Abstract
Waveparticle duality is the most fundamental description of the nature of a quantum object, which behaves like a classical particle or wave depending on the measurement apparatus. On the other hand, entanglement represents nonclassical correlations of composite quantum systems, being also a key resource in quantum information. Despite the very recent observations of waveparticle superposition and entanglement, whether these two fundamental traits of quantum mechanics can emerge simultaneously remains an open issue. Here we introduce and experimentally realize a scheme that deterministically generates entanglement between the wave and particle states of two photons. The elementary tool allowing this achievement is a scalable singlephoton setup which can be in principle extended to generate multiphoton waveparticle entanglement. Our study reveals that photons can be entangled in their dual waveparticle behavior and opens the way to potential applications in quantum information protocols exploiting the waveparticle degrees of freedom to encode qubits.
Introduction
Quantum mechanics is one of the most successful theories in describing atomicscale systems albeit its properties remain bizarre and counterintuitive from a classical perspective. A paradigmatic example is the waveparticle duality of a singlequantum system, which can behave like both particle and wave to fit the demands of the experiment’s configuration^{1}. This double nature is well reflected by the superposition principle and evidenced for light by Youngtype doubleslit experiments^{2, 3}, where single photons from a given slit can be detected (particlelike behavior) and interference fringes observed (wavelike behavior) on a screen behind the slits. A doubleslit experiment can be simulated by sending photons into a Mach–Zehnder interferometer (MZI) via a semitransparent mirror (beamsplitter)^{2, 3}. A representative experiment with MZI, also performed with a single atom^{4}, is the Wheeler’s delayedchoice (WDC) experiment^{1, 5}, where one can choose to observe the particle or wave character of the quantum object after it has entered the interferometer. These experiments rule out the existence of some extra information hidden in the initial state telling the quantum object which character to exhibit before reaching the measurement apparatus. Very recent quantum WDC experiments, using quantum detecting devices and requiring ancilla photons or postselection, have then shown that wave and particle behaviors of a single photon can coexist simultaneously, with a continuous morphing between them^{6,7,8,9,10,11,12,13}. Regarding the latter property, it is worth to mention that the classical concepts of wave and particle need a suitable interpretation in the context of quantum detection. Namely, the wave or particle nature of a photon is operationally defined as the state of the photon, respectively, capable or incapable to produce interference^{6}. Along this work, we always retain this operational meaning in terms of two suitably defined quantum states.
When applying the superposition principle to composite systems, another peculiar quantum feature arises, namely the entanglement among degrees of freedom of the constituent particles (e.g., spins, energies, spatial modes, polarizations)^{14, 15}. Entanglement gathers fundamental quantum correlations among particle properties, which are at the core of nonlocality^{16,17,18,19,20} and exploited as essential ingredient for developing quantum technologies^{21,22,23}. Superposition principle and entanglement have been amply debated within classicalquantum border, particularly whether macroscopically distinguishable states (i.e., distinct quasiclassical wave packets) of a quantum system could be prepared in superposition states^{24}. While superpositions of coherent states of a single quantum system (also known as “cat states” from the wellknown Schrödinger’s epitome) have been observed for optical or microwave fields starting from two decades ago^{24,25,26,27,28}, the creation of entangled coherent states of two separated subsystems has remained a demanding challenge, settled only very recently by using superconducting microwave cavities and Josephson junctionbased artificial atoms^{29}. An analogous situation exists in the context of waveparticle duality where, albeit waveparticle superpositions of a photon have been reported^{6,7,8,9,10,11,12}, entangled states of photons correlated in their waveparticle degrees of freedom are still unknown.
In this work we experimentally demonstrate that waveparticle entanglement of two photons is achievable deterministically. We reach this goal by introducing and doubling a scalable alloptical scheme which is capable to generate, in an unconditional manner, controllable singlephoton waveparticle superposition states. Parallel use of this basic toolbox then allows the creation of multiphoton waveparticle entangled states.
