Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Maximakinin reduced intracellular Ca2+ level in vascular smooth muscle cells through AMPK/ERK1/2 signaling pathways

Abstract

We detect the antihypertensive effects of maximakinin (MK) on renal hypertensive rats (RHRs) and further research the influence of MK on vascular smooth muscle cells (VSMCs) to explore its hypotensive mechanism. The effects of MK on arterial blood pressure were observed in RHRs. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assays were performed to detect the effect of MK on VSMC viability. Western blot and flow cytometry were used to investigate the influence of MK on intracellular Ca2+ levels and protein expression changes in VSMCs. In addition, specific protein inhibitors were applied to confirm the involvement of Ca2+-related signaling pathways induced by MK in VSMCs. MK showed a more significant antihypertensive effect than bradykinin in RHRs. MK significantly decreased intracellular Ca2+ concentrations. Furthermore, MK significantly induced the phosphorylation of signaling molecules, including extracellular signal-regulated kinase 1/2 (ERK1/2), P38, AMP-activated protein kinase (AMPK) and Akt in VSMCs. Moreover, only ERK1/2 inhibitor U0126 and AMPK inhibitor Compound C completely restored the decreased intracellular Ca2+ level induced by MK, and further research demonstrated that AMPK functioned upstream of ERK1/2 following exposure to MK. Finally, HOE-140, an inhibitor of the bradykinin B2 receptors (B2Rs), was applied to investigate the potential targets of MK in VSMCs. HOE-140 significantly blocked the AMPK/ERK1/2 pathway induced by MK, suggesting that the B2Rs might play an important role in MK-induced AMPK and ERK1/2 activation. MK significantly reduces blood pressure in RHRs. MK exerts its antihypertensive effect by activating the B2Rs and downstream AMPK/ERK1/2 pathways, leading to significantly reduced Ca2+ levels in VSMCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen T, Bjourson AJ, McClean S, Orr DF, O’Kane EJ, Rao P, et al. Cloning of maximakinin precursor cDNAs from Chinese toad, Bombina maxima, venom. Peptides 2003;24:853–61.

    Article  CAS  PubMed  Google Scholar 

  2. Sharma JN. Hypertension and the bradykinin system. Curr Hypertens Rep. 2009;11:178–81.

    Article  CAS  PubMed  Google Scholar 

  3. O’Rourke M, Chen T, Hirst DG, Rao P, Shaw C. The smooth muscle pharmacology of maximakinin, a receptor-selective, bradykinin-related nonadecapeptide from the venom of the Chinese toad, Bombina maxima. Regul Pept. 2004;121:65–72.

    Article  PubMed  Google Scholar 

  4. Bawolak MT, Roy C, Gera L, Marceau F. Prolonged signalling and trafficking of the bradykinin B2 receptor stimulated with the amphibian peptide maximakinin: insight into the endosomal inactivation of kinins. Pharm Res. 2012;65:247–53.

    Article  CAS  Google Scholar 

  5. Yu Y, Xu LS, Wu Y, Su FF, Zhou XM, Xu C. The antihypertensive effect of MK on spontaneously hypertensive rats through the AMPK/Akt/eNOS/NO and ERK1/2/Cx43 signaling pathways. Hypertens Res. 2021;44:781–90.

    Article  CAS  PubMed  Google Scholar 

  6. Misarkova E, Behuliak M, Bencze M, Zicha J. Excitation-contraction coupling and excitation-transcription coupling in blood vessels: their possible interactions in hypertensive vascular remodeling. Physiol Res. 2016;65:173–91.

    Article  CAS  PubMed  Google Scholar 

  7. Matchkov VV, Kudryavtseva O, Aalkjaer C. Intracellular Ca(2)(+) signalling and phenotype of vascular smooth muscle cells. Basic Clin Pharm Toxicol. 2012;110:42–48.

