Abstract
The discovery of topological phases has introduced new perspectives and platforms for various interesting physics originally investigated in quantum contexts and then, on an equal footing, in classic wave systems. As a characteristic feature, nontrivial Fermi arcs, connecting between topologically distinct Fermi surfaces, play vital roles in the classification of Dirac and Weyl semimetals, and have been observed in quantum materials very recently. However, in classical systems, no direct experimental observation of Fermi arcs in momentum space has been reported so far. Here, using nearfield scanning measurements, we show the observation of photonic topological surfacestate arcs connecting topologically distinct bulk states in a chiral hyperbolic metamaterial. To verify the topological nature of this system, we further observe backscatteringimmune propagation of a nontrivial surface wave across a threedimension physical step. Our results demonstrate a metamaterial approach towards topological photonics and offer a deeper understanding of topological phases in threedimensional classical systems.
Introduction
Topology, describing invariant properties under continuous deformation, is known to govern the physics of macroscopic systems. Topologically nontrivial systems, including topological insulators^{1, 2}, topological superconductors^{2}, Dirac semimetals^{3, 4}, Weyl semimetals^{5,6,7,8,9}, and topological photonics/phononics^{10,11,12,13,14,15,16,17,18}, have been proposed and studied both in theory and experiment owing to their exotic behaviors. Reflecting the emergence of materials with novel massless fermions beyond fundamental particle analogues, Weyl semimetals are classified as typeI or typeII^{19}. For a typeI Weyl semimetal, the Weyl point at the Fermi level exhibits a pointlike Fermi surface. Whereas for a typeII Weyl semimetal, the Weyl point emerges from a pointlike contact between an electron and a hole pocket, signifying a highly tilted Weyl cone and a Lifshitz transition in the associated Fermi surface. On the interface of a bulk sample, gapless surface states exist, protected by chiral topological charges associated with the Weyl points. These topological surface states, which take the form of Fermi arcs connecting the projections of bulk Fermi surfaces containing Weyl points on the surfaces, show characteristic signatures of the topological nature of Weyl semimetals.
Several works have reported experimental observations of Fermi arcs for both typeI and typeII Weyl points^{8, 9, 20, 21} in solid state systems by using angle resolved photo emission spectroscopy (ARPES) or scanning tunnelling microscopy (STM) measurements. In photonics, point degeneracy of a photonic typeI Weyl node has been reported in a microwave angleresolved transmission measurement of a double gyroid photonic crystal^{22}. Thereafter, a number of groups proposed the realization of Weyl degeneracies in other classical systems^{23,24,25,26}. However, as a very important signature of Weyl degeneracies, the topological surfacestate arc (TSA) has not yet been directly observed in classical systems.
Here, we report the experimental observation of photonic TSA at the interface between a photonic typeII Weyl metamaterial and air. Through Fourier transformation of the measured realspace electromagnetic field at the interface, we directly obtain the TSA in the momentum space, which is shown to connect between two topologically distinct bulk states. Furthermore, our measurements directly map out the surface wave propagation across a stepshape cut out from the metamaterial, serving as a direct visualization of the robustness of topological phase.
