Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Low-intensity extracorporeal shock wave therapy for erectile dysfunction after radical prostatectomy: a review of preclinical studies


Low-intensity extracorporeal shock wave therapy (LI-ESWT) is a novel treatment for erectile dysfunction (ED). Its ability to improve erectile function has been shown in patients with vasculogenic ED by many randomized-controlled trials against sham procedures. However, the role of LI-ESWT in ED caused by radical prostatectomy (RP) is still questionable because this type of ED was excluded from nearly all clinical studies; it has been investigated in only a few small single-arm trials. This review summarizes preclinical studies on mechanisms of action of LI-ESWT for ED and neurological diseases to explore the potential of this treatment for nerve-impaired ED after RP.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1


  1. Ficarra V, Novara G, Ahlering TE, Costello A, Eastham JA, Graefen M, et al. Systematic review and meta-analysis of studies reporting potency rates after robot-assisted radical prostatectomy. Eur Urol. 2012;62:418–30.

    Article  PubMed  Google Scholar 

  2. Nelson CJ, Scardino PT, Eastham JA, Mulhall JP. Back to baseline: erectile function recovery after radical prostatectomy from the patients’ perspective. J Sex Med. 2013;10:1636–43.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Lu Z, Lin G, Reed-Maldonado A, Wang C, Lee YC, Lue TF. Low-intensity extracorporeal shock wave treatment improves erectile function: a systematic review and meta-analysis. Eur Urol. 2017;71:223–33.

    Article  PubMed  Google Scholar 

  4. Capogrosso P, Salonia A, Briganti A, Montorsi F. Postprostatectomy erectile dysfunction: a review. World J Mens Health. 2016;34:73–88.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Weyne E, Mulhall J, Albersen M. Molecular pathophysiology of cavernous nerve injury and identification of strategies for nerve function recovery after radical prostatectomy. Curr Drug Targets. 2015;16:459–73.

    Article  CAS  PubMed  Google Scholar 

  6. Hausner T, Nόgrádi A. The use of shock waves in peripheral nerve regeneration: new perspectives? Int Rev Neurobiol. 2013;109:85–98.

    Article  PubMed  Google Scholar 

  7. Sopko NA, Burnett AL. Erection rehabilitation following prostatectomy--current strategies and future directions. Nat Rev Urol. 2016;13:216–25.

    Article  PubMed  Google Scholar 

  8. Frey A, Sønksen J, Fode M. Low-intensity extracorporeal shock wave therapy in the treatment of postprostatectomy erectile dysfunction: a pilot study. Scand J Urol. 2016;50:123–7.

    Article  PubMed  Google Scholar 

  9. Inoue S, Kurimura Y, Sadahide K, Ueno T, Ikeda K, Hieda K, et al. Low intensity extracorporeal shock wave therapy for erectile dysfunction in ED patients: initial experience in Japan. J Sex Med. 2013;10:224.

    Google Scholar 

  10. Chung E, Cartmill R. Evaluation of clinical efficacy, safety and patient satisfaction rate after low-intensity extracorporeal shockwave therapy for the treatment of male erectile dysfunction: an Australian first open-label single-arm prospective clinical trial. BJU Int. 2015;115(suppl 5):46–9.

    Article  PubMed  Google Scholar 

  11. Lobenwein D, Tepeköylü C, Kozaryn R, Pechriggl EJ, Bitsche M, Graber M, et al. Shock wave treatment protects from neuronal degeneration via a Toll-like receptor 3 dependent mechanism: implications of a first-ever causal treatment for ischemic spinal cord injury. J Am Heart Assoc. 2015;4:e002440.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Oudega M. Molecular and cellular mechanisms underlying the role of blood vessels in spinal cord injury and repair. Cell Tissue Res. 2012;349:269–88.

    Article  CAS  PubMed  Google Scholar 

  13. Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci USA. 2002;99:11946–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Yahata K, Kanno H, Ozawa H, Yamaya S, Tateda S, Ito K, et al. Low-energy extracorporeal shock wave therapy for promotion of vascular endothelial growth factor expression and angiogenesis and improvement of locomotor and sensory functions after spinal cord injury. J Neurosurg Spine. 2016;25:745–55.

    Article  PubMed  Google Scholar 

  15. Chen YL, Chen KH, Yin TC, Huang TH, Yuen CM, Chung SY, et al. Extracorporeal shock wave therapy effectively prevented diabetic neuropathy. Am J Transl Res. 2015;7:2543–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Lee JH, Kim SG. Effects of extracorporeal shock wave therapy on functional recovery and neurotrophin-3 expression in the spinal cord after crushed sciatic nerve injury in rats. Ultrasound Med Biol. 2015;41:790–6.