Results
Singlephoton toolbox
The theoretical sketch of the waveparticle scheme for the single photon is displayed in Fig. 1. A photon is initially prepared in a polarization state \(\left {{\psi _0}} \right\rangle = {\rm{cos}}\,\alpha \left {\rm V} \right\rangle + {\rm{sin}}\,\alpha \left {\rm{H}} \right\rangle\), where \(\left {\rm V} \right\rangle\) and \(\left {\rm{H}} \right\rangle\) are the vertical and horizontal polarization states and α is adjustable by a preparation halfwave plate (not shown in the figure). After crossing the preparation part of the setup of Fig. 1 (see Supplementary Notes 1 and 2 and Supplementary Fig. 1 for details), the photon state is
where the states
operationally represent the capacity \(\left( {\left {{\rm{wave}}} \right\rangle } \right)\) and incapacity \(\left( {\left {{\rm{particle}}} \right\rangle } \right)\) of the photon to produce interference^{6, 11}. In fact, for the \(\left {{\rm{wave}}} \right\rangle\) state the probability of detecting the photon in the path \(\left n \right\rangle \,\) (n = 1, 3) depends on the phase ϕ _{1}: the photon must have traveled along both paths simultaneously (see upper MZI in Fig. 1), revealing its wave behavior. Instead, for the \(\left {{\rm{particle}}} \right\rangle\) state the probability to detect the photon in the path \(\left n \right\rangle \,\) (n = 2, 4) is 1/2, regardless of phase ϕ _{2}: thus, the photon must have crossed only one of the two paths (see lower MZI of Fig. 1), showing its particle behavior. Notice that the scheme is designed in such a way that \(\left {\rm V} \right\rangle\) \(\left( {\left {\rm{H}} \right\rangle } \right)\) leads to the \(\left {{\rm{wave}}} \right\rangle\) \(\left( {\left {{\rm{particle}}} \right\rangle } \right)\) state.
To verify the coherent waveparticle superposition as a function of the parameter α, the wave and particle states have to interfere at the detection level. This goal is achieved by exploiting two symmetric beamsplitters where the output paths (modes) are recombined, as illustrated in the detection part of Fig. 1. The probability P _{ n } = P _{ n }(α, ϕ _{1}, ϕ _{2}) of detecting the photon along path \(\left n \right\rangle \,\) (n = 1, 2, 3, 4) is now expected to depend on all the involved parameters, namely
where
We remark that the terms \({{\cal I}_{\rm{c}}}\), \({{\cal I}_{\rm{s}}}\) in the detection probabilities exclusively stem from the interference between the \(\left {{\rm{wave}}} \right\rangle\) and \(\left {{\rm{particle}}} \right\rangle\) components appearing in the generated superposition state \(\left {{\psi _{\rm{f}}}} \right\rangle\) of Eq. (1). This fact is further evidenced by the appearance, in these interference terms, of the factor \({\cal C} = {\rm{sin}}\,2\alpha\), which is the amount of quantum coherence owned by \(\left {{\psi _{\rm{f}}}} \right\rangle\) in the basis {\(\left {{\rm{wave}}} \right\rangle\), \(\left {{\rm{particle}}} \right\rangle\)} theoretically quantified according to the standard l _{1}norm^{30}. On the other hand, the interference terms \({{\cal I}_{\rm{c}}}\), \({{\cal I}_{\rm{s}}}\) are always identically zero (independently of phase values) when the final state of the photon is: (i) \(\left {{\rm{wave}}} \right\rangle\) (α = 0); (ii) \(\left {{\rm{particle}}} \right\rangle\) (α = π/2); (iii) a classical incoherent mixture \({\rho _{\rm{f}}} = {\rm{co}}{{\rm{s}}^2}\alpha \left {{\rm{wave}}} \right\rangle \left\langle {{\rm{wave}}} \right + {\rm{si}}{{\rm{n}}^2}\alpha \left {{\rm{particle}}} \right\rangle \left\langle {{\rm{particle}}} \right\) (which can be theoretically produced by the same scheme starting from an initial mixed polarization state of the photon).
