Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

T helper cell polarity determines salt sensitivity and hypertension development

A Comment to this article was published on 27 July 2023

Abstract

High-salt intake is known to induce pathogenic T helper (Th) 17 cells and hypertension, but contrary to what is known, causes hypertension only in salt-sensitive (SS) individuals. Thus, we hypothesized that Th cell polarity determines salt sensitivity and hypertension development. Cultured splenic T cells from Dahl SS and salt-resistant (SR) rats subjected to hypertonic salt solutions were evaluated via ELISA, flow cytometry, immunocytochemistry and RT-qPCR. Seven-week-old SS and SR rats were fed a chow (CD) or high-salt diet (HSD) for 4 weeks, with weekly measurements of systolic blood pressure. The relaxation response of the aorta rings to the cumulative addition of acetylcholine was measured ex vivo. In these experimental animals, the Th cell polarity (Th17 and T regulatory [Treg]), the expression of Th17- or Treg-related genes, and the enrichment of the transcription factors RORγt and FOXP3 on the target gene promoter regions were determined via flow cytometry, RT-qPCR, and chromatin immunoprecipitation. Hypertonic salt solution induced Th17 and Treg cell differentiation in cultured splenic T cells isolated from SS and SR rats, respectively. HSD induced hypertension, endothelial dysfunction and proinflammatory Th17 cell differentiation only in SS rats. The enrichment of RORγt on the promoter regions of Il17a and Il23r increased their expression only in SS rats. Regardless of HSD, SR rats remained normotensive with Treg polarity, causing high Treg-related gene expressions (Il10, Cd25 and Foxp3). This study demonstrated that Th cell polarity determines salt sensitivity and drives hypertension development. SR rats were protected from HSD-associated hypertension via anti-inflammatory Treg polarity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. He FJ, MacGregor GA. Salt reduction lowers cardiovascular risk: meta-analysis of outcome trials. Lancet. 2011;378:380–2.

    Article  PubMed  Google Scholar 

  2. Majid DSA, Prieto CM, Gabriel Navar L. Salt-sensitive hypertension: perspectives on intrarenal mechanisms. Curr Hypertens Rev. 2015;11:38–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hall JE. Kidney dysfunction mediates salt-induced increases in blood pressure. Circulation. 2016;133:894–906.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kawasaki T, Delea CS, Bartter FC, Smith H. The effect of high-sodium and low-sodium intakes on blood pressure and other related variables in human subjects with idiopathic hypertension. Am J Med. 1978;64:193–8.

    Article  CAS  PubMed  Google Scholar 

  5. Weinberger MH. Salt sensitivity of blood pressure in humans. Hypertension. 1996;27:481–90.

    Article  CAS  PubMed  Google Scholar 

  6. Weinberger MH, Fineberg NS, Fineberg SE, Weinberger M. Salt sensitivity, pulse pressure, and death in normal and hypertensive humans. Hypertension. 2001;37:429–32.

    Article  CAS  PubMed  Google Scholar 

  7. Dahl LK. Effects of chronic excess salt feeding: Induction of self-sustaining hypertension in rats. J Exp Med. 1961;114:231–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dahl LK, Heine M, Tassinari L. Effects of chronic excess salt ingestion: evidence that genetic factors play an important role in susceptibility to experimental hypertension. J Exp Med. 1962;115:1173–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Laffer CL, Scott RC III, Titze JM, Luft FC, Elijovich F. Hemodynamics and salt-and-water balance link sodium storage and vascular dysfunction in salt-sensitive subjects. Hypertension. 2016;68:195–203.

    Article  CAS  PubMed  Google Scholar 

  10. Cai A, Calhoun DA. Resistant hypertension: an update of experimental and clinical findings. Hypertension. 2017;70:5–9.

    Article  CAS  PubMed  Google Scholar 

  11. Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, et al. Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension. 2008;51:1403–19.

    Article  CAS  PubMed  Google Scholar 

  12. Drummond GR, Vinh A, Guzik TJ, Sobey CG. Immune mechanisms of hypertension. Nat Rev Immunol. 2019;19:517–32.

    Article  CAS  PubMed  Google Scholar 

  13. Afsar B, Kuwabara M, Ortiz A, Yerlikaya A, Siriopol D, Covic A, et al. Salt intake and immunity. Hypertension. 2018;72:19–23.

    Article  CAS  PubMed  Google Scholar 

  14. Sharif K, Amital H, Shoenfeld Y. The role of dietary sodium in autoimmune diseases: the salty truth. Autoimmun Rev. 2018;17:1069–73.

    Article  CAS  PubMed  Google Scholar 

  15. Mikolajczyk TP, Guzik TJ. Adaptive immunity in hypertension. Curr Hypertens Rep. 2019;21:1–12.

    Article  CAS  Google Scholar 

  16. Wilck N, Balogh A, Markó L, Bartolomaeus H, Müller DN. The role of sodium in modulating immune cell function. Nat Rev Nephrol. 2019;15:546–58.

    Article  CAS  PubMed  Google Scholar 

  17. Wu C, Yosef N, Thalhamer T, Zhu C, Xiao S, Kishi Y, et al. Induction of pathogenic TH 17 cells by inducible salt-sensing kinase SGK1. Nature. 2013;496:513–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hernandez AL, Kitz A, Wu C, Lowther DE, Rodriguez DM, Vudattu N, et al. Sodium chloride inhibits the suppressive function of FOXP3+ regulatory T cells. J Clin Investig. 2015;125:4212–22.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ouyang W, Beckett O, Ma Q, Paik J-H, DePinho RA, Li MO. Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells. Nat Immunol. 2010;11:618–27.

