Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hypotensive effects of melatonin in rats: Focus on the model, measurement, application, and main mechanisms

Abstract

The hypotensive effects of melatonin are based on a negative correlation between melatonin levels and blood pressure in humans. However, there is a positive correlation in nocturnal animals that are often used as experimental models in cardiovascular research, and the hypotensive effects and mechanism of melatonin action are often investigated in rats and mice. In rats, the hypotensive effects of melatonin have been studied in normotensive and spontaneously or experimentally induced hypertensive strains. In experimental animals, blood pressure is often measured indirectly during the light (passive) phase of the day by tail-cuff plethysmography, which has limitations regarding data quality and animal well-being compared to telemetry. Melatonin is administered to rats in drinking water, subcutaneously, intraperitoneally, or microinjected into specific brain areas at different times. Experimental data show that the hypotensive effects of melatonin depend on the experimental animal model, blood pressure measurement technique, and the route, time and duration of melatonin administration. The hypotensive effects of melatonin may be mediated through specific membrane G-coupled receptors located in the heart and arteries. Due to melatonin’s lipophilic nature, its potential hypotensive effects can interfere with various regulatory mechanisms, such as nitric oxide and reactive oxygen species production and activation of the autonomic nervous and circadian systems. Based on the research conducted on rats, the cardiovascular effects of melatonin are modulatory, delayed, and indirect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Klein DC, Smoot R, Weller JL, Higa S, Markey SP, Creed GJ, et al. Lesions of the paraventricular nucleus area of the hypothalamus disrupt the suprachiasmatic→ spinal cord circuit in the melatonin rhythm generating system. Brain Res Bull. 1983;10:647–52. https://doi.org/10.1016/0361-9230(83)90033-3

    Article  CAS  PubMed  Google Scholar 

  2. Perreau-Lenz S, Kalsbeek A, Garidou ML, Wortel J, Van Der Vliet J, Van Heijningen C, et al. Suprachiasmatic control of melatonin synthesis in rats: inhibitory and stimulatory mechanisms: Melatonin synthesis controlled by clock outputs. Eur J Neurosci. 2003;17:221–8. https://doi.org/10.1046/j.1460-9568.2003.02442.x

    Article  PubMed  Google Scholar 

  3. Lehman MN, Bittman EL, Newman SW. Role of the hypothalamic paraventricular nucleus in neuroendocrine responses to daylength in the golden hamster. Brain Res. 1984;308:25–32. https://doi.org/10.1016/0006-8993(84)90913-2

    Article  CAS  PubMed  Google Scholar 

  4. Kalsbeek A, Garidou ML, Palm IF, Van Der Vliet J, Simonneaux V, Pévet P, et al. Melatonin sees the light: blocking GABA-ergic transmission in the paraventricular nucleus induces daytime secretion of melatonin: GABA release in control of the daily melatonin rhythm. Eur J Neurosci. 2000;12:3146–54. https://doi.org/10.1046/j.1460-9568.2000.00202.x

    Article  CAS  PubMed  Google Scholar 

  5. Grossman E, Laudon M, Zisapel N. Effect of melatonin on nocturnal blood pressure: meta-analysis of randomized controlled trials. Vasc Health Risk Manag. 2011;7:577–84. https://doi.org/10.2147/VHRM.S24603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sun H, Gusdon AM, Qu S. Effects of melatonin on cardiovascular diseases: progress in the past year. Curr Opin Lipidol. 2016;27:408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pandiperumal S, Trakht I, Srinivasan V, Spence D, Maestroni G, Zisapel N, et al. Physiological effects of melatonin: Role of melatonin receptors and signal transduction pathways. Prog Neurobiol. 2008;85:335–53. https://doi.org/10.1016/j.pneurobio.2008.04.001

    Article  CAS  Google Scholar 

  8. Laudon M, Grossman, Zisapel N. Effect of melatonin on nocturnal blood pressure: meta-analysis of randomized controlled trials. VHRM. Published online September 2011: 577. https://doi.org/10.2147/VHRM.S24603

  9. Akbari M, Ostadmohammadi V, Mirhosseini N, Lankarani KB, Tabrizi R, Keshtkaran Z, et al. The effects of melatonin supplementation on blood pressure in patients with metabolic disorders: a systematic review and meta-analysis of randomized controlled trials. J Hum Hypertens. 2019;33:202–9. https://doi.org/10.1038/s41371-019-0166-2

    Article  CAS  PubMed  Google Scholar 

  10. Bakris G, Ali W, Parati G. ACC/AHA Versus ESC/ESH on Hypertension Guidelines. J Am Coll Cardiol. 2019;73:3018–26. https://doi.org/10.1016/j.jacc.2019.03.507

    Article  PubMed  Google Scholar 

  11. Challet E. Minireview: Entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals. Endocrinology. 2007;148:5648–55. https://doi.org/10.1210/en.2007-0804

    Article  CAS  PubMed  Google Scholar 

  12. Holmes SW, Sugden D. Proceedings: The effect of melatonin on pinealectomy-induced hypertension in the rat. Br J Pharm. 1976;56:360P–361P.

    CAS  Google Scholar 

  13. Zanoboni A, Forni A, Zanoboni-Muciaccia W, Zanussi C. Effect of pinealectomy on arterial blood pressure and food and water intake in the rat. J Endocrinol Invest. 1978;1:125–30. https://doi.org/10.1007/BF03350359

    Article  CAS  PubMed  Google Scholar 

  14. Kilic E, ÖUzdemir YG, Bolay H, Keleştimur H, Dalkara T. Pinealectomy aggravates and melatonin administration attenuates brain damage in focal ischemia. J Cereb Blood Flow Metab. 1999;19:511–6. https://doi.org/10.1097/00004647-199905000-00005

    Article  CAS  PubMed  Google Scholar 

  15. Klimentova J, Cebova M, Barta A, Matuskova Z, Vrankova S, Rehakova R, et al. Effect of melatonin on blood pressure and nitric oxide generation in rats with metabolic syndrome. Physiol Res Published online Oct. 2016;29:S373–S380. https://doi.org/10.33549/physiolres.933436