    Article  PubMed  Google Scholar 

  17. Hausner T, Pajer K, Halat G, Hopf R, Schmidhammer R, Redl H, et al. Improved rate of peripheral nerve regeneration induced by extracorporeal shock wave treatment in the rat. Exp Neurol. 2012;236:363–70.

    Article  PubMed  Google Scholar 

  18. Lei H, Xin H, Guan R, Xu Y, Li H, Tian W, et al. Low-intensity pulsed ultrasound improves erectile function in streptozotocin-induced type I diabetic rats. Urology. 2015;86:1241.e11–18.

    Article  Google Scholar 

  19. Qiu X, Lin G, Xin Z, Ferretti L, Zhang H, Lue TF, et al. Effects of low-energy shockwave therapy on the erectile function and tissue of a diabetic rat model. J Sex Med. 2013;10:738–46.

    Article  CAS  PubMed  Google Scholar 

  20. Liu J, Zhou F, Li GY, Wang L, Li HX, Bai GY, et al. Evaluation of the effect of different doses of low energy shock wave therapy on the erectile function of streptozotocin (STZ)-induced diabetic rats. Int J Mol Sci. 2013;14:10661–73.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Shan HT, Zhang HB, Chen WT, Chen FZ, Wang T, Luo JT, et al. Combination of low-energy shock-wave therapy and bone marrow mesenchymal stem cell transplantation to improve the erectile function of diabetic rats. Asian J Androl. 2017;19:26–33.

    CAS  PubMed  Google Scholar 

  22. Assaly-Kaddoum R, Giuliano F, Laurin M, Gorny D, Kergoat M, Bernabe J, et al. Low intensity extracorporeal shock wave therapy improves erectile function in a model of type II diabetes independently of NO/cGMP pathway. J Urol. 2016;196:950–6.

    Article  PubMed  Google Scholar 

  23. Li H, Matheu MP, Sun F, Wang L, Sanford MT, Ning H, et al. Low-energy shock wave therapy ameliorates erectile dysfunction in a pelvic neurovascular injuries rat model. J Sex Med. 2016;13:22–32.

    Article  PubMed  Google Scholar 

  24. Jeon SH, Shrestha KR, Kim RY, Jung AR, Park YH, Kwon O, et al. Combination therapy using human adipose-derived stem cells on the cavernous nerve and low-energy shockwaves on the corpus cavernosum in a rat model of post-prostatectomy erectile dysfunction. Urology. 2016;88:226.e1–9.

    Article  Google Scholar 

  25. Lin G, Reed-Maldonado AB, Wang B, Lee YC, Zhou J, Lu Z, et al. In situ activation of penile progenitor cells with low-intensity extracorporeal shockwave therapy. J Sex Med. 2017;14:493–501.

    Article  PubMed  Google Scholar 

  26. Wang B, Ning H, Reed-Maldonado AB, Zhou J, Ruan Y, Zhou T, et al. Low-intensity extracorporeal shock wave therapy enhances brain-derived neurotrophic factor expression through PERK/ATF4 signaling pathway. Int J Mol Sci. 2017;18:433.

    Article  PubMed Central  Google Scholar 

  27. Lin CS, Xin ZC, Wang Z, Deng C, Huang YC, Lin G, et al. Stem cell therapy for erectile dysfunction: a critical review. Stem Cells Dev. 2012;21:343–51.

    Article  CAS  PubMed  Google Scholar 

  28. Hsieh PS, Bochinski DJ, Lin GT, Nunes L, Lin CS, Lue TF. The effect of vascular endothelial growth factor and brain-derived neurotrophic factor on cavernosal nerve regeneration in a nerve-crush rat model. BJU Int. 2003;92:470–5.

    Article  CAS  PubMed  Google Scholar 

  29. Cleveland RO, McAteer JA. The physics of shockwave lithotripsy. In: Smith AD, editor. Smith’s textbook of endourology. Hoboken, NJ: Blackwell Publishing Ltd; 2007. p. 317–32.

    Google Scholar 

  30. Iacono F, Giannella R, Somma P, Manno G, Fusco F, Mirone V. Histological alterations in cavernous tissue after radical prostatectomy. J Urol. 2005;173:1673–6.

    Article  PubMed  Google Scholar 

Download references


This work was supported by the Science and Technology Foundation of the Sichuan Province (2014JY0183 to Y.-p.L.) and the Science and Technology Foundation of the Chengdu City (2014-HM01-00301-SF to Y.-p.L.).

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Rui Gao or Yi-ping Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Zi-jun Zou and Jia-yu Liang contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zou, Zj., Liang, Jy., Liu, Zh. et al. Low-intensity extracorporeal shock wave therapy for erectile dysfunction after radical prostatectomy: a review of preclinical studies. Int J Impot Res 30, 1–7 (2018).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links