Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vitamin D3 improved erectile function recovery by regulating autophagy and apoptosis in a rat model of cavernous nerve injury

Abstract

Vitamin D3 is an important element in improving erectile function. However, the mechanisms of vitamin D3 remain unknown. Thus, we explored the effect of vitamin D3 on erectile function recovery after nerve injury in a rat model and investigated its possible molecular mechanisms. Eighteen male Sprague–Dawley rats were used in this study. The rats were randomly divided into three groups: the control, bilateral cavernous nerve crush (BCNC), and BCNC + vitamin D3 groups. BCNC model was established in rats by surgery. The intracavernosal pressure and the ratio of intracavernosal pressure to mean arterial pressure were utilized to evaluate erectile function. Masson trichrome staining, immunohistochemistry, terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling and western blot analysis were performed on penile tissues to elucidate the molecular mechanism. The results indicated that vitamin D3 alleviated hypoxia and suppressed the fibrosis signalling pathway by upregulating the expression of eNOS (p = 0.001), nNOS (p = 0.018) and α-SMA (p = 0.025) and downregulating the expression of HIF-1α (p = 0.048) and TGF-β1 (p = 0.034) in BCNC rats. Vitamin D3 promoted erectile function restoration by enhancing the autophagy process through decreases in the p-mTOR/mTOR ratio (p = 0.02) and p62 (p = 0.001) expression and increases in Beclin1 expression (p = 0.001) and the LC3B/LC3A ratio (p = 0.041). Vitamin D3 application improved erectile function rehabilitation by suppressing the apoptotic process through decreases in the expression of Bax (p = 0.002) and caspase-3 (p = 0.046) and an increase in the expression of Bcl2 (p = 0.004). Therefore, We concluded that vitamin D3 improved the erectile function recovery in BCNC rats by alleviating hypoxia and fibrosis, enhancing autophagy and inhibiting apoptosis in the corpus cavernosum.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Vitamin D3 application improved erectile function.
Fig. 2: Vitamin D3 alleviated hypoxia and fibrosis in the cavernosa.
Fig. 3: Vitamin D3 application promoted autophagy.
Fig. 4: Vitamin D3 application inhibited apoptosis.

Similar content being viewed by others

Data availability

The data underlying this article will be shared on reasonable request to the corresponding author.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Van Poppel H, Roobol MJ, Chapple CR, Catto JWF, N’Dow J, Sønksen J, et al. Prostate-specific antigen testing as part of a risk-adapted early detection strategy for prostate cancer: european association of urology position and recommendations for 2021. Eur Urol. 2021;80:703–11.

    Article  PubMed  Google Scholar 

  3. Mottet N, van den Bergh RCN, Briers E, Van den Broeck T, Cumberbatch MG, De Santis M, et al. EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer-2020 update. part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol. 2021;79:243–62.

    Article  CAS  PubMed  Google Scholar 

  4. Wallis CJD, Glaser A, Hu JC, Huland H, Lawrentschuk N, Moon D, et al. Survival and complications following surgery and radiation for localized prostate cancer: an international collaborative review. Eur Urol. 2018;73:11–20.

    Article  PubMed  Google Scholar 

  5. Novara G, Ficarra V, Rosen RC, Artibani W, Costello A, Eastham JA, et al. Systematic review and meta-analysis of perioperative outcomes and complications after robot-assisted radical prostatectomy. Eur Urol. 2012;62:431–52.

    Article  PubMed  Google Scholar 

  6. Ficarra V, Novara G, Ahlering TE, Costello A, Eastham JA, Graefen M, et al. Systematic review and meta-analysis of studies reporting potency rates after robot-assisted radical prostatectomy. Eur Urol. 2012;62:418–30.

    Article  PubMed  Google Scholar 

  7. Mulhall JP. Defining and reporting erectile function outcomes after radical prostatectomy: challenges and misconceptions. J Urol. 2009;181:462–71.

    Article  PubMed  Google Scholar 

  8. Raina R, Agarwal A, Ausmundson S, Lakin M, Nandipati KC, Montague DK, et al. Early use of vacuum constriction device following radical prostatectomy facilitates early sexual activity and potentially earlier return of erectile function. Int J Impot Res. 2006;18:77–81.