The experimental singlephoton toolbox, realizing the proposed scheme of Fig. 1, is displayed in Fig. 2 (see Methods for more details). The implemented layout presents the advantage of being interferometrically stable, thus not requiring active phase stabilization between the modes. Figure 3 shows the experimental results for the measured singlephoton probabilities P _{ n }. For α = 0, the photon is vertically polarized and entirely reflected from the PBS to travel along path 1, then split at BS_{1} into two paths, both leading to the same BS_{3} which allows these two paths to interfere with each other before detection. The photon detection probability at each detector D_{ n } (n = 1, 2, 3, 4) depends on the phase shift ϕ _{1}: \({P_1}\left( {\alpha = 0} \right) = {P_2}\left( {\alpha = 0} \right) = \frac{1}{2}{\rm{co}}{{\rm{s}}^2}\frac{{{\phi _1}}}{2}\), \({P_3}\left( {\alpha = 0} \right) = {P_4}\left( {\alpha = 0} \right) = \frac{1}{2}{\rm{si}}{{\rm{n}}^2}\frac{{{\phi _1}}}{2}\), as expected from Eqs. (3) and (4). After many such runs an interference pattern emerges, exhibiting the wavelike nature of the photon. Differently, if initially α = π/2, the photon is horizontally polarized and, as a whole, transmitted by the PBS to path 2, then split at BS_{2} into two paths (leading, respectively, to BS_{4} and BS_{5}) which do not interfere anywhere. Hence, the phase shift ϕ _{2} plays no role on the photon detection probability and each detector has an equal chance to click: \({P_1}\left( {\alpha = \frac{\pi }{2}} \right) = {P_2}\left( {\alpha = \frac{\pi }{2}} \right) = {P_3}\left( {\alpha = \frac{\pi }{2}} \right) = {P_4}\left( {\alpha = \frac{\pi }{2}} \right) = \frac{1}{4}\), as predicted by Eqs. (3) and (4), showing particlelike behavior without any interference pattern. Interestingly, for 0 < α < π/2, the photon simultaneously behaves like wave and particle. The coherent continuous morphing transition from wave to particle behavior as α varies from 0 to π/2 is clearly seen from Fig. 4a and contrasted with the morphing observed for a mixed incoherent waveparticle state ρ _{f} (Fig. 4b). Setting ϕ _{2} = 0, the coherence of the generated state is also directly quantified by measuring the expectation value of an observable \(\sigma _x^{1234}\), defined in the fourdimensional basis of the photon paths \(\left\{ {\left 1 \right\rangle ,\left 2 \right\rangle ,\left 3 \right\rangle ,\left 4 \right\rangle } \right\}\) of the preparation part of the setup as a Pauli matrix σ _{ x } between modes (1, 2) and between modes (3, 4). It is then possible to straightforwardly show that \(\left\langle {\sigma _x^{1234}} \right\rangle = {\rm{Tr}}\left( {\sigma _x^{1234}{\rho _{\rm{f}}}} \right) = 0\) for any incoherent state ρ _{f}, while \(\sqrt 2 \left\langle {\sigma _x^{1234}} \right\rangle = {\rm{sin}}\,2\alpha = {\cal C}\) for an arbitrary state of the form \(\left {{\psi _{\rm{f}}}} \right\rangle\) defined in Eq. (1). Insertion of beamsplitters BS_{4} and BS_{5} in the detection part of the setup (corresponding to β = 22.5° in the output waveplate of Fig. 2) rotates the initial basis \(\left\{ {\left 1 \right\rangle ,\left 2 \right\rangle ,\left 3 \right\rangle ,\left 4 \right\rangle } \right\}\) generating a measurement basis of eigenstates of \(\sigma _x^{1234}\), whose expectation value is thus obtained in terms of the detection probabilities as \(\left\langle {\sigma _x^{1234}} \right\rangle = {P_1}  {P_2} + {P_3}  {P_4}\) (see Supplementary Note 2). As shown in Fig. 4c, d, the observed behavior of \(\sqrt 2 \left\langle {\sigma _x^{1234}} \right\rangle\) as a function of α confirms the theoretical predictions for both coherent \(\left {{\psi _{\rm{f}}}} \right\rangle\) (Fig. 4c) and mixed (incoherent) ρ _{f} waveparticle states (the latter being obtained in the experiment by adding a relative time delay in the interferometer paths larger than the photon coherence time to lose quantum interference, Fig. 4d).