    Article  Google Scholar 

  16. Nava M, Quiroz Y, Vaziri N, Rodríguez-Iturbe B. Melatonin reduces renal interstitial inflammation and improves hypertension in spontaneously hypertensive rats. Am J Physiol-Ren Physiol. 2003;284:F447–F454. https://doi.org/10.1152/ajprenal.00264.2002

    Article  CAS  Google Scholar 

  17. Pechánová O, Zicha J, Paulis L, Zenebe W, Dobesová Z, Kojsová S, et al. The effect of N-acetylcysteine and melatonin in adult spontaneously hypertensive rats with established hypertension. Eur J Pharmacol. 2007;561:129–36. https://doi.org/10.1016/j.ejphar.2007.01.035

    Article  CAS  PubMed  Google Scholar 

  18. Simko F, Pechanova O, Repova K, Aziriova S, Krajcirovicova K, Celec P, et al. Lactacystin-induced model of hypertension in rats: effects of melatonin and captopril. IJMS. 2017;18:1612. https://doi.org/10.3390/ijms18081612

    Article  CAS  PubMed Central  Google Scholar 

  19. Mailliet F, Galloux P, Poisson D. Comparative effects of melatonin, zolpidem and diazepam on sleep, body temperature, blood pressure and heart rate measured by radiotelemetry in Wistar rats. Psychopharmacology. 2001;156:417–26. https://doi.org/10.1007/s002130100769

    Article  CAS  PubMed  Google Scholar 

  20. Paulis L, Pechanova O, Zicha J, Barta A, Gardlik R, Celec P, et al. Melatonin interactions with blood pressure and vascular function during l-NAME-induced hypertension. J Pineal Res. 2010;48:102–8. https://doi.org/10.1111/j.1600-079X.2009.00732.x

    Article  CAS  PubMed  Google Scholar 

  21. Pliss MG, Kuzmenko NV, Rubanova NS, Tsyrlin VA. Dose-dependent mechanisms of melatonin on the functioning of the cardiovascular system and on the behavior of normotensive rats of different ages. Adv Gerontol. 2019;9:327–35. https://doi.org/10.1134/S2079057019030111

    Article  Google Scholar 

  22. Kennaway DJ, Voultsios A, Varcoe TJ, Moyer RW. Melatonin in mice: rhythms, response to light, adrenergic stimulation, and metabolism. Am J Physiol-Regul Integr Comp Physiol. 2002;282:R358–R365. https://doi.org/10.1152/ajpregu.00360.2001

    Article  CAS  PubMed  Google Scholar 

  23. Forman K, Vara E, García C, Kireev R, Cuesta S, Acuña-Castroviejo D, et al. Beneficial effects of melatonin on cardiological alterations in a murine model of accelerated aging: Melatonin effects on heart. J Pineal Res. 2010;49:312–20. https://doi.org/10.1111/j.1600-079X.2010.00800.x

    Article  CAS  PubMed  Google Scholar 

  24. Agabiti-Rosei C, De Ciuceis C, Rossini C, Porteri E, Rodella LF, Withers SB, et al. Anticontractile activity of perivascular fat in obese mice and the effect of long-term treatment with melatonin. J Hypertension. 2014;32:1264–74. https://doi.org/10.1097/HJH.0000000000000178

    Article  CAS  Google Scholar 

  25. Favero G, Franco C, Stacchiotti A, Rodella LF, Rezzani R. Sirtuin1 role in the melatonin protective effects against obesity-related heart injury. Front Physiol. 2020;11:103. https://doi.org/10.3389/fphys.2020.00103

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mutoh T, Shibata S, Korf HW, Okamura H. Melatonin modulates the light-induced sympathoexcitation and vagal suppression with participation of the suprachiasmatic nucleus in mice. J Physiol. 2003;547:317–32. https://doi.org/10.1113/jphysiol.2002.028001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sun Y, Wang C, Zhang N, Liu F. Melatonin ameliorates hypertension in hypertensive pregnant mice and suppresses the hypertension-induced decrease in Ca2+-activated K+ channels in uterine arteries. Hypertens Res. 2021;44:1079–86. https://doi.org/10.1038/s41440-021-00675-5

    Article  CAS  PubMed  Google Scholar 

  28. Bertuglia S, Reiter RJ. Melatonin reduces microvascular damage and insulin resistance in hamsters due to chronic intermittent hypoxia. J Pineal Res. 2009;46:307–13. https://doi.org/10.1111/j.1600-079X.2008.00662.x

    Article  CAS  PubMed  Google Scholar 

  29. Munley KM, Deyoe JE, Ren CC, Demas GE. Melatonin mediates seasonal transitions in aggressive behavior and circulating androgen profiles in male Siberian hamsters. Hormones Behav. 2020;117:104608. https://doi.org/10.1016/j.yhbeh.2019.104608

    Article  CAS  Google Scholar 

  30. Candia AA, Arias PV, González-Candia C, Navarrete A, Ebensperger G, Reyes RV, et al. Melatonin treatment during chronic hypoxic gestation improves neonatal cerebrovascular function. Vasc Pharmacol. Published online February 2022: 106971. https://doi.org/10.1016/j.vph.2022.106971

  31. Thakor AS, Allison BJ, Niu Y, Botting KJ, Serón‐Ferré M, Herrera EA, et al. Melatonin modulates the fetal cardiovascular defense response to acute hypoxia. J Pineal Res. 2015;59:80–90. https://doi.org/10.1111/jpi.12242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Molcan L. Telemetric data collection should be standard in modern experimental cardiovascular research. Physiol Behav. 2021;242:113620. https://doi.org/10.1016/j.physbeh.2021.113620

    Article  CAS  PubMed  Google Scholar 

  33. Van Vliet BN, Chafe LL, Antic V, Schnyder-Candrian S, Montani JP. Direct and indirect methods used to study arterial blood pressure. J Pharmacol Toxicol Methods. 2000;44:361–73. https://doi.org/10.1016/S1056-8719(00)00126-X

