Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Alleviation of impaired reactivity in the corpus cavernosum of STZ-diabetic rats by slow-release H2S donor GYY4137


GYY4137 is a novel hydrogen sulfide (H2S) releasing molecule with vasodilator activity. The objectives of this study were to investigate: (1) the pharmacological effect of GYY4137 on the reactivity of the corpus cavernosum (CC) from normal and diabetic rats; (2) the contribution of ATP-sensitive potassium (K-ATP) channels and nitric oxide (NO) pathway; (3) the reactivity to vasoactive agonists following ex vivo incubation of the diabetic rat CC with GYY4137. Longitudinal strips of CC from control and diabetic male Sprague-Dawley (SD) rats (n = 5–6 animals per group) were suspended in organ-baths. Responses to GYY4137, carbachol, or phenylephrine (PE) were determined by measurement of changes in isometric tension. The effects of acute incubation of the CC strips with L-NAME (NO synthase inhibitor) or glibenclamide (K-ATP channel inhibitor) on the relaxant responses to GYY4137 were examined. The effect of ex vivo incubation with GYY4137 (10−5 M) on the responses of CC to carbachol or PE was evaluated. We found that GYY4137 provoked relaxation in the CC strips, which was significantly reduced in the presence of L-NAME or glibenclamide. Ex vivo incubation of diabetic CC with GYY4137 resulted in a significant improvement in the vascular responses to the added agonists. We conclude that GYY4137 is a relaxant agonist in SD rats CC, and the response is mediated, at least in part, by NO and K-ATP channels. Brief incubation of diabetic CC with GYY4137 markedly improved the impaired vascular reactivity, thus raising the question whether chronic in vivo treatment of diabetic animals with GYY4137 would have any protective effect, which is worth further investigation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Andersson KE. Mechanisms of penile erection and basis for pharmacological treatment of erectile dysfunction. Pharmacol Rev. 2011;63:811–59.

    CAS  Google Scholar 

  2. 2.

    Andersson KE, Wagner G. Physiology of penile erection. Physiol Rev. 1995;75:191–236.

    CAS  Google Scholar 

  3. 3.

    Anderson KE. Pharmacology of lower urinary tract smooth muscles and penile erectile tissues. Pharmacol Rev. 1993;45:253–308.

    CAS  Google Scholar 

  4. 4.

    Dean RC, Lue TF. Physiology of penile erection and pathophysiology of erectile dysfunction. Urol Clin North Am. 2005;32::379–95.

    Google Scholar 

  5. 5.

    Ignarro LJ, Bush PA, Buga GM, Wood KS, Fukuto JM, Rajfer J. Nitric oxide and cyclic GMP formation upon electrical field stimulation cause relaxation of corpus cavernosum smooth muscle. Biochem Biophys Res Commun. 1990;170:843–50.

    CAS  Google Scholar 

  6. 6.

    Azadzoi KM, Kim N, Brown ML, Goldstein I, Cohen RA, De Tejada IS. Endothelium-derived nitric oxide and cyclooxygenase products modulate corpus cavernosum smooth muscle tone. J Urol. 1992;147:220–5.

    CAS  Google Scholar 

  7. 7.

    Burnett A, Lowenstein C, Bredt D, Chang T, Snyder S. Nitric oxide: a physiologic mediator of penile erection. Science. 1992;257:401–3.

    CAS  Google Scholar 

  8. 8.

    Argiolas A. Nitric oxide is a central mediator of penile erection. Neuropharmacology. 1994;33:1339–44.

    CAS  Google Scholar 

  9. 9.

    Hull EM, Lumley LA, Matuszewich L, Dominguez J, Moses J, Lorrain DS. The roles of nitric oxide in sexual function of male rats. Neuropharmacology. 1994;33:1499–504.

    CAS  Google Scholar 

  10. 10.

    Angulo J, González-Corrochano R, Cuevas P, Fernández A, Fuente JML, Rolo F, et al. Diabetes exacerbates the functional deficiency of NO/cGMP pathway associated with erectile dysfunction in human corpus cavernosum and penile arteries. J Sex Med. 2010;7:758–68.

    CAS  Google Scholar 

  11. 11.

    Maiorino MI, Bellastella G, Esposito K. Diabetes and sexual dysfunction: current perspectives. Diabetes, Metab Syndr Obes Targets Ther. 2014;7:95–105.

    Google Scholar 

  12. 12.