    Article  CAS  Google Scholar 

  8. Luo J. Autophagy and ethanol neurotoxicity. Autophagy 2014;10:2099–108.

    Article  CAS  PubMed  Google Scholar 

  9. Lin S, Li X, Zhang J, Zhang Y. Omentin-1: Protective impact on ischemic stroke via ameliorating atherosclerosis. Clin Chim Acta. 2021;517:31–40.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang SM, Jiang L, Zhao X, Liu JF, Liang B, Liu C, et al. A disintegrin and metalloprotease 22 accelerates neointima formation by activating ERK signaling. Atherosclerosis 2019;283:92–99.

    Article  CAS  PubMed  Google Scholar 

  11. Ortmann J, Veit M, Zingg S, Di Santo S, Traupe T, Yang Z, et al. Estrogen receptor-alpha but not -beta or GPER inhibits high glucose-induced human VSMC proliferation: potential role of ROS and ERK. J Clin Endocrinol Metab. 2011;96:220–8.

    Article  PubMed  Google Scholar 

  12. Waldman BM, Augustyniak RA, Chen H, Rossi NF. Effects of voluntary exercise on blood pressure, angiotensin II, aldosterone, and renal function in two-kidney, one-clip hypertensive rats. Integr Blood Press Control. 2017;10:41–51.

    Article  CAS  PubMed  Google Scholar 

  13. Sporkova A, Ghosh S, Al-Hasani J, Hecker M. Lin11-Isl1-Mec3 domain proteins as mechanotransducers in endothelial and vascular smooth muscle cells. Front Physiol. 2021;12:769321.

    Article  PubMed  Google Scholar 

  14. Shi J, Yang Y, Cheng A, Xu G, He F. Metabolism of vascular smooth muscle cells in vascular diseases. Am J Physiol Heart Circ Physiol. 2020;319:H613–H631.

    Article  CAS  PubMed  Google Scholar 

  15. Morales-Quinones M, Ramirez-Perez FI, Foote CA, Ghiarone T, Ferreira-Santos L, Bloksgaard M, et al. LIMK (LIM Kinase) inhibition prevents vasoconstriction- and hypertension-induced arterial stiffening and remodeling. Hypertension 2020;76:393–403.

    Article  CAS  PubMed  Google Scholar 

  16. Touyz RM, Alves-Lopes R, Rios FJ, Camargo LL, Anagnostopoulou A, Arner A, et al. Vascular smooth muscle contraction in hypertension. Cardiovasc Res. 2018;114:529–39.

    Article  CAS  PubMed  Google Scholar 

  17. Khaddaj Mallat R, Mathew John C, Kendrick DJ, Braun AP. The vascular endothelium: A regulator of arterial tone and interface for the immune system. Crit Rev Clin Lab Sci. 2017;54:458–70.

    Article  CAS  PubMed  Google Scholar 

  18. Feletou M, Kohler R, Vanhoutte PM. Nitric oxide: orchestrator of endothelium-dependent responses. Ann Med. 2012;44:694–716.

    Article  CAS  PubMed  Google Scholar 

  19. Ikebe M. Regulation of the function of mammalian myosin and its conformational change. Biochem Biophys Res Commun. 2008;369:157–64.

    Article  CAS  PubMed  Google Scholar 

  20. Walsh MP. Vascular smooth muscle myosin light chain diphosphorylation: mechanism, function, and pathological implications. IUBMB Life. 2011;63:987–1000.

    Article  CAS  PubMed  Google Scholar 

  21. Garcia-Redondo AB, Briones AM, Martinez-Revelles S, Palao T, Vila L, Alonso MJ, et al. c-Src, ERK1/2 and Rho kinase mediate hydrogen peroxide-induced vascular contraction in hypertension: role of TXA2, NAD(P)H oxidase and mitochondria. J Hypertens. 2015;33:77–87.

    Article  CAS  PubMed  Google Scholar 

  22. Yoshizumi M, Zhao J, Kyotani Y. [Vascular smooth muscle cell response to cyclic mechanical stretch and aortic dissection]. Nihon Yakurigaku Zasshi. 2018;151:155–9.

