Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Comparison of arterial stiffness indices measured by pulse wave velocity and pulse wave analysis for predicting cardiovascular and all-cause mortality in a Chinese population

Abstract

Arterial stiffness measured by pulse wave velocity and pulse wave analysis has been widely studied in different populations in terms of its correlation with cardiovascular events and all-cause mortality. It remains unknown which arterial stiffness index is better for risk stratification in the general population. We included 4129 participants from Gaoyou County, Jiangsu Province, China, with a median follow-up of 11 years. The primary endpoint was cardiovascular mortality, and the secondary endpoint was all-cause mortality. Harrell’s C-index, net reclassification improvement (NRI) and integrated discrimination improvement (IDI) based on the Cox proportional hazards regression model were evaluated to assess predictive discrimination and accuracy. The associations between the 4 indices and cardiovascular mortality remained significant after adjusting for the Framingham Risk Score (FRS) and/or associated risk factors. Considering reclassification based on the newly integrated models (FRS model combined with the 4 indices), NRI for cardiovascular mortality showed that haPWV and baPWV had more significant improvement in reclassification compared with C1 and C2 [NRI with 95% CI: haPWV 0.410 (0.293, 0.523); baPWV 0.447 (0.330, 0.553); C1 0.312 (0.182, 0.454); C2 0.328 (0.159, 0.463); all P < 0.05]. This study showed that pulse wave velocity (haPWV and baPWV) provides better discrimination of long-term risk than arterial elasticity indices (C1 and C2) in the general population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Laurent S, Boutouyrie P, Asmar R, Gautier I, Laloux B, Guize L, et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension. 2001;37:1236–41.

    Article  CAS  PubMed  Google Scholar 

  2. Cruickshank K, Riste L, Anderson SG, Wright JS, Dunn G, Gosling RG. Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: an integrated index of vascular function? Circulation. 2002;106:2085–90.

    Article  PubMed  Google Scholar 

  3. Sharif S, Visseren FLJ, Spiering W, de Jong PA, Bots ML, Westerink J. Arterial stiffness as a risk factor for cardiovascular events and all-cause mortality in people with Type 2 diabetes. Diabet Med. 2019;36:1125–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Blacher J, Guerin AP, Pannier B, Marchais SJ, Safar ME, London GM. Impact of aortic stiffness on survival in end-stage renal disease. Circulation. 1999;99:2434–9.

    Article  CAS  PubMed  Google Scholar 

  5. Blacher J, Safar ME, Guerin AP, Pannier B, Marchais SJ, London GM. Aortic pulse wave velocity index and mortality in end-stage renal disease. Kidney Int. 2003;63:1852–60.

    Article  PubMed  Google Scholar 

  6. Meaume S, Benetos A, Henry OF, Rudnichi A, Safar ME. Aortic pulse wave velocity predicts cardiovascular mortality in subjects >70 years of age. Arterioscler Thromb Vasc Biol. 2001;21:2046–50.

    Article  CAS  PubMed  Google Scholar 

  7. Shokawa T, Imazu M, Yamamoto H, Toyofuku M, Tasaki N, Okimoto T, et al. Pulse wave velocity predicts cardiovascular mortality: findings from the Hawaii-Los Angeles-Hiroshima study. Circ J. 2005;69:259–64.

    Article  PubMed  Google Scholar 

  8. Willum-Hansen T, Staessen JA, Torp-Pedersen C, Rasmussen S, Thijs L, Ibsen H, et al. Prognostic value of aortic pulse wave velocity as index of arterial stiffness in the general population. Circulation. 2006;113:664–70.

    Article  PubMed  Google Scholar 

  9. Townsend RR, Wilkinson IB, Schiffrin EL, Avolio AP, Chirinos JA, Cockcroft JR, et al. Recommendations for Improving and Standardizing Vascular Research on Arterial Stiffness: a Scientific Statement From the American Heart Association. Hypertension. 2015;66:698–722.