Results
Design of the topological photonic metamaterial
To observe the characteristics of a Weyl semimetal, a sample that possesses either broken timereversal symmetry or broken inversion symmetry is required. In classical electromagnetism, it is more feasible to break inversion symmetry, as breaking timereversal symmetry requires lossy magnetic materials and external magnetic fields. Here a chiral hyperbolic metamaterial (CHM) with broken inversion symmetry, which was recently proposed as a topological metamaterial^{27}, is employed to explore the photonic TSA. The topological nature of the metamaterial can be described by a homogeneous effective model and its Weyl points arise from the degeneracies between intrinsic electromagnetic modes: the longitudinal plasmonic mode and the spinpolarized transverse mode^{27, 28}. It is distinct from typical photonic realization of Weyl degeneracies in photonic crystals^{22, 24, 26}, where spatial degrees of freedom span the state subspace. The two bands that cross each other forming the Weyl cone have the same sign of velocity along a certain momentum space direction (k _{ y } as shown in Fig. 1a, b). In a simple effective model (Supplementary Note 1) of the CHM, one pair of typeII Weyl points^{27, 28}, represented by the two red dots (W1) in Fig. 1c, is located at large k and therefore becomes easier to identify experimentally. Without any mirror symmetries, the other pair of Weyl points, represented by two blue dots W2 (only one in shown) at a lower frequency in Fig. 1c are chiral partners of the two W1 Weyl points. Both W1 (W2) Weyl nodes are related to each other by timereversal symmetry and have the same chirality. Nontrivial surface states between the Weyl point partners (W1 and W2) are also shown in Fig. 1c (red surface), which serve as a signature of the topological nature of the system. The band structure along high symmetry lines and the nontrivial gap (as indicated in red) where the topological surface states reside are shown in Fig. 1d. In Fig. 1e, TSA connecting W1 and W2 Weyl points with varying frequency are projected onto the k _{ x }–k _{ y } plane. Its threedimensional view can be found in Fig. 1c as the tilted cyan line. To demonstrate the evolution of the surface states with frequency, three equifrequency contours (EFCs) are shown in Fig. 1f–h. In Fig. 1f, one clearly sees TSA originating from the W2 Weyl points, whose bands along ΓX are flat (dashed line), behaving like a transition phase between typeI and typeII Weyl points^{25}. As the frequency increases, TSA will be tangent to the corresponding bulk states, which contain the projections of Weyl points. Finally, they terminate at W1 in Fig. 1h.
The CHM is constructed by stacking of a twodimensional trilayer unit. Figure 2a illustrates a cubic unit cell of the CHM with a period a = 4 mm, which is fabricated on copperclad FR4 substrates with dielectric constant of 4.1. The thickness of each copper layer is 35 μm and the copper can be regarded as a perfect electric conductor (PEC) in the studied frequency range 5–10 GHz. To obtain the desired hyperbolic properties of the CHM, 200 μmwide metallic wires are formed along the ydirection on the top surface of the bottom layer (Fig. 2b). Metallic crosses are superimposed on these wires to increase the local capacitance and suppress the strong nonlocal effects induced by the metallic wires alone^{29}. To break inversion symmetry, we introduce a metallic helix structure on the top layer. Owing to the small number of turns per unit length, electric current driven along the helix induces a magnetic dipole moment that is slightly misaligned with the xaxis^{30}. This leads to a small shift (0.01π/a) of W1 away from the k _{ y } axis, and a larger shift (0.14π/a) of W2 away from k _{ x } axis as shown in Fig. 2d. Nevertheless, they are still located on the k _{ z } = 0 plane owing to both the timereversal symmetry and C _{ 2 } rotational symmetry along the zaxis. The large momentum separation of the Weyl points, as shown in Fig. 2d, supporting the existence of a very long TSA, allows us to easily resolve TSA from the Fourier transformation of nearfield scanning. Here, we would like to emphasize that although the existence of TSA between a pair of opposite Weyl points is guaranteed by the bulksurface correspondence, its exact location depends on the electromagnetic properties of the surrounding medium through the boundary conditions of Maxwell’s equations. For the realistic structure, Fig. 2e shows simulated band crossing in the vicinity of the typeII Weyl node (W1). The simulated dispersion around W2 is presented in Supplementary Fig. 2.
Direct observation of photonic topological surfacestate arcs
The nearfield scans are first conducted on both top (xy) and side (yz) surfaces of the CHM with copolarized source and probe, that is, z (polarized source) − z (polarized probe) for the top surface scan, and x (polarized source) − x (polarized probe) for the side. After Fourier transformation of the nearfield spatial distribution, we obtain Fig. 3a and b presenting the EFC (both bulk and surface states) at 5.46 GHz for the top and side surfaces, respectively. As can be seen, TSA are tangent and terminated to their corresponding bulk modes in both top and side cases. Figure 3c and d shows the topscanned and sidescanned EFC at 8.13 GHz, respectively. From Fig. 3c, one can see a resemblance to the modelled density of states (DOS) in Fig. 1a, a feature that provides verification of typeII Weyl dispersion. As previously discussed, the misalignment of the helix axis with the underlying lattice results in a shift of the W1 Weyl points away from the k _{ y } axis. However, this shift is too small to be observed in our experiment due to limited kspace resolution with a minimum pixel size of 0.027π/a. In Fig. 3d, a similar DOS crossing can be seen from the side surface scan, as schematically shown in Fig. 1b. It is worth noting that W2 Weyl points (5.15 GHz) appear accompanied by a strong resonance from the metallic helices and cannot be clearly recognized in the experiment. These measured bulk/surface band structures are consistent with the simulations (from CST Microwave Studio) in terms of the TSA and their locations in momentum space, as shown in Fig. 3. The deviations between the measurements and calculations regarding the exact shape and size of each TSA may arise from the sample fabrication errors and misalignment of layer stacking. Additional comparisons between experiment and simulation results at different frequencies are given in Supplementary Fig. 3.
