Abstract
Hypertension is the most important vascular risk factor for stroke; therefore, optimal blood pressure (BP) management is essential for the prevention of recurrent stroke; lowering BP was shown to reduce the risk of recurrent stroke by 25–30%. A recent meta-analysis showed that intensive BP lowering to levels <130/80 mmHg significantly reduced the risk of recurrent stroke compared to standard management with BP levels <140/90 mmHg. The benefit of intensive BP management is evident with regard to a reduced risk of intracranial hemorrhage. Therefore, clinical practice guidelines have established a target BP of <130/80 mmHg. However, the target BP needs to be individualized. A stepped-care approach for cautious BP lowering (usually to levels <140/90 mmHg) is preferred for patients with severe diseases of the major cerebral vessels, who have a high risk of recurrent ischemic stroke. In contrast, more aggressive BP lowering (to levels <120/80 mmHg) tends to benefit patients at high risk of intracranial hemorrhage. The selection of BP management strategies should be guided by the risk of recurrent ischemic and hemorrhagic strokes.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Meschia JF, Bushnell C, Boden-Albala B, Braun LT, Bravata DM, Chaturvedi S, et al. Guidelines for the primary prevention of stroke: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2014;45:3754–832.
Ettehad D, Emdin CA, Kiran A, Anderson SG, Callender T, Emberson J, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet. 2016;387:957–67.
Katsanos AH, Filippatou A, Manios E, Deftereos S, Parissis J, Frogoudaki A, et al. Blood pressure reduction and secondary stroke prevention: a systematic review and metaregression analysis of randomized clinical trials. Hypertension. 2017;69:171–9.
Toyoda K, Nakayama M. Japan Stroke Data Bank. Japan Stroke Data Bank 2021 edited by Editorial Board of Japan Stroke Data bank, Tokyo: National Cerebral and Cardiovascular Center, Nakayama Shoten., Ltd; 2021, p. 20–27.
Chung MK, Eckhardt LL, Chen LY, Ahmed HM, Gopinathannair R, Joglar JA, et al. Lifestyle and risk factor modification for reduction of atrial fibrillation: a scientific statement from the American Heart Association. Circulation. 2020;141:e750–e772.
van Gijn J, Rinkel GJ. Subarachnoid haemorrhage: diagnosis, causes and management. Brain. 2001;124:249–78.
Kinoshita M, Yokote K, Arai H, Iida M, Ishigaki Y, Ishibashi S, et al. Japan Atherosclerosis Society (JAS) guidelines for prevention of atherosclerotic cardiovascular diseases 2017. J Atheroscler Thromb. 2018;25:846–984.
PROGRESS Collaborative Group. Randomised trial of a perindopril-based blood-pressure-lowering regimen among 6,105 individuals with previous stroke or transient ischaemic attack. Lancet. 2001;358:1033–41.
Yusuf S, Diener HC, Sacco RL, Cotton D, Ounpuu S, Lawton WA, et al. Telmisartan to prevent recurrent stroke and cardiovascular events. N. Engl J Med. 2008;359:1225–37.
Zonneveld TP, Richard E, Vergouwen MD, Nederkoorn PJ, de Haan R, Roos YB, Kruyt ND. Blood pressure-lowering treatment for preventing recurrent stroke, major vascular events, and dementia in patients with a history of stroke or transient ischaemic attack. Cochrane Database Syst Rev. 2018;7:CD007858 https://doi.org/10.1002/14651858.
Chapman N, Huxley R, Anderson C, Bousser MG, Chalmers J, Colman S, et al. Effects of a perindopril-based blood pressure-lowering regimen on the risk of recurrent stroke according to stroke subtype and medical history: the PROGRESS Trial. Stroke. 2004;35:116–21.
SPS3 Study Group, Benavente OR, Coffey CS, Conwit R, Hart RG, McClure LA, Pearce LA, et al. Blood-pressure targets in patients with recent lacunar stroke: the SPS3 randomised trial. Lancet. 2013;382:507–15.
Kitagawa K, Yamamoto Y, Arima H, Maeda T, Sunami N, Kanzawa T, et al. Effect of Standard vs intensive blood pressure control on the risk of recurrent stroke: a randomized clinical trial and meta-analysis. JAMA Neurol. 2019;76:1309–18.
Kitagawa K, Arima H, Yamamoto Y, Ueda S, Rakugi H, Kohro T, et al. Intensive or standard blood pressure control in patients with a history of ischemic stroke: respect post-hoc analysis. Hypertens Res. 2022;45:591–601.
SPRINT Research Group, Wright JT Jr, Williamson JD, Whelton PK, Snyder JK, Sink KM, Rocco MV, et al. A randomized trial of intensive versus standard blood-pressure control. N. Engl J Med. 2015;373:2103–16.