    Article  PubMed  Google Scholar 

  34. Quinn CM, Audet GN, Charkoudian N, Leon LR. Cardiovascular and thermoregulatory dysregulation over 24 h following acute heat stress in rats. Am J Physiol-Heart Circ Physiol. 2015;309:H557–H564. https://doi.org/10.1152/ajpheart.00918.2014

    Article  CAS  PubMed  Google Scholar 

  35. Molcan L, Sutovska H, Okuliarova M, Senko T, Krskova L, Zeman M. Dim light at night attenuates circadian rhythms in the cardiovascular system and suppresses melatonin in rats. Life Sci. 2019;231:116568. https://doi.org/10.1016/j.lfs.2019.116568

    Article  CAS  PubMed  Google Scholar 

  36. Witte K, Schnecko A, Buijs RM, van der Vliet J, Scalbert E, Delagrange P, et al. Effects of SCN lesions on circadian blood pressure rhythm in normotensive and transgenic hypertensive rats. Chronobiol Int. 1998;15:135–45. https://doi.org/10.3109/07420529808998678

    Article  CAS  PubMed  Google Scholar 

  37. Bazil MK, Krulan C, Webb RL. Telemetric monitoring of cardiovascular parameters in conscious spontaneously hypertensive rats. J Cardiovasc Pharm. 1993;22:897–905. https://doi.org/10.1097/00005344-199312000-00019

    Article  CAS  Google Scholar 

  38. Wilde E, Aubdool AA, Thakore P, Baldissera L Jr, Alawi KM, Keeble J, et al. Tail-cuff technique and its influence on central blood pressure in the mouse. J Am Heart Assoc. 2017;6:e005204.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sutovska H, Molcan L, Koprdova R, Piesova M, Mach M, Zeman M. Prenatal hypoxia increases blood pressure in male rat offspring and affects their response to artificial light at night. J Dev Orig Health Dis. 2021;12:587–94. https://doi.org/10.1017/S2040174420000963

    Article  CAS  PubMed  Google Scholar 

  40. Witte K, Lemmer B. Free-running rhythms in blood pressure and heart rate in normotensive and transgenic hypertensive rats. Chronobiol Int. 1995;12:237–47. https://doi.org/10.3109/07420529509057272

    Article  Google Scholar 

  41. Repova K, Krajcirovicova K, Mullerova M, Aziriova S, Baka T, Zorad S, et al. Effect of melatonin on the behaviour of rats with continuous light-induced hypertension. Gen Physiol Biophys. 2018;37:469–73. https://doi.org/10.4149/gpb_2017061

    Article  CAS  PubMed  Google Scholar 

  42. Jing JN, Wu ZT, Li ML, Wang YK, Tan X, Wang WZ. Constant light exerted detrimental cardiovascular effects through sympathetic hyperactivity in normal and heart failure rats. Front Neurosci. 2020;14:248. https://doi.org/10.3389/fnins.2020.00248

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chaudagar KK, Viczenczova C, Szeiffova Bacova B, Egan Benova T, Barancik M, Tribulova N. Modulation of systemic and aortic nitric oxide by melatonin and n-3 polyunsaturated fatty acids in isoproterenol affected spontaneously hypertensive and normotensive wistar rats. Physiol Res Published Online August. 2016;29:S109–S118. https://doi.org/10.33549/physiolres.933400

    Article  Google Scholar 

  44. Gizowski C, Zaelzer C, Bourque CW. Clock-driven vasopressin neurotransmission mediates anticipatory thirst prior to sleep. Nature. 2016;537:685–8. https://doi.org/10.1038/nature19756

    Article  CAS  PubMed  Google Scholar 

  45. Rezzani R, Porteri E, De Ciuceis C, Bonomini F, Rodella LF, Paiardi S, et al. Effects of melatonin and pycnogenol on small artery structure and function in spontaneously hypertensive rats. Hypertension. 2010;55:1373–80. https://doi.org/10.1161/HYPERTENSIONAHA.109.148254

    Article  CAS  PubMed  Google Scholar 

  46. Tain Y, Huang L, Lin I, Lau Y, Lin C. Melatonin prevents hypertension and increased asymmetric dimethylarginine in young spontaneous hypertensive rats. J Pineal Res. 2010;49:390–8. https://doi.org/10.1111/j.1600-079X.2010.00806.x

    Article  CAS  PubMed  Google Scholar 

  47. Dubocovich ML, Delagrange P, Krause DN, Sugden D, Cardinali DP, Olcese J. International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharm Rev. 2010;62:343–80. https://doi.org/10.1124/pr.110.002832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ovali MA, Uzun M. The effects of melatonin administration on KCNQ and KCNH2 gene expressions and QTc interval in pinealectomised rats. Cell Mol Biol. 2016;63:45. https://doi.org/10.14715/cmb/2017.63.3.9

    Article  Google Scholar 

  49. Ding CN, Cao YX, Zhou L, Zhu DN, Shen ZY, Fei MY, et al. Effects of microinjection of melatonin and its receptor antagonists into anterior hypothalamic area on blood pressure and heart rate in rats. Acta Pharm Sin. 2001;22:997–1002.

    CAS  Google Scholar 

  50. Huang L, Zhang C, Hou Y, Laudon M, She M, Yang S, et al. Blood pressure reducing effects of piromelatine and melatonin in spontaneously hypertensive rats. Eur Rev Med Pharm Sci. 2013;17:2449–56.