In general, the scanned nearfield intensity profile can vary significantly with the measurement configuration, such as the proximity to the sample surface and the polarizations of source and probe, which offers great potential for topological nearfield sensing. Our nearfield scanning measurements on the top and side surface configurations with different polarization combinations can provide complementary information for revealing the topological features of CHM. For instance, Figure 4a and c shows a surface wave on the top surface with x (polarized source) − z (polarized probe) configuration. Both real space and momentum spaces show the strong excitation of surface states in the nontrivial gap by the antenna source. The intensity contribution from bulk bands, on the other hand, is largely suppressed and decays rapidly away from the source position (x = 150 mm, y = 0 mm). When the surface wave impinges on a surface edge, which is invariant along the y direction, the topologically nontrivial surface wave is expected to travel around the rightangle edge and continues to propagate on the side surface (y–z plane). Figure 4d shows the results when an xpolarized probe scans the side surface with the source placed on the top surface (x = 10 mm, y = 0 mm, z = 268 mm). One can observe that the bulk modes are markedly weakened by edge backscattering but the surface wave is not, which can also be confirmed by its bright TSA as shown in Fig. 4b compared with Fig. 3b.
Topologically protected surface wave steps down
To demonstrate the topological protection of the surface states, a step configuration is created by stacking a metamaterial block on top of another with a 104 mm shift in the x direction, as shown in Fig. 5. A surface wave is launched at the upper surface, and the probe scans the normal field distribution in the upper, side, and lower surfaces at a frequency of 5.46 GHz. It is observed that the surface wave conformally bends around the step and continues propagating forward without being reflected by the edges. It should be noted that since our probe antenna cannot reach the lower corner (built by side and lower surfaces) owing to a thick cladding layer of the antenna, there exists a discontinuity in the measured phase across the lower corner. This measurement of robust propagation of a surface wave across the step serves as a direct observation of the topological protection of TSA.
Discussion
The metamaterial approach, described by an effective model, is relatively simple in the designs and realizations of different topological phases. Without the constraints of high dielectricconstant and strict periodicity, as required in photonic crystals, it is also more feasible to be fabricated and assembled. Furthermore, owing to the advantage of deep subwavelength in metamaterials, surface waves are usually wellconfined on the interface. Thus, nearfield scanning greatly facilitates the measurements and discoveries of novel surface states in various topological photonic metamaterials. Although metallic elements are very lossy in the optical band, the same design can be transferred to terahertz systems, where a nonmagnetic terahertz TSA hopefully can be observed.
In conclusion, we have made a direct observation of photonic TSA at the surfaces of a photonic typeII Weyl metamaterial. Our work may well provide new insights and open new avenues to surface photonics. Owing to the robustness of topologically protected surfacewave propagation and other practical advantages in photonic systems, such as artificially controllable structure design, we anticipate our observation to be a starting point for surface periscope imaging technology, nearfield sensing, and directional information transmission in bulky integrated photonics.
Methods
Numerical calculations
Numerical calculations are performed using the eigenmode solver in CST Microwave Studio. Both FR4 substrate and PEC are considered as lossless materials in the simulation. Bulk states are calculated in a single unit cell configuration accompanied with periodic boundary conditions. Supercell, consisting of 20 unit cells, is used to simulate surface states. All CST files are available from the corresponding authors on request.
