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COMMENT

Exercise in treatment-resistant hypertension. A natural
neuromodulation therapy?
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Current guidelines recommend adopting lifestyle changes as
the first line of therapy to manage hypertension [1]. In
particular, a large body of evidence supports the non-
pharmacological antihypertensive effects of dynamic aero-
bic exercise [1]. In this issue of the journal, a paper by
Lopez et al. reports the results of EnRicH (Exercise
Training in the Treatment of Resistant Hypertension) as a
prospective, single-blind, randomized clinical trial. Sixty
patients were randomized to 12 weeks of aerobic exercise
training (ExT) or usual care. The ExT program reduced
central BP and improved cardiovascular disease risk bio-
markers of angiotensinII (AngII) and superoxide dismutase
in treatment-resistant hypertensives (TRH) [2]. Increased
central BP in TRH is associated with exacerbation of heart
failure (HF), and it has been pointed out that left ventricular
(LV) afterload reduction, AngII reduction, and antioxidant
effects due to ExT might all act to suppress worsening HF.

TRH is associated with increased risk of adverse cardi-
ovascular events, especially HF [3]. Although the patho-
physiological mechanisms underlying TRH development
are not fully understood, increased sympathetic nervous
system (SNS) activity, increased renin-angiotensin-
aldosterone system (RAAS), and sodium uptake/retention
are predominantly associated with TRH [4]. Although

oxidative stress may not be the only cause of hypertension,
it amplifies BP elevation in the presence of increased SNS,
RAAS activation and salt loading in experimental models
[5]. TRH is also associated with an increase in the inflam-
matory markers of tumor necrosis factor (TNF)-α and
interleukin-6 and a reduction in levels of transforming
growth factor beta-1 [6]. Congestive HF is typically char-
acterized by increased SNS drive, low-grade inflammation
and altered fluid regulation. Regular ExT improves func-
tional capacity and quality of life, and significantly attenu-
ates increased SNS drive in HF [7].

Many studies support the idea that the cardiovascular
system is regulated by the central autonomic network,
which includes the insular cortex (Ic), anterior cingulate
gyrus, and amygdala [4]. A recent study on Ic stimulation
showed that interhemispheric differences exist in vasor-
egulatory function, with the right Ic involved in vasocon-
striction and the left Ic in vasodilation [8]. While
tachycardia/pressor effect was common after right anterior
Ic stimulation, bradycardia/depressor effect was common
after left posterior Ic stimulation [9]. Thus, right Ic is pre-
dominantly associated with sympathetic tone, while left
posterior Ic is predominantly associated with vagal tone. In
addition, dense reciprocal connections are observed
between the insular cortex and subcortical autonomic cen-
ters of the nucleus tractus solitarius (NTS) [10, 11], the
parabrachial nucleus [12], the hypothalamic paraventricular
nucleus (PVN) [13] and the lateral hypothalamic area [14],
and these autonomic core centers also have reciprocal
connections with each other [4].

The autonomic adjustments to exercise are mediated by
central signals from the higher brain, so-called ‘central
command’, and by a peripheral reflex arising from working
skeletal muscle [15]. Neural elements distributed through-
out the cardiac nervous system, from the level of the Ic to
the intrinsic cardiac nervous system, constantly interact with
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each other to ensure that cardiac output matches the
dynamic processes of regional blood flow demand [16]. In a
human study, a conjunction analysis showing common
responses to handgrip and attempted foot lifting revealed
activation of the right central Ic consistent with the concept
of the 'central commands' feedforward hypothesis [17].
The left Ic activity was significantly increased during
active cycling, but not during passive cycling [18]. In
addition, decreased activity of the Ic and thalamus is an
important neuronal factor contributing to post-exercise
hypotension [19].

In the animal model, 'Central command' or its influence
on vasomotor centers is augmented in hypertension. In
spontaneously hypertensive rats, exaggerated renal SNS
activity and pressor responses during spontaneously
occurring motor activity are shown to be induced along a
'central command' pathway [20]. It is well known that
regular exercise can benefit health by enhancing antioxidant
defenses in the body. On the other hand, exhaustive exercise
could generate excessive reactive oxygen species, leading to
oxidative stress-related tissue damages and impaired muscle
contractility [21]. Increased SNS activity is partly due to an
imbalance between inhibitory and excitatory mechanisms
within the PVN [7]. Adequate ExT in HF improves the
altered inhibitory pathway utilizing nitric oxide [22] and
GABA [23] mechanisms in PVN. Normalization of exci-
tatory glutamatergic [24] and angiotensinergic [25]
mechanisms within the PVN attenuates elevated SNS out-
flow in HF animal models with ExT [26].