    Thorve VS, Kshirsagar AD, Vyawahare NS, Joshi VS, Ingale KG, Mohite RJ. Diabetes-induced erectile dysfunction: epidemiology, pathophysiology and management. J Diabetes Complicat. 2011;25:129–36.

    Google Scholar 

  13. 13.

    [No authors listed]. NIH Consensus Conference. Impotence. NIH consensus development panel on impotence. JAMA. 1993;270:83–90.

    Google Scholar 

  14. 14.

    Feldman HA, Goldstein I, Hatzichristou DG, Krane RJ, McKinlay JB. Impotence and its medical and psychosocial correlates: results of the massachusetts male aging study. J Urol. 1994;151:54–61.

    CAS  Google Scholar 

  15. 15.

    Ayta IA, McKinlay JB, Krane RJ. The likely worldwide increase in erectile dysfunction between 1995 and 2025 and some possible policy consequences. BJU Int. 1999;84:50–6.

    CAS  Google Scholar 

  16. 16.

    Azadzoi KM, De Tejada IS. Diabetes mellitus impairs neurogenic and endothelium-dependent relaxation of rabbit corpus cavernosum smooth muscle. J Urol. 1992;148:1587–91.

    CAS  Google Scholar 

  17. 17.

    Hecht MJ, Neundörfer B, Kiesewetter F, Hilz MJ. Neuropathy is a major contributing factor to diabetic erectile dysfunction. Neurol Res. 2001;23:651–4.

    CAS  Google Scholar 

  18. 18.

    de Tejada IS, Goldstein I, Azadzoi K, Krane RJ, Cohen RA. Impaired neurogenic and endothelium-mediated relaxation of penile smooth muscle from diabetic men with impotence. New Engl J Med. 1989;320:1025–30.

    Google Scholar 

  19. 19.

    Du X, Matsumura T, Edelstein D, Rossetti L, Zsengellér Z, Szabó C, et al. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Investig. 2003;112:1049–57.

    CAS  Google Scholar 

  20. 20.

    Pegge NC, Twomey AM, Vaughton K, Gravenor MB, Ramsey MW, Price DE. The role of endothelial dysfunction in the pathophysiology of erectile dysfunction in diabetes and in determining response to treatment. Diabet Med. 2006;23:873–8.

    CAS  Google Scholar 

  21. 21.

    Vernet D, Cai L, Garban H, Babbitt ML, Murray FT, Rajfer J, et al. Reduction of penile nitric oxide synthase in diabetic BB/WORdp (type I) and BBZ/WORdp (type II) rats with erectile dysfunction. Endocrinology. 1995;136:5709–17.

    CAS  Google Scholar 

  22. 22.

    Bivalacqua TJ, Champion HC, Usta MF, Cellek S, Chitaley K, Webb RC, et al. RhoA/Rho-kinase suppresses endothelial nitric oxide synthase in the penis: a mechanism for diabetes-associated erectile dysfunction. Proc Natl Acad Sci USA. 2004;101:9121–6.

    CAS  Google Scholar 

  23. 23.

    Sullivan ME, Dashwood MR, Thompson CS, Muddle JR, Mikhailidis DP, Morgan RJ. Alterations in endothelin B receptor sites in cavernosal tissue of diabetic rabbits: potential relevance to the pathogenesis of erectile dysfunction. J Urol. 1997;158:1966–72.

    CAS  Google Scholar 

  24. 24.

    Boolell M, Allen MJ, Ballard SA, Gepi-Attee S, Muirhead GJ, Naylor AM, et al. Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. Int J Impot Res. 1996;8:47–52.

    CAS  Google Scholar 

  25. 25.

    Rosen RC, Kostis JB. Overview of phosphodiesterase 5 inhibition in erectile dysfunction. Am J Cardiol. 2003;92:9–18.

    Google Scholar 

  26. 26.

    Penson DF, Wessells H. Erectile dysfunction in diabetic patients. Diabet Spectr. 2004;17:225–30.

    Google Scholar 

  27. 27.

    El-Sakka AI, Yassin AA. Amelioration of penile fibrosis: myth or reality. J Androl. 2010;31:324–35.

    CAS  Google Scholar 

  28. 28.

    Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev. 2012;92:791–896.

    CAS  Google Scholar 

  29. 29.