    CAS  Google Scholar 

  51. Benloucif S, Dubocovich ML. Melatonin and light induce phase shifts of circadian activity rhythms in the C3H/HeN mouse. J Biol Rhythms. 1996;11:113–25. https://doi.org/10.1177/074873049601100204

    Article  CAS  PubMed  Google Scholar 

  52. Pitrosky B, Kirsch R, Malan A, Mocaer E, Pevet P. Organization of rat circadian rhythms during daily infusion of melatonin or S20098, a melatonin agonist. Am J Physiol-Regul Integr Comp Physiol. 1999;277:R812–R828. https://doi.org/10.1152/ajpregu.1999.277.3.R812

    Article  CAS  Google Scholar 

  53. Simko F, Baka T, Krajcirovicova K, Repova K, Aziriova S, Zorad S, et al. Effect of melatonin on the renin-angiotensin-aldosterone system in l-NAME-induced hypertension. Molecules. 2018;23:265. https://doi.org/10.3390/molecules23020265

    Article  CAS  PubMed Central  Google Scholar 

  54. Aziriova S, Repova K, Krajcirovicova K, Baka T, Zorad S, Mojto V, et al. Effect of ivabradine, captopril and melatonin on the behaviour of rats in L-nitro-arginine methyl ester-induced hypertension. J Physiol Pharm. 2016;67:895–902.

    CAS  Google Scholar 

  55. Paulis L, Pechanova O, Zicha J, Krajcirovicova K, Barta A, Pelouch V, et al. Melatonin prevents fibrosis but not hypertrophy development in the left ventricle of NG-nitro-L-arginine-methyl ester hypertensive rats. J Hypertension. 2009;27:S11–S16. https://doi.org/10.1097/01.hjh.0000358831.33558.97

    Article  CAS  Google Scholar 

  56. Girouard H, Chulak C, LeJossec M, Lamontagne D, de Champlain J. Chronic antioxidant treatment improves sympathetic functions and β-adrenergic pathway in the spontaneously hypertensive rats. J Hypertension. 2003;21:179–88. https://doi.org/10.1097/00004872-200301000-00028

    Article  CAS  Google Scholar 

  57. Simko F, Pechanova O, Pelouch V, Krajcirovicova K, Mullerova M, Bednarova K, et al. Effect of melatonin, captopril, spironolactone and simvastatin on blood pressure and left ventricular remodelling in spontaneously hypertensive rats. J Hypertension. 2009;27:S5–S10. https://doi.org/10.1097/01.hjh.0000358830.95439.e8

    Article  CAS  Google Scholar 

  58. Masana MI, Dubocovich ML. Melatonin receptor signaling: finding the path through the dark. Sci STKE. 2001; 2001. https://doi.org/10.1126/stke.2001.107.pe39

  59. Steffens F, Zhou XB, Sausbier U, Sailer C, Motejlek K, Ruth P, et al. Melatonin receptor signaling in pregnant and nonpregnant rat uterine myocytes as probed by large conductance Ca2+-Activated K+ channel activity. Mol Endocrinol. 2003;17:2103–15. https://doi.org/10.1210/me.2003-0047

    Article  CAS  PubMed  Google Scholar 

  60. Masana MI, Doolen S, Ersahin C, Al-Ghoul WM, Duckles SP, Dubocovich ML, et al. MT 2 melatonin receptors are present and functional in rat caudal artery. J Pharm Exp Ther. 2002;302:1295–302. https://doi.org/10.1124/jpet.302.3.1295

    Article  CAS  Google Scholar 

  61. Doolen S, Krause DN, Dubocovich ML, Duckles SP. Melatonin mediates two distinct responses in vascular smooth muscle. Eur J Pharmacol. 1998;345:67–69.

    Article  CAS  PubMed  Google Scholar 

  62. Benova M, Herichova I, Stebelova K, Paulis L, Krajcirovicova K, Simko F, et al. Effect of L-NAME-induced hypertension on melatonin receptors and melatonin levels in the pineal gland and the peripheral organs of rats. Hypertens Res. 2009;32:242–7. https://doi.org/10.1038/hr.2009.12

    Article  CAS  PubMed  Google Scholar 

  63. Schepelmann M, Molcan L, Uhrova H, Zeman M, Ellinger I. The presence and localization of melatonin receptors in the rat aorta. Cell Mol Neurobiol. 2011;31:1257–65. https://doi.org/10.1007/s10571-011-9727-9

    Article  CAS  PubMed  Google Scholar 

  64. Molcan L, Maier A, Zemančíková A, Gelles K, Török J, Zeman M, et al. Expression of melatonin receptor 1 in rat mesenteric artery and perivascular adipose tissue and vasoactive action of melatonin. Cell Mol Neurobiol. 2021;41:1589–98. https://doi.org/10.1007/s10571-020-00928-w

    Article  CAS  PubMed  Google Scholar 

  65. Zhao T, Zhang H, Jin C, Qiu F, Wu Y, Shi L. Melatonin mediates vasodilation through both direct and indirect activation of BKCa channels. J Mol Endocrinol. 2017;59:219–33. https://doi.org/10.1530/JME-17-0028

    Article  CAS  PubMed  Google Scholar 

  66. Xu Z, Wu Y, Zhang Y, Zhang H, Shi L. Melatonin activates BKCa channels in cerebral artery myocytes via both direct and MT receptor/PKC-mediated pathway. Eur J Pharmacol. 2019;842:177–88. https://doi.org/10.1016/j.ejphar.2018.10.032

    Article  CAS  PubMed  Google Scholar 

  67. Sallinen P, Mänttäri S, Leskinen H, Ilves M, Vakkuri O, Ruskoaho H, et al. The effect of myocardial infarction on the synthesis, concentration and receptor expression of endogenous melatonin. J Pineal Res. 2007;42:254–60. https://doi.org/10.1111/j.1600-079X.2006.00413.x

    Article  CAS  PubMed  Google Scholar 

  68. Sánchez-Hidalgo M, Guerrero Montávez JM, Carrascosa-Salmoral M, del P, Naranjo Gutierrez M, del C, et al. Decreased MT1 and MT2 melatonin receptor expression in extrapineal tissues of the rat during physiological aging. J Pineal Res. 2009;46:29–35. https://doi.org/10.1111/j.1600-079X.2008.00604.x

    Article  CAS  PubMed  Google Scholar 

  69. Han D, Wang Y, Chen J, Zhang J, Yu P, Zhang R, et al. Activation of melatonin receptor 2 but not melatonin receptor 1 mediates melatonin‐conferred cardioprotection against myocardial ischemia/reperfusion injury. J Pineal Res. 2019;67:e12571. https://doi.org/10.1111/jpi.12571