In a human functional magnetic resonance imaging
study, in addition to the traditional motor associated
regions, Ic activation was associated with autonomic reg-
ulation during exercise, whereas decreased prefrontal cortex
activation was observed during exercise at higher perceived
intensities [27]. ExT improved the relationship between
walking capacity and submaximal measure of cardiovas-
cular fitness modulated by Ic integrity [28]. After ExT, the

functional connectivity between Ic and amygdala was pro-
longed in an exercise intensity-dependent manner [29].
Thus, ExT is associated with improved the functional
integrity of central autonomic network.

Increased wave reflex is recognized as a major hemo-
dynamic finding of vascular aging, which is a determinant
of central BP. In the PARAMETER (Prospective compar-
ison of Angiotensin Receptor neprilysin inhibitor with
Angiotensin receptor blocker MEasuring arterial sTiffness
in the eldERly) study, angiotensin receptor-neprilysin
inhibitors were superior to AngII receptor blockers in
reducing central systolic BP [30]. Aging vasculature gen-
erates an excess of the reactive oxygen species, superoxide
and hydrogen peroxide, that compromise the vasodilatory
activity of nitric oxide and facilitate the formation of the
deleterious radical, peroxynitrite [31]. In the EnRicH trial,
ExT significantly reduced AngII and central BP, and
increased antioxidant effects, suggesting that ExT prevents
the exacerbation of HF by reducing LV afterload equivalent
to pharmacological treatment (Fig. 1).

In handgrip performance, the initial heart rate increase is
primarily due to vagal withdrawal of parasympathetic activity
[32]. It is also well known that higher exercise capacity is
strongly associated with lower resting heart rate and indirect
measures of high cardiac vagal activity, indicating that the
parasympathetic nervous system plays a key role in opti-
mizing exercise performance [33]. Despite the strong asso-
ciation between parasympathetic activity and exercise
capacity, these data have long been interpreted as vagal
activity merely being a marker for physical fitness. However,
several lines of recent evidence obtained in studies of
experimental animal models and human exercise support the
hypothesis that the strength of cardiac vagal activity directly
determines the individual ability to exercise [33].

The vagus nerve is a complex nervous system in the
body, connecting vital organs such as the lungs, intestines,
stomach, heart, and brain. Therefore, optimizing the

Fig. 1 A possible scheme for the
relationship between exercise
and left ventricular afterload
reduction in treatment-resistant
hypertension
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function of the vagus nerve is thought to ameliorate target
organ damage. Tonic levels of aerobic exercise stimulate
vagus nerve and lower stress responses. Exercise inhibited
splenic TNF production through subdiaphragmatic vagus
nerve [34]. The Xth cranial nerve has a cutaneous repre-
sentation in the “Ramsay Hunt zone” located in the ear
canal. Via Wrisberg’s intermediate nerve, cutaneous stimuli
reaches NTS which is the main brain area of integration for
vagal afferents in brainstem [35]. In fact, distinct vagus
evoked potentials were observed after stimulation inside the
tragus [36].

Transcutaneous vagus nerve stimulation (tVNS) is a non-
invasive, simple emergency treatment with few side effects
that has spread worldwide by stimulation of the vagus nerve
auricular branch of tragus [37–40]. tVNS has been reported
to be effective in reducing SNS activity [37]. In HF with
preserved ejection fraction, tVNS significantly improved
LV [38], right ventricular performance [39], and renal
congestion [39]. More recently, regarding for central BP,
tVNS reduced LV afterload in acute HF patients [40].

Considering these results together, improving cardio-
vascular health with ExT might be a natural neuromodula-
tion therapy that reduce LV afterload via autonomic
regulation of the heart. These modulations are characterized
by not only decreased SNS activity but also increased
parasympathetic nervous system activity. To date, few
studies have evaluated the impact of ExT on central BP in
TRH. Therefore, the data presented in the study by Lopes et
al. provide important implications for the prevention of
worsening HF.
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