreement with previous
measurements in SiN waveguides at the same wavelengths®!. The
estimated DC field magnitude, assuming the coherent
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photogalvanic effect as the underlying physical mechanism, is
comparable to the one obtained in ref. !, where a voltage is
applied across the waveguide structure to enhance SHG.

In parallel, silicon waveguides recently achieved remarkable
SHG efficiencies, either thanks to a SiN strain layers®? or by
leveraging the EFISHG through a p-i-n junction created by ion
implantation®>. The presented findings however feature an
improved and appealing versatility compared to the current
strategies for on-chip integration of second-order nonlinearity. In
fact, they show a unique method to configure dynamically QPM
in passive devices fabricated with CMOS compatible steps.

Compared to previous works in silica optical fibres, the use of
integrated waveguides allows to increase the conversion efficiency
by two orders of magnitude, and to decrease by the same factor
the SHG growth duration!”. Various options for improving the
conversion efficiencies can be explored. As shown here, the effi-
ciency of the process increases with the length of the waveguide
and the pump power. In addition, the saturation of the CPE is
given by the pump-second harmonic mode overlap, the density of
the defect states and the »(* value. Simulations indicate that
seeding the process with a second harmonic wave injected on the
fundamental mode, in order to improve the mode overlap, may
increase the SHG efficiency by 40%. Moreover, the low propa-
gation loss (0.2 dB/cm) at the pump wavelength results in a long
effective length (about 22 cm), such that longer waveguides can be
considered for enhanced conversion efficiency. Employing
materials with a larger ¥, such as Si-rich SiN®4, is also an option
to increase the SHG by at least an order of magnitude?”.

Methods

Waveguide fabrication. The waveguide devices were fabricated using the photonic
Damascene process's. The process starts by patterning the waveguides as well as a
dense filler pattern into a hard mask of amorphous silicon on a 4 pm thick wet
thermal silicon oxide. The structures are then transferred into the preform using a
dry etch process based on He and C,Fg. Next the waveguide trenches in the
preform are filled with low pressure chemical vapour deposition silicon nitride,
deposited in one run up to the desired thickness. The dense filler pattern efficiently
releases film stress and prevents cracking of the SiN thin film. The excess SiN is
removed using chemical mechanical polishing, providing a smooth and planar
wafer surface. Finally, the wafer is annealed to drive out residual hydrogen in the
films (1200 °C, 24 h, N, atmosphere) and cladded with low temperature oxide
(LTO), before being separated into individual chips.

Data availability. The data that support the findings of this study are available
from the authors on reasonable request, see author contributions for specific data
sets.
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