    Article  CAS  PubMed  Google Scholar 

  70. Oishi A, Cecon E, Jockers R. Melatonin receptor signaling: impact of receptor oligomerization on receptor function. In: International Review of Cell and Molecular Biology. 338. Elsevier; 2018:59-77. https://doi.org/10.1016/bs.ircmb.2018.02.002

  71. Gao Y. Endothelium-derived factors. In: Biology of Vascular Smooth Muscle: Vasoconstriction and Dilatation. Springer Singapore; 2017:97-111. https://doi.org/10.1007/978-81-10-4810-4_8

  72. Rodella LF, Favero G, Rossini C, Foglio E, Reiter RJ, Rezzani R. Endothelin-1 as a potential marker of melatonin’s therapeutic effects in smoking-induced vasculopathy. Life Sci. 2010;87:558–64. https://doi.org/10.1016/j.lfs.2010.09.011

    Article  CAS  PubMed  Google Scholar 

  73. Bernátová I, Pecháňová O, Pelouch V, Šimko F. Regression of chronic L -NAME-treatment-induced left ventricular hypertrophy: effect of captopril. J Mol Cell Cardiol. 2000;32:177–85. https://doi.org/10.1006/jmcc.1999.1071

    Article  PubMed  Google Scholar 

  74. Khdhr A, Mahmud A. Protective role of melatonin in L-name induced hypertension in male albino rats. SJUOZ. 2016;4:18–24. https://doi.org/10.25271/2016.4.1.18

    Article  Google Scholar 

  75. Hung MW, Kravtsov GM, Lau CF, Poon AMS, Tipoe GL, Fung ML. Melatonin ameliorates endothelial dysfunction, vascular inflammation, and systemic hypertension in rats with chronic intermittent hypoxia. J Pineal Res. 2013;55:247–56. https://doi.org/10.1111/jpi.12067

    Article  CAS  PubMed  Google Scholar 

  76. Dubois-Deruy E, Peugnet V, Turkieh A, Pinet F. Oxidative stress in cardiovascular diseases. Antioxidants. 2020;9:864. https://doi.org/10.3390/antiox9090864

    Article  CAS  PubMed Central  Google Scholar 

  77. Baltatu OC, Amaral FG, Campos LA, Cipolla-Neto J. Melatonin, mitochondria and hypertension. Cell Mol Life Sci. 2017;74:3955–64. https://doi.org/10.1007/s00018-017-2613-y

    Article  CAS  PubMed  Google Scholar 

  78. Girouard H, Denault C, Chulak C, Dechamplain J. Treatment by -acetylcysteine and melatonin increases cardiac baroreflex and improves antioxidant reserve. Am J Hypertension. 2004;17:947–54. https://doi.org/10.1016/j.amjhyper.2004.06.009

    Article  CAS  Google Scholar 

  79. Repová-Bednárová K, Aziriová S, Hrenák J, Krajčírovičová K, Adamcová M, Paulis L, et al. Effect of captopril and melatonin on fibrotic rebuilding of the aorta in 24h light-induced hypertension. Physiol Res Published Online Novemb. 2013;30:S135–S141. https://doi.org/10.33549/physiolres.932592

    Article  Google Scholar 

  80. Deniz E, Sahna E, Engin Aksulu H. Nitric oxide synthase inhibition in rats: Melatonin reduces blood pressure and ischemia/reperfusion-induced infarct size. Scand Cardiovasc J. 2006;40:248–52. https://doi.org/10.1080/14017430600833116

    Article  CAS  PubMed  Google Scholar 

  81. Nishi EE, Almeida VR, Amaral FG, Simon KA, Futuro-Neto HA, Pontes RB, et al. Melatonin attenuates renal sympathetic overactivity and reactive oxygen species in the brain in neurogenic hypertension. Hypertens Res. 2019;42:1683–91. https://doi.org/10.1038/s41440-019-0301-z

    Article  CAS  PubMed  Google Scholar 

  82. Kawashima K, Miwa Y, Fujimoto K, Oohata H, Nishino H, Koike H. Antihypertensive action of melatonin in the spontaneously hypertensive rat. Clin Exp Hypertens Part A: Theory Pract. 1987;9:1121–31. https://doi.org/10.3109/10641968709160037

    Article  CAS  Google Scholar 

  83. Xia CM, Shao CH, Xin L, Wang YR, Ding CN, Wang J, et al. Effects of melatonin on blood pressure in stress-induced hypertension in rats. Clin Exp Pharmacol Physiol. 2008;35:1258–64. https://doi.org/10.1111/j.1440-1681.2008.05000.x

    Article  CAS  PubMed  Google Scholar 

  84. Duncan MJ, Takahashi JS, Dubocovich ML. Characteristics and autoradiographic localization of 2-[125 I]Iodomelatonin binding sites in Djungarian Hamster Brain*. Endocrinology. 1989;125:1011–8. https://doi.org/10.1210/endo-125-2-1011

    Article  CAS  PubMed  Google Scholar 

  85. Williams LM, Hannah LT, Hastings MH, Maywood ES. Melatonin receptors in the rat brain and pituitary. J Pineal Res. 1995;19:173–7. https://doi.org/10.1111/j.1600-079X.1995.tb00186.x

    Article  CAS  PubMed  Google Scholar 

  86. Campos LA, Cipolla-Neto J, Michelini LC. Melatonin modulates baroreflex control via area postrema. Brain Behav. 2013;3:171–7. https://doi.org/10.1002/brb3.123

    Article  PubMed  PubMed Central  Google Scholar 

  87. Castellano M, Böhm M. The Cardiac β-adrenoceptor–mediated signaling pathway and its alterations in hypertensive heart disease. Hypertension. 1997;29:715–22. https://doi.org/10.1161/01.HYP.29.3.715

    Article  CAS  PubMed  Google Scholar 

  88. Berg T. β- and α2-Adrenoceptor control of vascular tension and catecholamine release in female normotensive and spontaneously hypertensive rats. Front Neurol. 2017; 8. https://doi.org/10.3389/fneur.2017.00130