    Article  CAS  PubMed  Google Scholar 

  10. Tanaka H, Munakata M, Kawano Y, Ohishi M, Shoji T, Sugawara J, et al. Comparison between carotid-femoral and brachial-ankle pulse wave velocity as measures of arterial stiffness. J Hypertens. 2009;27:2022–7.

    Article  CAS  PubMed  Google Scholar 

  11. Sugawara J, Hayashi K, Yokoi T, Cortez-Cooper MY, DeVan AE, Anton MA, et al. Brachial-ankle pulse wave velocity: an index of central arterial stiffness? J Hum Hypertens. 2005;19:401–6.

    Article  CAS  PubMed  Google Scholar 

  12. Munakata M, Konno S, Miura Y, Yoshinaga K, Group JTS. Prognostic significance of the brachial-ankle pulse wave velocity in patients with essential hypertension: final results of the J-TOPP study. Hypertens Res. 2012;35:839–42.

    Article  CAS  PubMed  Google Scholar 

  13. Sang T, Lv N, Dang A, Cheng N, Zhang W. Brachial-ankle pulse wave velocity and prognosis in patients with atherosclerotic cardiovascular disease: a systematic review and meta-analysis. Hypertens Res. 2021;44:1175–85.

    Article  PubMed  Google Scholar 

  14. Park HW, Kang MG, Kim K, Koh JS, Park JR, Hwang SJ, et al. Prognostic value of brachial-ankle pulse wave velocity in patients with non-ST-elevation myocardial infarction. Coron Artery Dis. 2017;28:642–48.

    Article  PubMed  Google Scholar 

  15. Maeda Y, Inoguchi T, Etoh E, Kodama Y, Sasaki S, Sonoda N, et al. Brachial-ankle pulse wave velocity predicts all-cause mortality and cardiovascular events in patients with diabetes: the Kyushu Prevention Study of Atherosclerosis. Diabetes Care. 2014;37:2383–90.

    Article  CAS  PubMed  Google Scholar 

  16. Lin CC, Li CI, Liu CS, Lin CH, Yang SY, Li TC. Prediction of all-cause and cardiovascular mortality using ankle-brachial index and brachial-ankle pulse wave velocity in patients with type 2 diabetes. Sci Rep. 2022;12:11053.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Sheng CS, Li Y, Li LH, Huang QF, Zeng WF, Kang YY, et al. Brachial-ankle pulse wave velocity as a predictor of mortality in elderly Chinese. Hypertension. 2014;64:1124–30.

    Article  CAS  PubMed  Google Scholar 

  18. Ninomiya T, Kojima I, Doi Y, Fukuhara M, Hirakawa Y, Hata J, et al. Brachial-ankle pulse wave velocity predicts the development of cardiovascular disease in a general Japanese population: the Hisayama Study. J Hypertens. 2013;31:477–83. discussion 83

    Article  CAS  PubMed  Google Scholar 

  19. Lu YC, Lyu P, Zhu HY, Xu DX, Tahir S, Zhang HF, et al. Brachial-ankle pulse wave velocity compared with mean arterial pressure and pulse pressure in risk stratification in a Chinese population. J Hypertens. 2018;36:528–36.

    Article  CAS  PubMed  Google Scholar 

  20. Turin TC, Kita Y, Rumana N, Takashima N, Kadota A, Matsui K, et al. Brachial-ankle pulse wave velocity predicts all-cause mortality in the general population: findings from the Takashima study, Japan. Hypertens Res. 2010;33:922–5.

    Article  PubMed  Google Scholar 

  21. Kim ED, Ballew SH, Tanaka H, Heiss G, Coresh J, Matsushita K. Short-Term Prognostic Impact of Arterial Stiffness in Older Adults Without Prevalent Cardiovascular Disease. Hypertension. 2019;74:1373–82.

    Article  CAS  PubMed  Google Scholar 

  22. Finkelstein SM, Collins VR, Cohn JN. Arterial vascular compliance response to vasodilators by Fourier and pulse contour analysis. Hypertension. 1988;12:380–7.