Waveparticle entanglement
The above singlephoton scheme constitutes the basic toolbox which can be extended to create a waveparticle entangled state of two photons, as shown in Fig. 2b. Initially, a twophoton polarization maximally entangled state \({\left \Psi \right\rangle _{{\rm{AB}}}} = \frac{1}{{\sqrt 2 }}\left( {\left {{\rm VV}} \right\rangle + \left {{\rm{HH}}} \right\rangle } \right)\) is prepared (the procedure works in general for arbitrary weights, see Supplementary Note 3). Each photon is then sent to one of two identical waveparticle toolboxes which provide the final state
where the singlephoton states \(\left {{\rm{wave}}} \right\rangle\), \(\left {{\rm{particle}}} \right\rangle\), \(\left {{\rm{wave}'}} \right\rangle\), \(\left {{\rm{particle}'}} \right\rangle\) are defined in Eq. (2), with parameters and paths related to the corresponding waveparticle toolbox. Using the standard concurrence^{14} C to quantify the amount of entanglement of this state in the twophoton waveparticle basis, one immediately finds C = 1. The generated state \({\left \Phi \right\rangle _{{\rm{AB}}}}\) is thus a waveparticle maximally entangled state (Bell state) of two photons in separated locations.
The output twophoton state is measured after the two toolboxes. The results are shown in Fig. 5. Coincidences between the four outputs of each toolbox are measured by varying ϕ _{1} and \(\phi _1^{\prime}\). The first set of measurements (Fig. 5a–d) is performed by setting the angles of the output waveplates (see Fig. 2c) at {β = 0, β′ = 0}, corresponding to removing both BS_{4} and BS_{5} in Fig. 1 (absence of interference between singlephoton wave and particle states). In this case, detectors placed at outputs (1, 3) and (1′, 3′) reveal wavelike behavior, while detectors placed at outputs (2, 4) and (2′, 4′) evidence a particlelike one. As expected, the twophoton probabilities \({P_{n{n^{\prime}}}}\) for the particle detectors remain unchanged while varying ϕ _{1} and \(\phi _1^{\prime}\), whereas the \({P_{nn'}}\) for the wave detectors show interference fringes. Moreover, no contribution of crossed waveparticle coincidences \({P_{nn'}}\) is obtained, due to the form of the entangled state. The second set of measurements (Fig. 5e–h) is performed by setting the angles of the output waveplates at {β = 22.5°, β′ = 22.5°}, corresponding to the presence of BS_{4} and BS_{5} in Fig. 1 (the presence of interference between singlephoton wave and particle states). We now observe nonzero contributions across all the probabilities depending on the specific settings of phases ϕ _{1} and \(\phi _1^{\prime}\). The presence of entanglement in the waveparticle behavior is also assessed by measuring the quantity \({\cal E} = {P_{22'}}  {P_{21'}}\) as a function of ϕ _{1}, with fixed \(\phi _1^{\prime} = {\phi _2} = \phi _2^{\prime} = 0\). According to the general expressions of the coincidence probabilities (see Supplementary Note 3), \({\cal E}\) is proportional to the concurrence C and identically zero (independently of phase values) if and only if the waveparticle twophoton state is separable (e.g., \(\left {{\rm{wave}}} \right\rangle\) ⊗ \(\left {{\rm{wave}'}} \right\rangle\) or a maximal mixture of twophoton wave and particle states). For \(\left \Phi \right\rangle\) _{AB} of Eq. (5) the theoretical prediction is \({\cal E} = \left( {1{\rm{/}}4} \right){\rm{co}}{{\rm{s}}^{\rm{2}}}\left( {{\phi _1}{\rm{/}}2} \right)\), which is confirmed by the results reported in Fig. 5i, j (within the reduction due to visibility). A further test of the generated waveparticle entanglement is finally performed by the direct measure of the expectation values \(\left\langle {\cal W} \right\rangle = {\rm{Tr}}\left( {{\cal W}\rho } \right)\) of a suitable entanglement witness^{31}, defined in the (4 × 4)dimensional space of the twophoton paths as
