Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Fast track – ISH2022 KYOTO
  • Published:

LOX-1 deficiency increases ruptured abdominal aortic aneurysm via thinning of adventitial collagen

Abstract

Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a key mediator of inflammation and plays an important role in the pathogenesis of atherosclerosis. Conversely, LOX-1 deficiency has been shown to decrease inflammation and atherosclerosis, both of which have been proposed to contribute to abdominal aortic aneurysm (AAA) pathogenesis. However, the role of LOX-1 in AAA pathogenesis remains unknown. Here, we investigated the effects of Olr1 (which encodes LOX-1) deletion on angiotensin II (Ang II)-induced AAA in apolipoprotein E knockout (ApoE KO) mice to determine whether LOX-1 deficiency mitigates AAA development. To accomplish this, we used serial, non-invasive ultrasound assessment, which revealed that the incidence and expansion rate of AAA were similar regardless of Olr1 deletion. However, Olr1 deletion significantly increased severe AAAs, including ruptured AAAs resulting in death. Oil Red O staining of the harvested aortas showed that the extent of atheroma burden localized in aneurysmal lesions did not differ between LOX-1-deficient and control mice, suggesting that Olr1 deletion did not decrease atheroma burden in the aneurysmal wall. Further histopathological analysis revealed that aneurysmal lesions in LOX-1-deficient mice had fewer fibroblasts and myofibroblasts, as well as thinner adventitial collagen, although the degree of elastin fragmentation or disruption was similar between LOX-1-deficient and control mice. An in vitro study confirmed that the proliferation of adventitial fibroblasts collected from LOX-1-deficient mice was significantly attenuated despite Ang II stimulation. In conclusion, Olr1 deletion may not mitigate aneurysm development but rather increases the vulnerability of rupture by suppressing adventitial fibroblast proliferation and collagen synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stather PW, Sidloff DA, Rhema IA, Choke E, Bown MJ, Sayers RD. A review of current reporting of abdominal aortic aneurysm mortality and prevalence in the literature. Eur J Vasc Endovasc Surg. 2014;47:240–2.

    Article  CAS  Google Scholar 

  2. Brown PM, Zelt DT, Sobolev B. The risk of rupture in untreated aneurysms: the impact of size, gender, and expansion rate. J Vasc Surg. 2003;37:280–4.

    Article  Google Scholar 

  3. Singh P, Narula J. Molecular characterization of high-risk aortic aneurysms: imaging beyond anatomy. J Am Coll Cardiol. 2018;71:524–6.

    Article  Google Scholar 

  4. McCormick ML, Gavrila D, Weintraub NL. Role of oxidative stress in the pathogenesis of abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2007;27:461–9.

    Article  CAS  Google Scholar 

  5. Kent KC, Zwolak RM, Egorova NN, Riles TS, Manganaro A, Moskowitz AJ, et al. Analysis of risk factors for abdominal aortic aneurysm in a cohort of more than 3 million individuals. J Vasc Surg. 2010;52:539–48.

    Article  Google Scholar 

  6. Hirsch AT, Haskal ZJ, Hertzer NR, Bakal CW, Creager MA, Halperin JL, et al. ACC/AHA 2005 guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): executive summary a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease) endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. J Am Coll Cardiol. 2006;47:1239–312.

    Article  Google Scholar 

  7. Cornuz J, Sidoti Pinto C, Tevaearai H, Egger M. Risk factors for asymptomatic abdominal aortic aneurysm: systematic review and meta-analysis of population-based screening studies. Eur J Public Health. 2004;14:343–9.

    Article  Google Scholar 

  8. Wassef M, Upchurch GR Jr., Kuivaniemi H, Thompson RW. Tilson MD 3rd. Challenges and opportunities in abdominal aortic aneurysm research. J Vasc Surg. 2007;45:192–8.

    Article  Google Scholar 

  9. Pirillo A, Norata GD, Catapano AL. LOX-1, OxLDL, and atherosclerosis. Mediators Inflamm. 2013;2013:1–12.

    Article  Google Scholar 

  10. Mehta JL, Sanada N, Hu CP, Chen J, Dandapat A, Sugawara F, et al. Deletion of LOX-1 reduces atherogenesis in LDLR knockout mice fed high cholesterol diet. Circ Res. 2007;100:1634–42.

    Article  CAS  Google Scholar 

  11. Inoue K, Arai Y, Kurihara H, Kita T, Sawamura T. Overexpression of lectin-like oxidized low-density lipoprotein receptor-1 induces intramyocardial vasculopathy in apolipoprotein E-null mice. Circ Res. 2005;97:176–84.

    Article  CAS  Google Scholar 

  12. Pothineni NVK, Karathanasis SK, Ding Z, Arulandu A, Varughese KI, Mehta JL. LOX-1 in atherosclerosis and myocardial ischemia: Biology, genetics, and modulation. J Am Coll Cardiol. 2017;69:2759–68.

    Article  CAS  Google Scholar 

  13. Sawamura T, Kume N, Aoyama T, Moriwaki H, Hoshikawa H, Aiba Y, et al. An endothelial receptor for oxidized low-density lipoprotein. Nature. 1997;386:73–7.