  89. K.-Laflamme A. Impaired basal sympathetic tone and α1-adrenergic responsiveness in association with the hypotensive effect of melatonin in spontaneously hypertensive rats. Am J Hypertens. 1998;11:219–29. https://doi.org/10.1016/S0895-7061(97)00401-9

    Article  CAS  PubMed  Google Scholar 

  90. Svitok P, Molcan L, Stebelova K, Vesela A, Sedlackova N, Ujhazy E, et al. Prenatal hypoxia in rats increased blood pressure and sympathetic drive of the adult offspring. Hypertens Res. 2016;39:501–5. https://doi.org/10.1038/hr.2016.21

    Article  CAS  PubMed  Google Scholar 

  91. Zeman M, Szántóová K, Stebelová K, Mravec B, Herichová I. Effect of rhythmic melatonin administration on clock gene expression in the suprachiasmatic nucleus and the heart of hypertensive TGR(mRen2)27 rats. J Hypertens. 2009;27:S21–S26. https://doi.org/10.1097/01.hjh.0000358833.41181.f6

    Article  CAS  Google Scholar 

  92. Cagnacci A, Cannoletta M, Renzi A, Baldassari F, Arangino S, Volpe A. Prolonged melatonin administration decreases nocturnal blood pressure in women. Am J Hypertens. 2005;18:1614–8.

    Article  CAS  PubMed  Google Scholar 

  93. Zeman M, Dulková K, Bada V, Herichová I. Plasma melatonin concentrations in hypertensive patients with the dipping and non-dipping blood pressure profile. Life Sci. 2005;76:1795–803. https://doi.org/10.1016/j.lfs.2004.08.034

    Article  CAS  PubMed  Google Scholar 

  94. Liu C, Weaver DR, Jin X, Shearman LP, Pieschl RL, Gribkoff VK, et al. Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron. 1997;19:91–102. https://doi.org/10.1016/S0896-6273(00)80350-5

    Article  CAS  PubMed  Google Scholar 

  95. Poirel VJ, Masson-Pévet M, Pevét P, Gauer F. MT1 melatonin receptor mRNA expression exhibits a circadian variation in the rat suprachiasmatic nuclei. Brain Res. 2002;946:64–71. https://doi.org/10.1016/S0006-8993(02)02824-X

    Article  CAS  PubMed  Google Scholar 

  96. Waly NE, Hallworth R. Circadian pattern of Melatonin MT1 and MT2 receptor localization in the rat suprachiasmatic nucleus. J Circadian Rhythm. 2015; 13. https://doi.org/10.5334/jcr.ab

  97. McArthur AJ, Hunt AE, Gillette MU. Melatonin action and signal transduction in the rat suprachiasmatic circadian clock: activation of protein Kinase C at dusk and dawn. Endocrinology. 1997;138:627–34. https://doi.org/10.1210/endo.138.2.4925

    Article  CAS  PubMed  Google Scholar 

  98. Agez L, Laurent V, Pévet P, Masson-Pévet M, Gauer F. Melatonin affects nuclear orphan receptors mRNA in the rat suprachiasmatic nuclei. Neuroscience. 2007;144:522–30. https://doi.org/10.1016/j.neuroscience.2006.09.030

    Article  CAS  PubMed  Google Scholar 

  99. Redlin U, Lynch GR. Effects of pinealectomy on SCN electrical firing rhythm in Djungarian hamsters. Neurosci Lett. 1997;236:67–70. https://doi.org/10.1016/S0304-3940(97)00754-4

    Article  CAS  PubMed  Google Scholar 

  100. Yanovski JA, Rosenwasser AM, Levine JD, Adler NT. The circadian activity rhythms of rats with mid- and parasagittal ‘split-SCN’ knife cuts and pinealectomy. Brain Res. 1990;537:216–26. https://doi.org/10.1016/0006-8993(90)90361-E

    Article  CAS  PubMed  Google Scholar 

  101. Pfeffer M, Korf HW, Wicht H. Synchronizing effects of melatonin on diurnal and circadian rhythms. Gen Comp Endocrinol. 2018;258:215–21. https://doi.org/10.1016/j.ygcen.2017.05.013

    Article  CAS  PubMed  Google Scholar 

  102. Zeman M, Molcan L, Herichova I, Okuliarova M. Endocrine and cardiovascular rhythms differentially adapt to chronic phase-delay shifts in rats. Chronobiol Int. 2016;33:1148–60. https://doi.org/10.1080/07420528.2016.1203332

    Article  PubMed  Google Scholar 

  103. Briaud SA, Zhang BL, Sannajust F. Continuous light exposure and sympathectomy suppress circadian rhythm of blood pressure in rats. J Cardiovasc Pharm Ther. 2004;9:97–105. https://doi.org/10.1177/107424840400900205

    Article  CAS  Google Scholar 

  104. Engelhardt S, Hein L, Dyachenkow V, Kranias EG, Isenberg G, Lohse MJ. Altered calcium handling is critically involved in the cardiotoxic effects of chronic β-adrenergic stimulation. Circulation. 2004;109:1154–60. https://doi.org/10.1161/01.CIR.0000117254.68497.39

    Article  CAS  PubMed  Google Scholar 

  105. Cassone VM, Chesworth MJ, Armstrong SM. Entrainment of rat circadian rhythms by daily injection of melatonin depends upon the hypothalamic suprachiasmatic nuclei. Physiol Behav. 1986;36:1111–21. https://doi.org/10.1016/0031-9384(86)90488-9

    Article  CAS  PubMed  Google Scholar 

  106. Redman JR, Francis AJP. Entrainment of Rat circadian rhythms by the melatonin agonist S-20098 requires intact suprachiasmatic nuclei but not the pineal. J Biol Rhythms. 1998;13:39–51. https://doi.org/10.1177/074873098128999907

    Article  CAS  PubMed  Google Scholar 

  107. Patton AP, Hastings MH. The suprachiasmatic nucleus. Curr Biol. 2018;28:R816–R822. https://doi.org/10.1016/j.cub.2018.06.052