where \({\Bbb 1}\) is the identity matrix, \(\sigma _x^{1234}\) has been defined previously, and \(\sigma _z^{1234}\) corresponds to applying a σ _{ z } Pauli matrix between modes (1, 2) and between modes (3, 4). The measurement basis of \(\sigma _z^{1234}\) is that of the initial paths \(\left\{ {\left 1 \right\rangle ,\left 2 \right\rangle ,\left 3 \right\rangle ,\left 4 \right\rangle } \right\}\) exiting the preparation part of the singlephoton toolbox. It is possible to show that \({\rm{Tr}}\left( {{\cal W}{\rho _{\rm{s}}}} \right) \ge 0\) for any twophoton separable state ρ _{s} of waveparticle states, so that whenever \({\rm{Tr}}\left( {{\cal W}{\rho _{\rm{e}}}} \right) < 0\) the state ρ _{e} is entangled in the photons waveparticle behavior (see Supplementary Note 3). The expectation values of \({\cal W}\) measured in the experiment in terms of the 16 coincidence probabilities P _{ nn′}, for the various phases considered in Fig. 5, are: \(\left\langle {\cal W} \right\rangle =  0.699 \pm 0.041\) (ϕ _{1} = \(\phi _1^\prime\) = 0); \(\left\langle {\cal W} \right\rangle =  0.846 \pm 0.045\) (ϕ _{1} = \(\phi _1^\prime\) = π); \(\left\langle {\cal W} \right\rangle =  0.851 \pm 0.041\) (ϕ _{1} = π, \(\phi _1^\prime\) = 0); \(\left\langle {\cal W} \right\rangle =  0.731 \pm 0.042\) (ϕ _{1} = 0, \(\phi _1^\prime\) = π). These observations altogether prove the existence of quantum correlations between wave and particle states of two photons in the entangled state \(\left \Phi \right\rangle\) _{AB}.
Discussion
In summary, we have introduced and realized an alloptical scheme to deterministically generate singlephoton waveparticle superposition states. This setup has enabled the observation of the simultaneous coexistence of particle and wave character of the photon maintaining all its devices fixed, being the control only on the preparation of the input photon. Specifically, different initial polarization states of the photon, then transformed into whichway (path) states, reveal the wavetoparticle morphing economizing the employed resources compared with previous experiments with delayed choice^{6,7,8,9,10,11,12}. The advantageous aspects of the singlephoton scheme have then supplied the key for its straightforward doubling, by which we have observed that two photons can be cast in a waveparticle entangled state provided that suitable initial entangled polarization states are injected into the apparatus. We remark that powerful features of the scheme are flexibility and scalability. Indeed, a parallel assembly of N singlephoton waveparticle toolboxes allows the generation of Nphoton waveparticle entangled states. For instance, the GHZlike state \(\left {{\Phi _N}} \right\rangle = \frac{1}{{\sqrt 2 }}\left( {\left {{\rm{wav}}{{\rm{e}}_1},{\rm{wav}}{{\rm{e}}_2}, \ldots ,{\rm{wav}}{{\rm{e}}_N}} \right\rangle } \right.\) + \(\left. {\left {{\rm{particl}}{{\rm{e}}_1},{\rm{particl}}{{\rm{e}}_2}, \ldots ,{\rm{particl}}{{\rm{e}}_N}} \right\rangle } \right)\) is produced when the GHZ polarization entangled state \(\left {{\Psi _N}} \right\rangle = \frac{1}{{\sqrt 2 }}\left( {\left {{{\rm V}_1}{{\rm V}_2} \ldots {{\rm V}_N}} \right\rangle + \left {{{\rm{H}}_1}{{\rm{H}}_2} \ldots {{\rm{H}}_N}} \right\rangle } \right)\) is used as input state.
From the viewpoint of the foundations of quantum mechanics, our research brings the complementarity principle for waveparticle duality to a further level. Indeed, it merges this basic trait of quantum mechanics with another peculiar quantum feature such as the entanglement. In fact, besides confirming that a photon can live in a superposition of wave and particle behaviors when observed by quantum detection^{11}, we prove that the manifestation of its dual behavior can intrinsically depend on the dual character of another photon, according to correlations ruled by quantum entanglement. Specifically, the coherent waveparticle behavior of a photon is quantum correlated to the measurement outcome of an apparatus, sensitive to the waveparticle behavior of another photon, placed in a region separated from it. Our work shows that this type of entanglement is possible for composite quantum systems. We finally highlight that the possibility to create and control waveparticle entanglement may also play a role in quantum information scenarios. In particular, it opens the way to design protocols which exploit quantum resources contained in systems of qubits encoded in wave and particle operational states.