Irie K, Yamaguchi T, Minematsu K, Omae T. The J-curve phenomenon in stroke recurrence. Stroke. 1993;24:1844–9.
Arima H, Chalmers J, Woodward M, Anderson C, Rodgers A, Davis S, et al. Lower target blood pressures are safe and effective for the prevention of recurrent stroke: the PROGRESS trial. J Hypertens. 2006;24:1201–8.
Ovbiagele B, Diener HC, Yusuf S, Martin RH, Cotton D, Vinisko R, et al. Level of systolic blood pressure within the normal range and risk of recurrent stroke. JAMA. 2011;306:2137–44.
Hilkens NA, Greving JP, Algra A, Klijn CJ. Blood pressure levels and the risk of intracerebral hemorrhage after ischemic stroke. Neurology. 2017;88:177–81.
Ovbiagele B. Low-normal systolic blood pressure and secondary stroke risk. J Stroke Cerebrovasc Dis. 2013;22:633–8.
Odden MC, McClure LA, Sawaya BP, White CL, Peralta CA, Field TS, et al. Achieved Blood pressure and outcomes in the secondary prevention of small subcortical strokes trial. Hypertension. 2016;67:63–9.
Biffi A, Anderson CD, Battey TW, Ayres AM, Greenberg SM, Viswanathan A, et al. Association between blood pressure control and risk of recurrent intracerebral hemorrhage. JAMA. 2015;314:904–12.
Estol CJ, Bath PMW, Gorelick PB, Cotton D, Martin RH. Differences in ischemic and hemorrhagic recurrence rates among race-ethnic groups in the PRoFESS secondary stroke prevention trial. Int J Stroke. 2014;9:43–7.
Hoshino T, Sissani L, Labreuche J, Bousser MG, Chamorro A, Fisher M, et al. Non-cardioembolic stroke/transient ischaemic attack in Asians and non-Asians: a post-hoc analysis of the PERFORM study. Eur Stroke J. 2019;4:65–74.
Toyoda K, Yasaka M, Iwade K, Nagata K, Koretsune Y, Sakamoto T, et al. Bleeding with Antithrombotic Therapy (BAT) Study Group. Dual antithrombotic therapy increases severe bleeding events in patients with stroke and cardiovascular disease: a prospective, multicenter, observational study. Stroke. 2008;39:1740–5.
Wilson D, Ambler G, Lee KJ, Lim JS, Shiozawa M, Koga M, et al. Cerebral microbleeds and stroke risk after ischaemic stroke or transient ischaemic attack: a pooled analysis of individual patient data from cohort studies. Lancet Neurol. 2019;18:653–65.
Rothwell PM, Howard SC, Spence JD, Carotid Endarterectomy Trialists’ Collaboration. Relationship between blood pressure and stroke risk in patients with symptomatic carotid occlusive disease. Stroke. 2003;34:2583–90.
Turan TN, Cotsonis G, Lynn MJ, Chaturvedi S, Chimowitz M. Relationship between blood pressure and stroke recurrence in patients with intracranial arterial stenosis. Circulation. 2007;115:2969–75.
Yamauchi H, Higashi T, Kagawa S, Kishibe Y, Takahashi M. Impaired perfusion modifies the relationship between blood pressure and stroke risk in major cerebral artery disease. J Neurol Neurosurg Psychiatry. 2013;84:1226–32.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
KK reports grants and personal fees from Daiichi Sankyo, Bayer Inc., grants and personal fees from Nippon Boehringer Ingelheim, Kyowa Kirin, Sumitomo Dainippon Pharma, Astellas Pharma, and Sanofi, and personal fees from Takeda Pharmaceutical outside of the submitted work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kitagawa, K. Blood pressure management for secondary stroke prevention. Hypertens Res 45, 936–943 (2022). https://doi.org/10.1038/s41440-022-00908-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41440-022-00908-1
Keywords
This article is cited by
-
Causal associations of COVID‐19 on neurosurgical diseases risk: a Mendelian randomization study
Human Genomics (2024)
-
Feasibility of ambulatory blood pressure monitoring to predict cardiovascular outcome in stroke survivors
Hypertension Research (2024)
-
Blood pressure management to prevent recurrent stroke: current evidence and perspectives
npj Cardiovascular Health (2024)
-
Small vessel disease burden predicts incident stroke and all-cause death, but not acute coronary event
Hypertension Research (2024)
-
Survivability of patients admitted for stroke in a primary stroke center, Penang, Malaysia: a retrospective 5-year study
BMC Pharmacology and Toxicology (2023)