    Article  CAS  PubMed  Google Scholar 

  23. Li B, Gao H, Li X, Liu Y, Wang M. Correlation between brachial-ankle pulse wave velocity and arterial compliance and cardiovascular risk factors in elderly patients with arteriosclerosis. Hypertens Res. 2006;29:309–14.

    Article  PubMed  Google Scholar 

  24. Duprez DA, Jacobs DR Jr., Lutsey PL, Bluemke DA, Brumback LC, Polak JF, et al. Association of small artery elasticity with incident cardiovascular disease in older adults: the multi-ethnic study of atherosclerosis. Am J Epidemiol. 2011;174:528–36.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Grey E, Bratteli C, Glasser SP, Alinder C, Finkelstein SM, Lindgren BR, et al. Reduced small artery but not large artery elasticity is an independent risk marker for cardiovascular events. Am J Hypertens. 2003;16:265–9.

    Article  PubMed  Google Scholar 

  26. Zhu H, Gao Y, Cheng H, Lu Y, Cheang I, Xu D, et al. Comparison of arterial stiffness indices measured by pulse wave velocity and pulse wave analysis. Blood Press. 2019;28:206–13.

    Article  PubMed  Google Scholar 

  27. Zhu Z, Zhang H, Yao W, Liang N, Gong L, Yin Z, et al. Physical activity modifies the association between CYBA gene polymorphisms and small artery elasticity in a Chinese population. Hypertens Res. 2012;35:739–44.

    Article  CAS  PubMed  Google Scholar 

  28. Yao WM, Zhang HF, Zhu ZY, Zhou YL, Liang NX, Xu DJ, et al. Genetically elevated levels of circulating triglycerides and brachial-ankle pulse wave velocity in a Chinese population. J Hum Hypertens. 2013;27:265–70.

    Article  CAS  PubMed  Google Scholar 

  29. Lu YC, Li SS, Zhang HF, Odili AN, Yao WM, Gong L, et al. Quality control of the blood pressure phenotype in the Gaoyou population study. Blood Press. 2016;25:162–8.

    Article  PubMed  Google Scholar 

  30. Yamashina A, Tomiyama H, Takeda K, Tsuda H, Arai T, Hirose K, et al. Validity, reproducibility, and clinical significance of noninvasive brachial-ankle pulse wave velocity measurement. Hypertens Res. 2002;25:359–64.

    Article  PubMed  Google Scholar 

  31. Glasser SP, Arnett DK, McVeigh GE, Finkelstein SM, Bank AJ, Morgan DJ, et al. Vascular compliance and cardiovascular disease: a risk factor or a marker? Am J Hypertens. 1997;10:1175–89.

    Article  CAS  PubMed  Google Scholar 

  32. Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation. 1998;97:1837–47.

    Article  CAS  PubMed  Google Scholar 

  33. Yang X, Li J, Hu D, Chen J, Li Y, Huang J, et al. Predicting the 10-Year Risks of Atherosclerotic Cardiovascular Disease in Chinese Population: The China-PAR Project (Prediction for ASCVD Risk in China). Circulation. 2016;134:1430–40.

    Article  PubMed  Google Scholar 

  34. Zieman SJ, Melenovsky V, Kass DA. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol. 2005;25:932–43.

    Article  CAS  PubMed  Google Scholar 

  35. Duprez DA. Arterial stiffness/elasticity in the contribution to progression of heart failure. Heart Fail Clin. 2012;8:135–41.

    Article  PubMed  Google Scholar 

  36. Cohn JN. Arterial compliance to stratify cardiovascular risk: more precision in therapeutic decision making. Am J Hypertens. 2001;14:258s–63s.

    Article  CAS  PubMed  Google Scholar 

  37. Tomiyama H, Shiina K. State of the art review: Brachial-Ankle PWV. J Atheroscler Thromb. 2020;27:621–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen ZW, Pan CT, Tsai CH, Chang YY, Chang CC, Lee BC, et al. Heart-ankle pulse wave velocity is superior to brachial-ankle pulse wave velocity in detecting aldosterone-induced arterial stiffness. Biomedicines. 2021;9:1285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kuo HK, Chen CY, Liu HM, Yen CJ, Chang KJ, Chang CC, et al. Metabolic risks, white matter hyperintensities, and arterial stiffness in high-functioning healthy adults. Int J Cardiol. 2010;143:184–91.