    Article  CAS  PubMed  Google Scholar 

  9. McCullough AR, Hellstrom WG, Wang R, Lepor H, Wagner KR, Engel JD. Recovery of erectile function after nerve sparing radical prostatectomy and penile rehabilitation with nightly intraurethral alprostadil versus sildenafil citrate. J Urol. 2010;183:2451–6.

    Article  CAS  PubMed  Google Scholar 

  10. Jo JK, Jeong SJ, Oh JJ, Lee SW, Lee S, Hong SK, et al. Effect of starting penile rehabilitation with sildenafil immediately after robot-assisted laparoscopic radical prostatectomy on erectile function recovery: a prospective randomized trial.J Urol. 2018;199:1600–6.

    Article  CAS  PubMed  Google Scholar 

  11. Raina R, Lakin MM, Agarwal A, Sharma R, Goyal KK, Montague DK, et al. Long-term effect of sildenafil citrate on erectile dysfunction after radical prostatectomy: 3-year follow-up. Urology. 2003;62:110–5.

    Article  PubMed  Google Scholar 

  12. Tal R, Valenzuela R, Aviv N, Parker M, Waters WB, Flanigan RC, et al. Persistent erectile dysfunction following radical prostatectomy: the association between nerve-sparing status and the prevalence and chronology of venous leak. J Sex Med. 2009;6:2813–9.

    Article  PubMed  Google Scholar 

  13. Mullerad M, Donohue JF, Li PS, Scardino PT, Mulhall JP. Functional sequelae of cavernous nerve injury in the rat: is there model dependency. J Sex Med. 2006;3:77–83.

    Article  PubMed  Google Scholar 

  14. Quinlan DM, Nelson RJ, Partin AW, Mostwin JL, Walsh PC. The rat as a model for the study of penile erection. J Urol. 1989;141:656–61.

    Article  CAS  PubMed  Google Scholar 

  15. Fall PA, Izikki M, Tu L, Swieb S, Giuliano F, Bernabe J, et al. Apoptosis and effects of intracavernous bone marrow cell injection in a rat model of postprostatectomy erectile dysfunction. Eur Urol. 2009;56:716–25.

    Article  PubMed  Google Scholar 

  16. Zhu GQ, Jeon SH, Bae WJ, Choi SW, Jeong HC, Kim KS, et al. Efficient promotion of autophagy and angiogenesis using mesenchymal stem cell therapy enhanced by the low-energy shock waves in the treatment of erectile dysfunction. Stem Cells Int. 2018;2018:1302672.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Barassi A, Pezzilli R, Colpi GM, Corsi Romanelli MM, Melzi d’Eril GV. Vitamin D and erectile dysfunction. J Sex Med. 2014;11:2792–800.

    Article  CAS  PubMed  Google Scholar 

  18. Dumbraveanu I, Banov P, Arian I, Ceban E. The correlations of clinical and biochemical indices of vitamin D with erectile dysfunction. J Med Life. 2020;13:144–50.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Barbarawi M, Zayed Y, Barbarawi O, Bala A, Alabdouh A, Gakhal I, et al. Effect of vitamin D supplementation on the incidence of diabetes mellitus. J Clin Endocrinol Metab. 2020;105:dgaa335.

    Article  PubMed  Google Scholar 

  20. Jo EK. Innate immunity to mycobacteria: vitamin D and autophagy. Cell Microbiol. 2010;12:1026–35.

    Article  CAS  PubMed  Google Scholar 

  21. Lin H, Yuan J, Ruan KH, Yang W, Zhang J, Dai Y, et al. COX-2-10aa-PGIS gene therapy improves erectile function in rats after cavernous nerve injury. J Sex Med. 2013;10:1476–87.

    Article  CAS  PubMed  Google Scholar 

  22. Liu C, Cao Y, Ko TC, Chen M, Zhou X, Wang R. The changes of MicroRNA expression in the corpus cavernosum of a rat model with cavernous nerve injury. J Sex Med. 2018;15:958–65.

    Article  PubMed  Google Scholar 

  23. Burnett AL. Rationale for cavernous nerve restorative therapy to preserve erectile function after radical prostatectomy. Urology. 2003;61:491–7.

    Article  PubMed  Google Scholar 

  24. Yee Koh M, Spivak-Kroizman TR, Powis G. HIF-1 regulation: not so easy come, easy go. Trends Biochem Sci. 2008;33:526–34.