Nearfield scanning setup
The experimental setup is schematically shown in Fig. 2c, instead of using an angleresolved transmission measurement, we employ a microwave vector network analyser (VNA) and a nearfield antenna acting as a source (stationary) to provide excitation of electromagnetic surface waves, which are subsequently probed with a second nearfield antenna (controlled by an xyz translation stage). The band structure of the surface states can then be determined from Fourier analysis of the spatial distribution of the electric field at each frequency. In the scanning measurements, the scan step, which is set to 2 mm, equaling half the lattice constant of the cubic unit cell (4 × 4 × 4 mm^{3}), will determine the maximum surface kspace range as [−2π/a, 2π/a]^{2} under Fourier transformation. With fixed scan step, the kspace resolution is controlled by the maximum area being scanned, that is, the size of sample fabricated. Here, each unit cell can be considered as a subwavelength electromagnetic metaatom with a period of approximately λ/10. The collective effect of a large number of these metaatoms is measured, which is the key principle of metamaterials in general. Because the typeII Weyl point is located far away from the light cone, the topological surface wave is wellconfined at the interface between the CHM and air, which greatly facilitates the nearfield measurements.
Source and probe antennas
The measurement is performed in the microwave regime using a VNA to sweep the frequency (5–10 GHz), with a nearfield antenna connected to the excitation/detection port. The antenna consists of a coaxial cable with a length (1 mm) of outer conductor and sheath stripped away, leaving the central conductor (with core diameter 1 mm) exposed, which can provide efficient coupling to largemomentum surface modes owing to the broad range of momenta present in the exponentially decaying near field both for bulk and surface states. The antenna also provides a method of measuring the amplitude and phase of the near field of the modes with subwavelength resolution. The probe is most sensitive to field components parallel to its orientation.
Sample fabrication and assembly
The sample is fabricated by a commercial printed circuit board (PCB) company. Twosample assemblies for different measurements are shown in Supplementary Fig. 1. To clearly extract bulk and surface states from the CHM, a 300 mm^{3}block is built, which is assembled by 75 periods of trilayers along the z direction. Each trilayer consists of three sublayers: chiral (2 mmthick), blank (1 mmthick), and hyperbolic layer (1 mmthick). We scanned both top surface and side surface with probe and source antennas as shown in Supplementary Fig. 1a. Both antennas can be bent to orient them in arbitrary directions to meet our different polarization requirements. Supplementary Fig. 1b shows the step configuration for verifying back scatteringimmune propagation. In total, four blocks are used to construct the step. The interface in the middle may introduce slight scattering for the surface wave. In the measurement, we scanned normal components of three different surfaces (top, side, and lower) with probe step of 4 mm.
Data availability
The data that support the findings of this study are available from the corresponding author on request.
Additional information
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
 1.
Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).
 2.
Qi, X.L. & Zhang, S.C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).
 3.
Liu, Z. K. et al. Discovery of a threedimensional topological dirac semimetal, Na_{3}Bi. Science 343, 864 (2014).
 4.
Yang, B.J. & Nagaosa, N. Classification of stable threedimensional dirac semimetals with nontrivial topology. Nat. Commun. 5, 4898 (2014).
 5.
Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermiarc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).
 6.
Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).
 7.
Xu, G., Weng, H., Wang, Z., Dai, X. & Fang, Z. Chern semimetal and the quantized anomalous hall effect in HgCr_{2}Se_{4}. Phys. Rev. Lett. 107, 186806 (2011).
 8.
Weng, H., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl semimetal phase in noncentrosymmetric transitionmetal monophosphides. Phys. Rev. X 5, 011029 (2015).
 9.
Xu, S.Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613 (2015).
 10.
Lu, L., Fu, L., Joannopoulos, J. D. & Soljacic, M. Weyl points and line nodes in gyroid photonic crystals. Nat. Photon 7, 294–299 (2013).
 11.
Rechtsman, M. C. et al. Photonic floquet topological insulators. Nature 496, 196–200 (2013).
 12.
Khanikaev, A. B. et al. Photonic topological insulators. Nat. Mater. 12, 233–239 (2013).
 13.
Chen, W.J. et al. Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide. Nat. Commun. 5, 5782 (2014).
 14.
Yang, Z. et al. Topological acoustics. Phys. Rev. Lett. 114, 114301 (2015).
 15.
Mousavi, S. H., Khanikaev, A. B. & Wang, Z. Topologically protected elastic waves in phononic metamaterials. Nat. Commun. 6, 8682 (2015).
 16.
Süsstrunk, R. & Huber, S. D. Observation of phononic helical edge states in a mechanical topological insulator. Science 349, 47 (2015).
 17.
Fleury, R., Khanikaev, A. B. & Alù, A. Floquet topological insulators for sound. Nat. Commun. 7, 11744 (2016).
 18.