    Article  PubMed  Google Scholar 

  40. Matsui Y, O’Rourke MF, Hoshide S, Ishikawa J, Shimada K, Kario K. Combined effect of angiotensin II receptor blocker and either a calcium channel blocker or diuretic on day-by-day variability of home blood pressure: the Japan Combined Treatment With Olmesartan and a Calcium-Channel Blocker Versus Olmesartan and Diuretics Randomized Efficacy Study. Hypertension. 2012;59:1132–8.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang J, Wang Y, Hu H, Yang X, Tian Z, Liu D, et al. Early intervention of long-acting nifedipine GITS reduces brachial-ankle pulse wave velocity and improves arterial stiffness in Chinese patients with mild hypertension: a 24-week, single-arm, open-label, prospective study. Drug Des Devel Ther. 2016;10:3399–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jatic Z, Skopljak A, Hebibovic S, Sukalo A, Rustempasic E, Valjevac A. Effects of Different Antihypertensive Drug Combinations on Blood Pressure and Arterial Stiffness. Med Arch. 2019;73:157–62.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Li X, Chang P, Wang Q, Hu H, Bai F, Li N, et al. Effects of angiotensin-converting enzyme inhibitors on arterial stiffness: a systematic review and meta-analysis of randomized controlled trials. Cardiovasc Ther. 2020;2020:7056184.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Liu Y, Dai S, Liu L, Liao H, Xiao C. Spironolactone is superior to hydrochlorothiazide for blood pressure control and arterial stiffness improvement: A prospective study. Med (Baltim). 2018;97:e0500.

    Article  CAS  Google Scholar 

  45. Sultan EM, Rabea H, Elberry AA, Mahmoud HB. Effect of Amlodipine/Nebivolol combination therapy on central BP and PWV compared to Amlodipine/Valsartan combination therapy. Egypt Heart J. 2022;74:15.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Polónia J, Barbosa L, Silva JA, Bertoquini S. Different patterns of peripheral versus central blood pressure in hypertensive patients treated with β-blockers either with or without vasodilator properties or with angiotensin receptor blockers. Blood Press Monit. 2010;15:235–9.

    Article  PubMed  Google Scholar 

  47. Rogers SC, Ko YA, Quyyumi AA, Hajjar I. Differential Sex-Specific Effects of Angiotensin-Converting Enzyme Inhibition and Angiotensin Receptor Blocker Therapy on Arterial Function in Hypertension: CALIBREX Trial. Hypertension. 2022;79:2316–27.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the voluntary collaboration of the participants, the support of the Local Health Bureau and the technicians for their data collection.

Funding

This work was supported by General Program of National Natural Science Foundation of China (82270394 to HF Zhang, 81970339 to XL Li, 82200425 to RR Gao), Gusu Health Personnel Training Project (GSWS2021042 to HF Zhang), project from Gusu School (GSRCKY20210204 to HF Zhang), and Natural Science Foundation project of Jiangsu (BK20191072 to RR Gao). Dr. XL Li and HF Zhang are Associate Fellows at the Collaborative Innovation Center for Cardiovascular Disease Translational Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifeng Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval and consent to participate

The study protocol was approved by the Institutional Review Board of the First Affiliated Hospital, Nanjing Medical University. Informed consent was obtained from each participant before data collection.

Consent for publication

All the authors have critically reviewed and approved the publication of the final paper.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, X., Chen, L., Shi, Y. et al. Comparison of arterial stiffness indices measured by pulse wave velocity and pulse wave analysis for predicting cardiovascular and all-cause mortality in a Chinese population. Hypertens Res 47, 767–777 (2024). https://doi.org/10.1038/s41440-023-01552-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01552-z

Keywords

This article is cited by

Search

Quick links