    Qabazard B, Ahmed S, Li L, Arlt VM, Moore PK, Stürzenbaum SR. C. elegans aging is modulated by hydrogen sulfide and the sulfhydrylase/cysteine synthase cysl-2. PLoS ONE. 2013;8:e80135.

    CAS  Google Scholar 

  30. 30.

    Qabazard B, Li L, Gruber J, Peh MT, Ng LF, Kumar SD, et al. Hydrogen sulfide is an endogenous regulator of aging in Caenorhabditis elegans. Antioxid Redox Signal. 2014;20:2621–30.

    CAS  Google Scholar 

  31. 31.

    Qabazard B, and Stürzenbaum, SR. H2S: a new approach to lifespan enhancement and healthy ageing? In: Whiteman PKM, editior. Handbook of experimental pharmacology. Vol. 230. Berlin: Springer; 2015. p. 269–87.

  32. 32.

    Srilatha B, Adaikan PG, Moore PK. Possible role for the novel gasotransmitter hydrogen sulphide in erectile dysfunction--a pilot study. Eur J Pharmacol. 2006;535:280–2.

    CAS  Google Scholar 

  33. 33.

    d’Emmanuele di Villa Bianca R, Sorrentino R, Maffia P, Mirone V, Imbimbo C, Fusco F, et al. Hydrogen sulfide as a mediator of human corpus cavernosum smooth-muscle relaxation. Proc Natl Acad Sci USA. 2009;106:4513–8.

    Google Scholar 

  34. 34.

    Li L, Whiteman M, Guan YY, Neo KL, Cheng Y, Lee SW, et al. Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation. 2008;117:2351–60.

    CAS  Google Scholar 

  35. 35.

    Li L, Salto-Tellez M, Tan CH, Whiteman M, Moore PK. GYY4137, a novel hydrogen sulfide-releasing molecule, protects against endotoxic shock in the rat. Free Radic Biol Med. 2009;47:103–13.

    CAS  Google Scholar 

  36. 36.

    Whiteman M, Li L, Rose P, Tan C-H, Parkinson DB, Moore PK. The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages. Antioxid Redox Signal. 2010;12:1147–54.

    CAS  Google Scholar 

  37. 37.

    Li L, Fox B, Keeble J, Salto-Tellez M, Winyard PG, Wood ME, et al. The complex effects of the slow‐ releasing hydrogen sulfide donor GYY4137 in a model of acute joint inflammation and in human cartilage cells. J Cell Mol Med. 2013;17:365–76.

    CAS  Google Scholar 

  38. 38.

    Li L, Fox B, Keeble J, Salto-Tellez M, Winyard PG, Wood ME, et al. The slow-releasing hydrogen sulfide donor, GYY4137, exhibits novel anti-cancer effects in vitro and in vivo. PLoS ONE. 2011;6:e21077.

    Google Scholar 

  39. 39.

    Liu Z, Han Y, Li L, Lu H, Meng G, Li X, et al. The hydrogen sulfide donor, GYY4137, exhibits anti-atherosclerotic activity in high fat fed apolipoprotein E(−/− mice). Br J Pharmacol. 2013;169:1795–809.

    CAS  Google Scholar 

  40. 40.

    Yousif MH, Kehinde EO, Benter IF. Different responses to angiotensin-(1-7) in young, aged and diabetic rabbit corpus cavernosum. Pharmacol Res. 2007;56:209–16.

    CAS  Google Scholar 

  41. 41.

    Junod A, Lambert AE, Stauffacher W, Renold AE. Diabetogenic action of streptozotocin: relationship of dose to metabolic response. J Clin Invest. 1969;48:2129–39.

    CAS  Google Scholar 

  42. 42.

    Gajdosík A, Gajdosíková A, Stefek M, Navarová J, Hozová R. Streptozotocin-induced experimental diabetes in male Wistar rats. Gen Physiol Biophys. 1999;18 Spec No:54–62.

  43. 43.

    Italiano G, Calabró A, Pagano F. A simplified in vitro preparation of the corpus cavernosum as a tool for investigating erectile pharmacology in the rat. Pharmacol Res. 1994;30:325–34.

    CAS  Google Scholar 

  44. 44.

    Zhao W, Zhang J, Lu Y, Wang R. The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J. 2001;20:6008–16.

    CAS  Google Scholar 

  45. 45.

    d’Emmanuele di Villa Bianca R, Sorrentino R, Mirone V, Cirino G. Hydrogen sulfide and erectile function: a novel therapeutic target. Nat Rev Urol. 2011;8:286–9.