    Article  PubMed  Google Scholar 

  25. Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol. 2006;70:1469–80.

    Article  CAS  PubMed  Google Scholar 

  26. Gontero P, Galzerano M, Bartoletti R, Magnani C, Tizzani A, Frea B, et al. New insights into the pathogenesis of penile shortening after radical prostatectomy and the role of postoperative sexual function. J Urol. 2007;178:602–7.

    Article  PubMed  Google Scholar 

  27. Hu WL, Hu LQ, Li SW, Zheng XM, Tian BC. Expression of transforming growth factor-beta1 in penile tissue from rats with bilateral cavernosal nerve ablation. BJU Int. 2004;94:424–8.

    Article  CAS  PubMed  Google Scholar 

  28. Balakumar P, Chakkarwar VA, Krishan P, Singh M. Vascular endothelial dysfunction: a tug of war in diabetic nephropathy? Biomed Pharmacother. 2009;63:171–9.

    Article  CAS  PubMed  Google Scholar 

  29. Holick MF, MacLaughlin JA, Clark MB, Holick SA, Potts JT Jr, Anderson RR, et al. Photosynthesis of previtamin D3 in human skin and the physiologic consequences. Science. 1980;210:203–5.

    Article  CAS  PubMed  Google Scholar 

  30. Rapuri PB, Gallagher JC, Haynatzki G. Effect of vitamins D2 and D3 supplement use on serum 25OHD concentration in elderly women in summer and winter. Calcif Tissue Int. 2004;74:150–6.

    Article  CAS  PubMed  Google Scholar 

  31. Vieth R. Why “Vitamin D” is not a hormone, and not a synonym for 1,25-dihydroxy-vitamin D, its analogs or deltanoids. J Steroid Biochem Mol Biol. 2004;89–90:571–3.

    Article  CAS  PubMed  Google Scholar 

  32. Farag YMK, Guallar E, Zhao D, Kalyani RR, Blaha MJ, Feldman DI, et al. Vitamin D deficiency is independently associated with greater prevalence of erectile dysfunction: the National Health and Nutrition Examination Survey (NHANES) 2001–2004. Atherosclerosis. 2016;252:61–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Halayko AJ, Salari H, Ma X, Stephens NL. Markers of airway smooth muscle cell phenotype. Am J Physiol. 1996;270:L1040–51.

    CAS  PubMed  Google Scholar 

  34. Zhang KQ, Tian T, Hu LL, Wang HR, Fu Q. Effect of probucol on autophagy and apoptosis in the penile tissue of streptozotocin-induced diabetic rats. Asian J Androl. 2020;22:409–13.

    Article  CAS  PubMed  Google Scholar 

  35. Klein LT, Miller MI, Buttyan R, Raffo AJ, Burchard M, Devris G, et al. Apoptosis in the rat penis after penile denervation. J Urol. 1997;158:626–30.

    Article  CAS  PubMed  Google Scholar 

  36. Noda T. Regulation of autophagy through TORC1 and mTORC1. Biomolecules. 2017;7:52.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Romanov J, Walczak M, Ibiricu I, Schüchner S, Ogris E, Kraft C, et al. Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation. EMBO J. 2012;31:4304–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005;122:927–39.

    Article  CAS  PubMed  Google Scholar 

  39. Feng W, Huang S, Wu H, Zhang M. Molecular basis of Bcl-xL’s target recognition versatility revealed by the structure of Bcl-xL in complex with the BH3 domain of Beclin-1. J Mol Biol. 2007;372:223–35.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the pathological laboratory of West China Hospital for their technical assistance with this research. This research was supported by the Natural Science Foundation of China (81871147 and 82071639) and the Chengdu Science and Technology Program (2019-YFYF-00087-SN).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualize: JHY, FQ, CJW. Experiment Execution: SYZ, YX, BY, HW, FXZ. Formal analysis: SYZ, YX, FXZ. Methodology: FQ, CJW. Writing–original draft: SYZ, YX. Writing–review & editing: JHY, FQ, CJW.

Corresponding author

Correspondence to Jiuhong Yuan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Xiong, Y., Yu, B. et al. Vitamin D3 improved erectile function recovery by regulating autophagy and apoptosis in a rat model of cavernous nerve injury. Int J Impot Res (2023). https://doi.org/10.1038/s41443-023-00679-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41443-023-00679-4

Search

Quick links