    Article  CAS  PubMed  Google Scholar 

  23. Li KX, Du Q, Wang HP, Sun HJ. Death-associated protein kinase 3 deficiency alleviates vascular calcification via AMPK-mediated inhibition of endoplasmic reticulum stress. Eur J Pharm. 2019;852:90–98.

    Article  CAS  Google Scholar 

  24. Li FF, Shang XK, Du XL, Chen S. Rapamycin treatment attenuates angiotensin II-induced abdominal aortic aneurysm formation via VSMC phenotypic modulation and down-regulation of ERK1/2 activity. Curr Med Sci. 2018;38:93–100.

    Article  CAS  PubMed  Google Scholar 

  25. Ghasempour G, Mohammadi A, Zamani-Garmsiri F, Najafi M. miRNAs through beta-ARR2/p-ERK1/2 pathway regulate the VSMC proliferation and migration. Life Sci. 2021;279:119703.

    Article  CAS  PubMed  Google Scholar 

  26. Chen QW, Edvinsson L, Xu CB. Role of ERK/MAPK in endothelin receptor signaling in human aortic smooth muscle cells. BMC Cell Biol. 2009;10:52.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chen NX, O’Neill KD, Moe SM. Matrix vesicles induce calcification of recipient vascular smooth muscle cells through multiple signaling pathways. Kidney Int. 2018;93:343–54.

    Article  CAS  PubMed  Google Scholar 

  28. Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13:251–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hwang YJ, Cho DH. Activation of AMPK/proteasome/MLCK degradation signaling axis by telmisartan inhibits VSMC contractility and vessel contraction. Biochem Biophys Res Commun. 2020;524:853–60.

    Article  CAS  PubMed  Google Scholar 

  30. Mount PF, Lane N, Venkatesan S, Steinberg GR, Fraser SA, Kemp BE, et al. Bradykinin stimulates endothelial cell fatty acid oxidation by CaMKK-dependent activation of AMPK. Atherosclerosis 2008;200:28–36.

    Article  CAS  PubMed  Google Scholar 

  31. Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR, et al. Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2005;2:21–33.

    Article  CAS  PubMed  Google Scholar 

  32. Hu L, Su L, Dong Z, Wu Y, Lv Y, George J, et al. AMPK agonist AICAR ameliorates portal hypertension and liver cirrhosis via NO pathway in the BDL rat model. J Mol Med (Berl). 2019;97:423–34.

    Article  CAS  PubMed  Google Scholar 

  33. Dong Z, Su L, Esmaili S, Iseli TJ, Ramezani-Moghadam M, Hu L, et al. Adiponectin attenuates liver fibrosis by inducing nitric oxide production of hepatic stellate cells. J Mol Med (Berl). 2015;93:1327–39.

    Article  CAS  PubMed  Google Scholar 

  34. Tong S, Zhou T, Meng Y, Xu D, Chen J. AMPK decreases ERK1/2 activity and cancer cell sensitivity to nutrition deprivation by mediating a positive feedback loop involving eEF2K. Oncol Lett. 2020;20:61–66.

    CAS  PubMed  Google Scholar 

  35. Liu Y, Lu Z, Cui M, Yang Q, Tang Y, Dong Q. Tissue kallikrein protects SH-SY5Y neuronal cells against oxygen and glucose deprivation-induced injury through bradykinin B2 receptor-dependent regulation of autophagy induction. J Neurochem. 2016;139:208–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Melissa Crawford, PhD, from Liwen Bianji (Edanz) (www.liwenbianji.cn/), for editing the English text of a draft of this manuscript.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

CX and YY designed the research. YY, X-QW, YW, F-FS, and C-FY performed the research. CX contributed new reagents or analytical tools. X-QW and X-MZ analyzed the data. YY and CX wrote the paper.

Corresponding author

Correspondence to Cheng Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Wu, Xq., Su, Ff. et al. Maximakinin reduced intracellular Ca2+ level in vascular smooth muscle cells through AMPK/ERK1/2 signaling pathways. Hypertens Res 46, 1949–1960 (2023). https://doi.org/10.1038/s41440-023-01330-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01330-x

Keywords

This article is cited by

Search

Quick links