    Article  CAS  Google Scholar 

  14. Draude G, Hrboticky N, Lorenz RL. The expression of the lectin-like oxidized low-density lipoprotein receptor (LOX-1) on human vascular smooth muscle cells and monocytes and its down-regulation by lovastatin. Biochem Pharm. 1999;57:383–6.

    Article  CAS  Google Scholar 

  15. Kataoka H, Kume N, Miyamoto S, Minami M, Moriwaki H, Murase T, et al. Expression of lectinlike oxidized low-density lipoprotein receptor-1 in human atherosclerotic lesions. Circulation. 1999;99:3110–7.

    Article  CAS  Google Scholar 

  16. Levitan I, Volkov S, Subbaiah PV. Oxidized LDL: diversity, patterns of recognition, and pathophysiology. Antioxid Redox Signal. 2010;13:39–75.

    Article  CAS  Google Scholar 

  17. Twigg MW, Freestone K, Homer-Vanniasinkam S, Ponnambalam S. The LOX-1 scavenger receptor and its implications in the treatment of vascular disease. Cardiol Res Pract. 2012;2012:632408.

    Article  CAS  Google Scholar 

  18. Cominacini L, Pasini AF, Garbin U, Davoli A, Tosetti ML, Campagnola M, et al. Oxidized low density lipoprotein (ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-kappaB through an increased production of intracellular reactive oxygen species. J Biol Chem. 2000;275:12633–38.

    Article  CAS  Google Scholar 

  19. Golledge J. Abdominal aortic aneurysm: update on pathogenesis and medical treatments. Nat Rev Cardiol. 2019;16:225–42.

    Article  Google Scholar 

  20. Manning MW, Cassi LA, Huang J, Szilvassy SJ, Daugherty A. Abdominal aortic aneurysms: fresh insights from a novel animal model of the disease. Vasc Med. 2002;7:45–54.

    Article  Google Scholar 

  21. Daugherty A, Manning MW, Cassis LA. Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E–deficient mice. J Clin Investig. 2000;105:1605–12.

    Article  CAS  Google Scholar 

  22. Spin JM, Hsu M, Azuma J, Tedesco MM, Deng A, Dyer JS, et al. Transcriptional profiling and network analysis of the murine angiotensin II-induced abdominal aortic aneurysm. Physiol Genomics. 2011;43:993–1003.

    Article  CAS  Google Scholar 

  23. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.

    Article  CAS  Google Scholar 

  24. Deng GG, Martin-McNulty B, Sukovich DA, Freay A, Halks-Miller M, Thinnes T, et al. Urokinase-type plasminogen activator plays a critical role in angiotensin II-induced abdominal aortic aneurysm. Circ Res. 2003;92:510–7.

    Article  CAS  Google Scholar 

  25. Daugherty A, Manning MW, Cassis LA. Antagonism of AT2 receptors augments Angiotensin II-induced abdominal aortic aneurysms and atherosclerosis. Br J Pharmacol. 2001;134:865–70.

    Article  CAS  Google Scholar 

  26. Davis V, Persidskaia R, Baca-Regen L, Itoh Y, Nagase H, Persidsky Y, et al. Matrix metalloproteinase-2 production and its binding to the matrix are increased in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 1998;18:1625–33.

    Article  CAS  Google Scholar 

  27. Bi Y, Zhong H, Xu K, Zhang Z, Qi X, Xia Y, et al. Development of a novel rabbit model of abdominal aortic aneurysm via a combination of periaortic calcium chloride and elastase incubation. PLoS ONE. 2013;8:e68476.

    Article  CAS  Google Scholar 

  28. Yousef S, Matsumoto N, Dabe I, Mori M, Landry AB, Lee SR, et al. Quantitative not qualitative histology differentiates aneurysmal from nondilated ascending aortas and reveals a net gain of medial components. Sci Rep. 2021;11:13185.

    Article  CAS  Google Scholar 

  29. An SJ, Liu P, Shao TM, Wang ZJ, Lu HG, Jiao Z, et al. Characterization and functions of vascular adventitial fibroblast subpopulations. Cell Physiol Biochem. 2015;35:1137–50.

    Article  CAS  Google Scholar 

  30. Sakalihasan N, Delvenne P, Nusgens BV, Limet R, Lapiere CM. Activated forms of MMP2 and MMP9 in abdominal aortic aneurysms. J Vasc Surg. 1996;24:127–33.

    Article  CAS  Google Scholar 

  31. Forte A, Della Corte A, De Feo M, Cerasuolo F, Cipollaro M. Role of myofibroblasts in vascular remodelling: focus on restenosis and aneurysm. Cardiovasc Res. 2010;88:395–405.

    Article  CAS  Google Scholar 

  32. Daugherty A, Cassis LA. Mouse models of abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2004;24:429–34.

    Article  CAS  Google Scholar 

  33. Umebayashi R, Uchida HA, Kakio Y, Subramanian V, Daugherty A, Wada J. Cilostazol attenuates angiotensin II-induced abdominal aortic aneurysms but not atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2018;38:903–12.