Methods
Experimental waveparticle toolbox
The implementation of the waveparticle toolbox exploits both polarization and path degrees of freedom of the photons. A crucial parameter is to obtain an implemented toolbox presenting high interferometric stability. This is achieved in the experiment by exploiting the scheme of Fig. 2, which presents an intrinsic interferometric stability due to the adoption of calcite crystals as beamdisplacing prisms (see Supplementary Note 1). More specifically, all optical paths of the overall interferometer are transmitted by the same beamdisplacing prisms and propagate in parallel directions, and are thus affected by the same phase fluctuations. Relative phases ϕ _{1} and ϕ _{2} (Fig. 2) within the interferometer are controlled by two liquid crystal devices, which introduce a tunable relative phase between polarization state \(\left {\rm{H}} \right\rangle\) and \(\left {\rm V} \right\rangle\) depending on the applied voltage. The parameter α of Eq. (1) is set by an input halfwave plate, while the output halfwave plate at the detection stage rotates the measurement basis depending on its angle β (β = 0° corresponds to the absence of BS_{4} and BS_{5}, while β = 22.5° corresponds to the presence of BS_{4} and BS_{5}). Both halfwave plates are controlled by a motorized stage. Hence, all the variable optical elements in the setup can be controlled via software.
Acquisition system
The output photons are detected by avalanche photodiode detectors, which are connected to an id800 Time to Digital Converter from ID Quantique that is employed to record the output single counts and twophoton coincidences. The photon source is a parametric down conversion source generating pairs of entangled photons. In the single particle experiment, one of the generated photon is directly detected and acts as a trigger, while the other photon is injected in the waveparticle toolbox. Twophoton coincidences are recorded between the output detectors of the toolbox and the trigger photon. In the twoparticle experiment, the two photons of the entangled pair are separately sent to two independent waveparticle toolboxes. Twophoton coincidences are then recorded between the output detectors of each toolbox. A dedicated LabVIEW routine allows simultaneous control of the optical elements and of the detection apparatus to obtain a fully automatized measurement process.
Data availability
The data sets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
References
Wheeler, J. A. & Zurek, W. H. Quantum Theory and Measurement (Princeton University Press, 1984).
Ma, X. S., Kofler, J. & Zeilinger, A. Delayedchoice gedanken experiments and their realizations. Rev. Mod. Phys. 88, 015005 (2016).
Walborn, S. P., Terra Cunha, M. O., Pádua, S. & Monken, C. H. Doubleslit quantum eraser. Phys. Rev. A 65, 033818 (2002).
Manning, A. G., Khakimov, R. I., Dall, R. G. & Truscott, A. G. Wheeler’s delayedchoice gedanken experiment with a single atom. Nat. Phys. 11, 539–542 (2015).
Jacques, V. et al. Experimental realization of Wheeler’s delayedchoice gedanken experiment. Science 315, 966–968 (2007).
Ionicioiu, R. & Terno, D. R. Proposal for a quantum delayedchoice experiment. Phys. Rev. Lett. 107, 230406 (2011).
Roy, S., Shukla, A. & Mahesh, T. S. NMR implementation of a quantum delayedchoice experiment. Phys. Rev. A 85, 022109 (2012).
Auccaise, R. et al. Experimental analysis of the quantum complementarity principle. Phys. Rev. A 85, 032121 (2012).
Peruzzo, A., Shadbolt, P. J., Brunner, N., Popescu, S. & O’Brien, J. L. A quantum delayed choice experiment. Science 338, 634–637 (2012).
Kaiser, F., Coudreau, T., Milman, P., Ostrowsky, D. B. & Tanzilli, S. Entanglementenabled delayed choice experiment. Science 338, 637–640 (2012).
Tang, J. S. et al. Realization of quantum Wheeler’s delayed choice experiment. Nat. Photon. 6, 600–604 (2012).