    Article  CAS  PubMed  Google Scholar 

  20. Binger KJ, Linker RA, Muller DN, Kleinewietfeld M. Sodium chloride, SGK1, and Th17 activation. Pflügers Arch. 2015;467:543–50.

    Article  CAS  PubMed  Google Scholar 

  21. Lee E, Kim N, Kang J, Yoon S, Lee H-A, Jung H, et al. Activated pathogenic Th17 lymphocytes induce hypertension following high-fructose intake in Dahl salt-sensitive but not Dahl salt-resistant rats. Dis Models Mech. 2020;13:dmm044107.

    Article  Google Scholar 

  22. Ouyang W, Liao W, Luo CT, Yin N, Huse M, Kim MV, et al. Novel Foxo1-dependent transcriptional programs control Treg cell function. Nature. 2012;491:554–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim C-W, Kim JY, Lee S, Kim I. Dahl salt-resistant rats are protected against angiotensin II-induced hypertension. Biochem Pharmacol. 2022;203:115193.

    Article  CAS  PubMed  Google Scholar 

  24. Kim JY, Lee E, Koo S, Kim C-W, Kim I. Transfer of Th17 from adult spontaneous hypertensive rats accelerates development of hypertension in juvenile spontaneous hypertensive rats. BioMed Res. Int. 2021;2021:6633825.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Madhur MS, Elijovich F, Alexander MR, Pitzer A, Ishimwe J, Van Beusecum JP, et al. Hypertension: do inflammation and immunity hold the key to solving this epidemic? Circ Res. 2021;128:908–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Matthias J, Heink S, Picard F, Zeiträg J, Kolz A, Chao Y-Y, et al. Salt generates antiinflammatory Th17 cells but amplifies pathogenicity in proinflammatory cytokine microenvironments. J Clin Investig. 2020;130:4587–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Müller DN, Wilck N, Haase S, Kleinewietfeld M, Linker RA. Sodium in the microenvironment regulates immune responses and tissue homeostasis. Nat Rev Immunol. 2019;19:243–54.

    Article  PubMed  Google Scholar 

  28. DuPont JJ, Greaney JL, Wenner MM, Lennon-Edwards SL, Sanders PW, Farquhar WB, et al. High dietary sodium intake impairs endothelium-dependent dilation in healthy salt-resistant humans. J Hypertens. 2013;31:530–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sladek FM. What are nuclear receptor ligands? Mol Cell Endocrinol. 2011;334:3–13.

    Article  CAS  PubMed  Google Scholar 

  30. Solt LA, Kojetin DJ, Burris TP. The REV-ERBs and RORs: molecular links between circadian rhythms and lipid homeostasis. Future Med Chem. 2011;3:623–38.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Y, Luo X-Y, Wu D-H, Xu Y. ROR nuclear receptors: structures, related diseases, and drug discovery. Acta Pharmacol Sin. 2015;36:71–87.

    Article  PubMed  Google Scholar 

  32. Li J, Jiang L, Liang X, Qu L, Wu D, Chen X, et al. DNA-binding properties of FOXP3 transcription factor. Acta Biochim Biophys Sin. 2017;49:792–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Graves DT, Milovanova TN. Mucosal immunity and the FOXO1 transcription factors. Front Immunol. 2019;10:2530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miossec P, Korn T, Kuchroo VK. Interleukin-17 and type 17 helper T cells. N Engl J Med. 2009;361:888–98.

    Article  CAS  PubMed  Google Scholar 

  35. Kleinewietfeld M, Manzel A, Titze J, Kvakan H, Yosef N, Linker RA, et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH 17 cells. Nature. 2013;496:518–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. van der Meer JW, Netea MG. A salty taste to autoimmunity. N Engl J Med. 2013;368:2520–1.

    Article  PubMed  Google Scholar 

  37. Brocker C, Thompson DC, Vasiliou V. The role of hyperosmotic stress in inflammation and disease. Biomol Concepts. 2012;3:345–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bystrom J, Taher TE, Henson SM, Gould D, Mageed RA. Metabolic requirements of Th17 cells and of B cells: Regulation and defects in health and in inflammatory diseases. Front Immunol. 2022;13:990794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Widlansky ME, Gokce N, Keaney JF, Vita JA. The clinical implications of endothelial dysfunction. J Am Coll Cardiol. 2003;42:1149–60.

    Article  CAS  PubMed  Google Scholar 

  40. Oberleithner H, Callies C, Kusche-Vihrog K, Schillers H, Shahin V, Riethmüller C, et al. Potassium softens vascular endothelium and increases nitric oxide release. Proc Natl Acad Sci USA. 2009;106:2829–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tinsley JH, South S, Chiasson VL, Mitchell BM. Interleukin-10 reduces inflammation, endothelial dysfunction, and blood pressure in hypertensive pregnant rats. Am J Physiol Regul Integr Comp Physiol. 2010;298:R713–R9.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang W-C, Zheng X-J, Du L-J, Sun J-Y, Shen Z-X, Shi C, et al. High salt primes a specific activation state of macrophages, M (Na). Cell Res. 2015;25:893–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Luo Y, Xue Y, Wang J, Dang J, Fang Q, Huang G, et al. Negligible effect of sodium chloride on the development and function of TGF-β-induced CD4+ Foxp3+ regulatory T cells. Cell Rep. 2019;26:1869–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (NRF-2021R1A2B502001763, and 2021R1A4A1021617), and a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HI15C0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inkyeom Kim.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.Y., Lee, S., Jang, S. et al. T helper cell polarity determines salt sensitivity and hypertension development. Hypertens Res 46, 2168–2178 (2023). https://doi.org/10.1038/s41440-023-01365-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01365-0

Keywords

This article is cited by

Search

Quick links