    Article  CAS  Google Scholar 

  34. Uchida HA, Kristo F, Rateri DL, Lu H, Charnigo R, Cassis LA, et al. Total lymphocyte deficiency attenuates AngII-induced atherosclerosis in males but not abdominal aortic aneurysms in apoE deficient mice. Atherosclerosis 2010;211:399–403.

    Article  CAS  Google Scholar 

  35. Chen J, Li D, Schaefer R, Mehta JL. Cross-talk between dyslipidemia and renin-angiotensin system and the role of LOX-1 and MAPK in atherogenesis studies with the combined use of rosuvastatin and candesartan. Atherosclerosis. 2006;184:295–301.

    Article  CAS  Google Scholar 

  36. Xu X, Gao X, Potter BJ, Cao JM, Zhang C. Anti-LOX-1 rescues endothelial function in coronary arterioles in atherosclerotic ApoE knockout mice. Arterioscler Thromb Vasc Biol. 2007;27:871–7.

    Article  CAS  Google Scholar 

  37. Dobrin PB. Pathophysiology and pathogenesis of aortic aneurysms. Current concepts. Surg Clin N Am. 1989;69:687–703.

    Article  CAS  Google Scholar 

  38. Vorp DA, Vande Geest JP. Biomechanical determinants of abdominal aortic aneurysm rupture. Arterioscler Thromb Vasc Biol. 2005;25:1558–66.

    Article  CAS  Google Scholar 

  39. Freestone T, Turner RJ, Coady A, Higman DJ, Greenhalgh RM, Powell JT. Inflammation and matrix metalloproteinases in the enlarging abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol. 1995;15:1145–51.

    Article  CAS  Google Scholar 

  40. Sakalihasan N, Heyeres A, Nusgens BV, Limet R, Lapière CM. Modifications of the extracellular matrix of aneurysmal abdominal aortas as a function of their size. Eur J Vasc Surg. 1993;7:633–7.

    Article  CAS  Google Scholar 

  41. Chen K, Chen J, Li D, Zhang X, Mehta JL. Angiotensin II regulation of collagen type I expression in cardiac fibroblasts: modulation by PPAR-gamma ligand pioglitazone. Hypertension. 2004;44:655–61.

    Article  CAS  Google Scholar 

  42. Xu S, Ogura S, Chen J, Little PJ, Moss J, Liu P. LOX-1 in atherosclerosis: biological functions and pharmacological modifiers. Cell Mol Life Sci. 2013;70:2859–72.

    Article  CAS  Google Scholar 

  43. Wang X, Phillips MI, Mehta JL. LOX-1 and angiotensin receptors, and their interplay. Cardiovasc Drugs Ther. 2011;25:401–17.

    Article  CAS  Google Scholar 

  44. Nickenig G, Sachinidis A, Michaelsen F, Bo¨hm M, Seewald S, Vetter H. Upregulation of vascular angiotensin II receptor gene expression by low-density lipoprotein in vascular smooth muscle cells. Circulation. 1997;95:473–8.

    Article  CAS  Google Scholar 

  45. Barreto J, Karathanasis SK, Remaley A, Sposito AC. Role of LOX-1 (lectin-like oxidized low-density lipoprotein receptor 1) as a cardiovascular risk predictor: mechanistic insight and potential clinical use. Arterioscler Thromb Vasc Biol. 2021;41:153–66.

    CAS  Google Scholar 

  46. Hu C, Dandapat A, Sun L, Chen J, Marwali MR, Romeo F, et al. LOX-1 deletion decreases collagen accumulation in atherosclerotic plaque in low-density lipoprotein receptor knockout mice fed a high-cholesterol diet. Cardiovasc Res. 2008;79:287–93.

    Article  CAS  Google Scholar 

  47. Rekhter MD. Collagen synthesis in atherosclerosis: too much and not enough. Cardiovasc Res. 1999;41:376–84.

    Article  CAS  Google Scholar 

  48. Galis ZS, Khatri JJ. Matrix Metalloproteinases in vascular remodeling and atherogenesis. Circulation Res. 2002;90:251–62.

    Article  CAS  Google Scholar 

  49. Carmeliet P, Moons L, Lijnen R, Baes M, Lemaitre V, Tipping P, et al. Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nat Genet. 1997;17:439–44.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff of the Division of Analytical Bio-Medicine and the Division of Laboratory Animal Research of the Advanced Research Support Center (ADRES), Ehime University for animal care and the preparation of histological specimens. We are also grateful to Itsuki Miyake from the Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University, for the support with blood pressure measurements.

Funding

This work was supported by a grant from the Setsuro Fujii Memorial, Osaka Foundation for the Promotion of Fundamental Medical Research (to KT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Aono.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, K., Aono, J., Nakao, Y. et al. LOX-1 deficiency increases ruptured abdominal aortic aneurysm via thinning of adventitial collagen. Hypertens Res 46, 63–74 (2023). https://doi.org/10.1038/s41440-022-01093-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-022-01093-x

Keywords

This article is cited by

Search

Quick links