    Google Scholar 

  46. 46.

    Ghasemi M, Dehpour AR, Moore KP, Mani AR. Role of endogenous hydrogen sulfide in neurogenic relaxation of rat corpus cavernosum. Biochem Pharmacol. 2012;83:1261–8.

    CAS  Google Scholar 

  47. 47.

    Qiu X, Villalta J, Lin G, Lue TF. Role of hydrogen sulfide in the physiology of penile erection. J Androl. 2012;33:529–35.

    CAS  Google Scholar 

  48. 48.

    Liaw RL, Srilatha B, Adaikan PG. Effects of hydrogen sulfide on erectile function and its possible mechanism(s) of action. J Sex Med. 2011;8:1853–64.

    CAS  Google Scholar 

  49. 49.

    Srilatha B, Adaikan PG, Li L, Moore PK. Hydrogen sulphide: a novel endogenous gasotransmitter facilitates erectile function. J Sex Med. 2007;4:1304–11.

    CAS  Google Scholar 

  50. 50.

    Aydinoglu F, Ogulener N. Characterization of relaxant mechanism of H2 S in mouse corpus cavernosum. Clin Exp Pharmacol Physiol. 2016;43:503–11.

    CAS  Google Scholar 

  51. 51.

    Bucci M, Papapetropoulos A, Vellecco V, Zhou Z, Zaid A, Giannogonas P, et al. cGMP-dependent protein kinase contributes to hydrogen sulfide-stimulated vasorelaxation. PLoS ONE. 2012;7:e53319.

    CAS  Google Scholar 

  52. 52.

    Fitzgerald R, DeSantiago B, Lee DY, Yang G, Kim JY, Foster DB, et al. H(2)S relaxes isolated human airway smooth muscle cells via the sarcolemmal K(ATP) channel. Biochem Biophys Res Commun. 2014;446:393–8.

    CAS  Google Scholar 

  53. 53.

    Fernandes VS, Ribeiro ASF, Martínez P, López-Oliva ME, Barahona MV, Orensanz LM, et al. Hydrogen sulfide plays a key role in the inhibitory neurotransmission to the pig intravesical ureter. PLoS ONE. 2014;9:e113580.

    Google Scholar 

  54. 54.

    Castro-Piedras I, Perez-Zoghbi JF. Hydrogen sulphide inhibits Ca(2+) release through InsP(3) receptors and relaxes airway smooth muscle. J Physiol. 2013;591:5999–6015.

    CAS  Google Scholar 

  55. 55.

    Robinson H, Wray S. A new slow releasing, H2S generating compound, GYY4137 relaxes spontaneous and oxytocin-stimulated contractions of human and rat pregnant myometrium. PLoS ONE. 2012;7:e46278.

    CAS  Google Scholar 

  56. 56.

    Chitnis MK, Njie-Mbye YF, Opere CA, Wood ME, Whiteman M, Ohia SE. Pharmacological actions of the slow release hydrogen sulfide donor GYY4137 on phenylephrine-induced tone in isolated bovine ciliary artery. Exp Eye Res. 2013;116:350–4.

    CAS  Google Scholar 

  57. 57.

    Mustafa AK, Sikka G, Gazi SK, Steppan J, Jung SM, Bhunia AK, et al. Hydrogen sulfide as endothelial derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res. 2011;109:1259–68.

    CAS  Google Scholar 

  58. 58.

    Chitaley K, Wingard CJ, Clinton Webb R, Branam H, Stopper VS, Lewis RW, et al. Antagonism of Rho-kinase stimulates rat penile erection via a nitric oxide-independent pathway. Nat Med. 2001;7:119–22.

    CAS  Google Scholar 

Download references


This study was funded by Kuwait University, Research Administration, Project No. MR01/17. We also would like to acknowledge “General Facilities Science (GF-S), Faculty of Science Nos. GS01/03 (GC MS DFS—Thermo and Bruker 600 MHz NMR) and GS02/10 (LC–MS/MS—Waters QToF)”.

Author information



Corresponding author

Correspondence to Bedoor Qabazard.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qabazard, B., Yousif, M.H.M. & Phillips, O.A. Alleviation of impaired reactivity in the corpus cavernosum of STZ-diabetic rats by slow-release H2S donor GYY4137. Int J Impot Res 31, 111–118 (2019).

Download citation


Quick links