Shadbolt, P., Mathews, J. C. F., Laing, A. & O’Brien, J. L. Testing foundations of quantum mechanics with photons. Nat. Phys. 10, 278–286 (2014).
Ma, X.S. et al. Quantum erasure with causally disconnected choice. Proc. Natl Acad. Sci. 110, 1221–1226 (2013).
Horodecki, R., Horodecki, P., Horodecki, M. & Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009).
Lo Franco, R. & Compagno, G. Quantum entanglement of identical particles by standard informationtheoretic notions. Sci. Rep. 6, 20603 (2016).
Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V. & Wehner, S. Bell nonlocality. Rev. Mod. Phys. 86, 419–478 (2014).
Hensen, B. et al. Loopholefree Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).
Giustina, M. et al. Significantloopholefree test of bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015).
Shalm, L. K. et al. Strong loopholefree test of local realism. Phys. Rev. Lett. 115, 250402 (2015).
Handsteiner, J. et al. Cosmic bell test: measurement settings from milky way stars. Phys. Rev. Lett. 118, 060401 (2017).
Vedral, V. Quantum entanglement. Nat. Phys. 10, 256–258 (2014).
Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).
Wang, X.L. et al. Experimental tenphoton entanglement. Phys. Rev. Lett. 117, 210502 (2016).
Haroche, S. Nobel lecture: controlling photons in a box and exploring the quantum to classical boundary. Rev. Mod. Phys. 85, 1083–1102 (2013).
Brune, M. et al. Observing the progressive decoherence of the “meter” in a quantum measurement. Phys. Rev. Lett. 77, 4887–4890 (1996).
Ourjoumtsev, A., Jeong, H., TualleBrouri, R. & Grangier, P. Generation of optical ‘Schrödinger cats’ from photon number states. Nature 448, 784–786 (2007).
Deléglise, S. et al. Reconstruction of nonclassical cavity field states with snapshots of their decoherence. Nature 455, 510–514 (2008).
Vlastakis, B. et al. Deterministically encoding quantum information using 100photon Schrödinger cat states. Science 342, 607–610 (2013).
Wang, C. et al. A Schrödinger cat living in two boxes. Science 352, 1087–1091 (2016).
Streltsov, A., Adesso, G. & Plenio, M. B. Quantum Coherence as a Resource. Preprint at http://arxiv.org/abs/1609.02439 (2016).
Gühne, O. & Tóth, G. Entanglement detection. Phys. Rep. 474, 1–75 (2009).
Acknowledgements
This work was supported by the ERCStarting Grant 3DQUEST (3DQuantum Integrated Optical Simulation; grant agreement no. 307783, http://www.3dquest.eu) and by the Marie Curie Initial Training Network PICQUE (Photonic Integrated Compound Quantum Encoding, grant agreement no. 608062, funding Program: FP7PEOPLE2013ITN, http://www.picque.eu). In this work Z.X.M. and Y.J.X. are supported by the National Natural Science Foundation of China under Grant Nos. 11574178 and 61675115, Shandong Provincial Natural Science Foundation, China under Grant No. ZR2016JL005, while N.B.A. is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under project no. 103.012017.08.
Author information
Authors and Affiliations
Contributions
Z.X.M., N.B.A., Y.J.X. and R.L.F. devised the theoretical proposal. A.S.R., E.P., N.S. and F.S. designed and performed the experiment. R.L.F. and F.S. coordinated the project. All the authors discussed the results and contributed to the preparation of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Additional information
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Rab, A.S., Polino, E., Man, ZX. et al. Entanglement of photons in their dual waveparticle nature. Nat Commun 8, 915 (2017). https://doi.org/10.1038/s41467017010586
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467017010586
This article is cited by

Experimental demonstration of separating the wave‒particle duality of a single photon with the quantum Cheshire cat
Light: Science & Applications (2023)

Experimental assessment of physical realism in a quantumcontrolled device
Communications Physics (2022)

Multipartite entanglement criterion via generalized local uncertainty relations
Scientific Reports (2021)

Proposal to test quantum waveparticle superposition on massive mechanical resonators
npj Quantum Information (2019)

Efficient production of largesize optical Schrödinger cat states
Scientific Reports (2019)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.