    Article  CAS  PubMed  Google Scholar 

  108. Régrigny O, Delagrange P, Scalbert E, Atkinson J, Lartaud-Idjouadiene I. Melatonin improves cerebral circulation security margin in rats. Am J Physiol-Heart Circ Physiol. 1998;275:H139–H144. https://doi.org/10.1152/ajpheart.1998.275.1.H139

    Article  Google Scholar 

  109. Li HL, Kang YM, Yu L, Xu HY, Zhao H. Melatonin reduces blood pressure in rats with stress-induced hypertension via GABAA receptors. Clin Exp Pharmacol Physiol. 2009;36:436–40. https://doi.org/10.1111/j.1440-1681.2008.05080.x

    Article  CAS  PubMed  Google Scholar 

  110. Barbosa dos Santos G, José Machado Rodrigues M, Maria Gonçalves E, Cristina Cintra Gomes Marcondes M, Arcanjo Areas M. Melatonin reduces oxidative stress and cardiovascular changes induced by stanozolol in rats exposed to swimming exercise. E Eurasian J Med. 2013;45:155–62. https://doi.org/10.5152/eajm.2013.33

    Article  CAS  PubMed  Google Scholar 

  111. Aziriova S, Repova Bednarova K, Krajcirovicova K, Hrenak J, Rajkovicova R, Arendasova K, et al. Doxorubicin-induced behavioral disturbances in rats: Protective effect of melatonin and captopril. Pharmacol Biochem Behav. 2014;124:284–9. https://doi.org/10.1016/j.pbb.2014.06.021

    Article  CAS  PubMed  Google Scholar 

  112. Simko F, Pechanova O, Repova Bednarova K, Krajcirovicova K, Celec P, Kamodyova N, et al. Hypertension and cardiovascular remodelling in rats exposed to continuous light: protection by ACE-inhibition and melatonin. Mediators Inflamm. 2014;2014:1–10. https://doi.org/10.1155/2014/703175

    Article  CAS  Google Scholar 

  113. Sahna E, Deniz E, Bay-Karabulut A, Burma O. Melatonin protects myocardium from ischemia-reperfusion injury in hypertensive rats: role of myeloperoxidase activity. Clin Exp Hypertens. 2008;30:673–81. https://doi.org/10.1080/10641960802251966

    Article  CAS  PubMed  Google Scholar 

  114. Qiao YF, Guo WJ, Li L, Shao S, Qiao X, Shao JJ, et al. Melatonin attenuates hypertension-induced renal injury partially through inhibiting oxidative stress in rats. Mol Med Rep. 2016;13:21–26. https://doi.org/10.3892/mmr.2015.4495

    Article  CAS  PubMed  Google Scholar 

  115. Ajibade TO, Oyagbemi AA, Durotoye LA, Omóbòwálé TO, Asenuga ER, Olayemi FO. Modulatory effects of melatonin and vitamin C on oxidative stress-mediated haemolytic anaemia and associated cardiovascular dysfunctions in rats. J Complement Integr Med. 2017;14:20150082. https://doi.org/10.1515/jcim-2015-0082

    Article  CAS  Google Scholar 

  116. Girouard H, Chulak C, Lejossec M, Lamontagne D, de Champlain J. Vasorelaxant effects of the chronic treatment with melatonin on mesenteric artery and aorta of spontaneously hypertensive rats. J Hypertens. 2001;19:1369–77. https://doi.org/10.1097/00004872-200108000-00004

    Article  CAS  PubMed  Google Scholar 

  117. Cheng MC, Wu TH, Huang LT, Tain YL. Renoprotective effects of melatonin in young spontaneously hypertensive rats with L-NAME. Pediatrics Neonatol. 2014;55:189–95. https://doi.org/10.1016/j.pedneo.2013.09.005

    Article  Google Scholar 

  118. Simko F, Pechanova O, Pelouch V, Krajcirovicova K, Celec P, Palffy R, et al. Continuous light and L-NAME-induced left ventricular remodelling: different protection with melatonin and captopril. J Hypertens. 2010;28:S13–S18. https://doi.org/10.1097/01.hjh.0000388489.28213.08

    Article  CAS  PubMed  Google Scholar 

  119. Lee SK, Sirajudeen KNS, Sundaram A, Zakaria R, Singh HJ. Effects of antenatal, postpartum and post-weaning melatonin supplementation on blood pressure and renal antioxidant enzyme activities in spontaneously hypertensive rats. J Physiol Biochem. 2011;67:249–57. https://doi.org/10.1007/s13105-010-0070-2

    Article  CAS  PubMed  Google Scholar 

  120. Tain YL, Huang LT, Hsu CN, Lee CT. Melatonin therapy prevents programmed hypertension and nitric oxide deficiency in offspring exposed to maternal caloric restriction. Oxid Med Cell Longev. 2014;2014:1–21. https://doi.org/10.1155/2014/283180

    Article  CAS  Google Scholar 

  121. Tain YL, Leu S, Wu KLH, Lee WC, Chan JYH. Melatonin prevents maternal fructose intake-induced programmed hypertension in the offspring: roles of nitric oxide and arachidonic acid metabolites. J Pineal Res. 2014;57:80–89. https://doi.org/10.1111/jpi.12145

    Article  CAS  PubMed  Google Scholar 

  122. Wu TH, Kuo HC, Lin IC, Chien SJ, Huang LT, Tain YL. Melatonin prevents neonatal dexamethasone induced programmed hypertension: Histone deacetylase inhibition. J Steroid Biochem Mol Biol. 2014;144:253–9. https://doi.org/10.1016/j.jsbmb.2014.07.008

    Article  CAS  PubMed  Google Scholar 

  123. Zhang S. Melatonin Attenuates RVLM Neuro-inflammation and Sympathetic Activation in Stress-induced Hypertension Rats. Preprints. 2020;2020020448.  https://doi.org/10.20944/preprints202002.0448.v1

  124. Tain YL, Chen CC, Sheen JM, Yu HR, Tiao MM, Kuo HC, et al. Melatonin attenuates prenatal dexamethasone-induced blood pressure increase in a rat model. J Am Soc Hypertens. 2014;8:216–26. https://doi.org/10.1016/j.jash.2014.01.009