He, C. et al. Acoustic topological insulator and robust oneway sound transport. Nat. Phys 12, 1124–1129 (2016).
 19.
Soluyanov, A. A. et al. TypeII Weyl semimetals. Nature 527, 495–498 (2015).
 20.
Batabyal, R. et al. Visualizing weakly bound surface Fermi arcs and their correspondence to bulk Weyl fermions. Sci. Adv. 2, e1600709 (2016).
 21.
Huang, L. et al. Spectroscopic evidence for a type II Weyl semimetallic state in MoTe_{2}. Nat. Mater. 15, 1155–1160 (2016).
 22.
Lu, L. et al. Experimental observation of Weyl points. Science 349, 622–624 (2015).
 23.
Xiao, M., Chen, W.J., He, W.Y. & Chan, C. T. Synthetic gauge flux and Weyl points in acoustic systems. Nat. Phys. 11, 920–924 (2015).
 24.
Chen, W.J., Xiao, M. & Chan, C. T. Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states. Nat. Commun. 7, 13038 (2016).
 25.
Gao, W. et al. Photonic Weyl degeneracies in magnetized plasma. Nat. Commun. 7, 12435 (2016).
 26.
Noh, J. et al. Experimental observation of optical Weyl points and Fermi arclike surface states. Nat. Phys. 13, 611–617 (2017).
 27.
Gao, W. et al. Topological photonic phase in chiral hyperbolic metamaterials. Phys. Rev. Lett. 114, 037402 (2015).
 28.
Xiao, M., Lin, Q. & Fan, S. Hyperbolic Weyl point in reciprocal chiral metamaterials. Phys. Rev. Lett. 117, 057401 (2016).
 29.
Demetriadou, A. & Pendry, J. B. Taming spatial dispersion in wire metamaterial. J. Phys. Condens. Matter. 20, 295222 (2008).
 30.
Zhang, S. et al. Photoinduced handedness switching in terahertz chiral metamolecules. Nat. Commun. 3, 942 (2012).
Acknowledgements
We thank Ling Lu for discussions and feedback. This work was financially supported by ERC Consolidator Grant (Topological), the Royal Society and the Wolfson Foundation. B.Y. acknowledges China Scholarship Council (201306110041). S.Z. and B.B. acknowledge support from the Royal Society. Y.X. and D.F. acknowledge support from the National Natural Science Foundation of China (Grant Nos. 61490713 and 61505111). Q.G. acknowledges support from the National Natural Science Foundation of China (Grant No. 11604216). L.E.B., B.T. and A.P.H. acknowledge financial support from the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom, via the EPSRC Centre for Doctoral Training in Metamaterials (Grant No. EP/L015331/1). All data created during this research are openly available from the University of Exeter's institutional repository at https://ore.exeter.ac.uk/repository/handle/10871/28162.
Author information
Author notes
Biao Yang, Qinghua Guo and Ben Tremain contributed equally to this work.
Affiliations
School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK
 Biao Yang
 , Qinghua Guo
 , Wenlong Gao
 , Hongchao Liu
 , Benjamin Béri
 & Shuang Zhang
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
 Qinghua Guo
 , Yuanjiang Xiang
 & Dianyuan Fan
Electromagnetic and Acoustic Materials Group, Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter, EX4 4QL, UK
 Ben Tremain
 , Lauren E. Barr
 & Alastair P. Hibbins
Authors
Search for Biao Yang in:
Search for Qinghua Guo in:
Search for Ben Tremain in:
Search for Lauren E. Barr in:
Search for Wenlong Gao in:
Search for Hongchao Liu in:
Search for Benjamin Béri in:
Search for Yuanjiang Xiang in:
Search for Dianyuan Fan in:
Search for Alastair P. Hibbins in:
Search for Shuang Zhang in:
Contributions
The data were measured and analyzed by B.Y., Q.G., B.T., L.E.B., A.P.H., and S.Z. The sample was designed by B.Y. and S.Z. The experimental concept was developed by A.P.H., B.T., and S.Z. All authors contributed extensively to the discussion of the results, as well as to the preparation of the manuscript.
Competing interests
The authors declare no competing financial interests.
Corresponding authors
Correspondence to Alastair P. Hibbins or Shuang Zhang.
Electronic supplementary material
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Further reading

Experimental observation of photonic nodal line degeneracies in metacrystals
Nature Communications (2018)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.