    Article  CAS  PubMed  Google Scholar 

  125. Zuo J, Jiang Z. Melatonin attenuates hypertension and oxidative stress in a rat model of L-NAME-induced gestational hypertension. Vasc Med. 2020;25:295–301. https://doi.org/10.1177/1358863X20919798

    Article  CAS  PubMed  Google Scholar 

  126. Hsu CN, Yang HW, Hou CY, Chang-Chien GP, Lin S, Tain YL. Melatonin prevents chronic kidney disease-induced hypertension in young rat treated with adenine: implications of gut microbiota-derived metabolites. Antioxidants. 2021;10:1211. https://doi.org/10.3390/antiox10081211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tain YL, Leu S, Lee WC, Wu K, Chan J. Maternal melatonin therapy attenuated maternal high-fructose combined with post-weaning high-salt diets-induced hypertension in adult male rat offspring. Molecules. 2018;23:886. https://doi.org/10.3390/molecules23040886

    Article  CAS  PubMed Central  Google Scholar 

  128. Kantar Ş, Türközkan N, Bircan FS, Paşaoğlu ÖT. Beneficial effects of melatonin on serum nitric oxide, homocysteine, and ADMA levels in fructose-fed rats. Pharm Biol. 2015;53:1035–41. https://doi.org/10.3109/13880209.2014.957782

    Article  CAS  PubMed  Google Scholar 

  129. Chuang JI, Chen SS, Lin MT. Melatonin decreases brain serotonin release, arterial pressure and heart rate in rats. Pharmacology. 1993;47:91–97. https://doi.org/10.1159/000139083

    Article  CAS  PubMed  Google Scholar 

  130. Agil A, Navarro-Alarcón M, Ruiz R, Abuhamadah S, El-Mir MY, Vázquez GF. Beneficial effects of melatonin on obesity and lipid profile in young Zucker diabetic fatty rats: Melatonin improves overweight and dyslipidemia in young ZFD rats. J Pineal Res. Published online2010: no-no. https://doi.org/10.1111/j.1600-079X.2010.00830.x

  131. Leibowitz A, Volkov A, Voloshin K, Shemesh C, Barshack I, Grossman E. Melatonin prevents kidney injury in a high salt diet-induced hypertension model by decreasing oxidative stress. J Pineal Res. 2016;60:48–54. https://doi.org/10.1111/jpi.12287

    Article  CAS  PubMed  Google Scholar 

  132. Rexhaj E, Pireva A, Paoloni-Giacobino A, Allemann Y, Cerny D, Dessen P, et al. Prevention of vascular dysfunction and arterial hypertension in mice generated by assisted reproductive technologies by addition of melatonin to culture media. Am J Physiol-Heart Circ Physiol. 2015;309:H1151–H1156. https://doi.org/10.1152/ajpheart.00621.2014

    Article  CAS  PubMed  Google Scholar 

  133. Sartori C, Dessen P, Mathieu C, Monney A, Bloch J, Nicod P, et al. Melatonin improves glucose homeostasis and endothelial vascular function in high-fat diet-fed insulin-resistant mice. Endocrinology. 2009;150:5311–7. https://doi.org/10.1210/en.2009-0425

    Article  CAS  PubMed  Google Scholar 

  134. Sahna E, Acet A, Kaya Ozer M, Olmez E. Myocardial ischemia-reperfusion in rats: reduction of infarct size by either supplemental physiological or pharmacological doses of melatonin. J Pineal Res. 2002;33:234–8. https://doi.org/10.1034/j.1600-079X.2002.02924.x

    Article  CAS  PubMed  Google Scholar 

  135. Karppanen H, Lahovaara S, Männistö P, Vappatalo H. Plasma renin activity and in vitro synthesis of aldosterone by the adrenal glands of rats with spontaneous, renal, or pinealectomy-induced hypertension. Acta Physiol Scand. 1975;94:184–8. https://doi.org/10.1111/j.1748-1716.1975.tb05878.x

    Article  CAS  PubMed  Google Scholar 

  136. Karppanen H. Effect of propranolol on the blood pressure of normotensive and pinealectomized hypertensive rats. Naunyn-Schmiedeberg’s Arch Pharm. 1974;281:1–12. https://doi.org/10.1007/BF00500609

    Article  CAS  Google Scholar 

  137. Karppanen H, Vapaatalo H. Effects of an aldosterone antagonist, spironolactone, on pinealectomized rats. Pharmacology. 1971;6:257–64. https://doi.org/10.1159/000136251

    Article  CAS  PubMed  Google Scholar 

  138. Karppanen H, Vapaatalo H, Lahovaara S, Paasonen MK. Studies with pinealectomized rats. Pharmacology. 1970;3:76–84. https://doi.org/10.1159/000136065

    Article  CAS  PubMed  Google Scholar 

  139. Zanoboni A, Zanoboni-Muciaccia W. Experimental hypertension in pinealectomized rats. Life Sci. 1967;6:2327–31. https://doi.org/10.1016/0024-3205(67)90043-4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The manuscript was professionally proofread by Proof-Reading-Service.com (Cambridge, UK).

Funding

The study was supported by the Slovak Research and Development Agency (APVV-17-0178) and the Scientific Grant Agency of the Ministry of Education of the Slovak Republic (VEGA 1/0492/19).

Author information

Authors and Affiliations

Authors

Contributions

DC: writing—original draft preparation, review and editing; HS, and KB: writing—original draft preparation, review and editing, visualization; LM: conceptualization, writing—review and editing, visualization, supervision. All authors contributed to the article and approved the submitted version. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Lubos Molcan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cvikova, D., Sutovska, H., Babarikova, K. et al. Hypotensive effects of melatonin in rats: Focus on the model, measurement, application, and main mechanisms. Hypertens Res 45, 1929–1944 (2022). https://doi.org/10.1038/s41440-022-01031-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-022-01031-x

Keywords

This article is cited by

Search

Quick links