Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Prevalence of mild cognitive impairment in patients with hypertension: a systematic review and meta-analysis

This article has been updated

Abstract

Mild cognitive impairment (MCI) is common in patients with hypertension. Prevalence estimates of MCI in hypertensive patients are needed to guide both public health and clinical decision making. A literature search was conducted in four databases, including PubMed, Embase, Cochrane Library, and Web of Science, from their inception to February 2021. The methodological quality assessment used the risk of bias tool. The pooled prevalence of MCI in hypertensive patients was determined by a random-effects model. Heterogeneity was explored using sensitivity analysis, subgroup analysis, and random effects meta-regression. Of 2314 references, 11 studies (47,179 participants) were included in the meta-analysis. The overall pooled prevalence of MCI in patients with hypertension was 30% (95% CI, 25–35), with significant heterogeneity present (I2 = 99.3%, p < 0.001). In subgroup analyses, Asian and European samples had a prevalence of 26% (95% CI, 20–31) and 40% (95% CI, 14–66), respectively; cross-sectional and cohort studies had a prevalence of 28% (95% CI, 24–32) and 38% (95% CI, −5–81); age older than 60 years had a prevalence of 28% (95% CI, 23–33); community-based and clinic-based samples had a prevalence of 17% (95% CI, 15–19) and 42% (95% CI, 23–62); and MCI diagnosis using the MoCA, NIA-AA, MMSE, and Peterson criteria had a prevalence of 64% (95% CI, 59–68), 18% (95% CI, 16–19), 19% (95% CI, 15–23), and 13% (95% CI, 9–17). Meta-regression analysis showed that different MCI diagnostic criteria could be the source of heterogeneity in the pooled results. MCI is common in patients with hypertension, with an overall prevalence of 30%. Earlier cognitive screening and management in hypertensive patients should be advocated.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2

Change history

  • 26 July 2021

    This article has been updated.

References

  1. 1.

    Forouzanfar M, Liu P, Roth G, Ng M, Biryukov S, Marczak L, et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mmHg, 1990-2015. JAMA 2017;317:165–82.

    PubMed  Article  Google Scholar 

  2. 2.

    Mills KT, Bundy JD, Kelly TN, Reed JE, Kearney PM, Reynolds K, et al. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation 2016;134:441–50.

    PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Lu J, Lu Y, Wang X, Li X, Linderman GC, Wu C, et al. Prevalence, awareness, treatment, and control of hypertension in China: data from 1·7 million adults in a population-based screening study (China PEACE Million Persons Project). Lancet 2017;390:2549–58.

    PubMed  Article  Google Scholar 

  4. 4.

    Carey RM, Muntner P, Bosworth HB, Whelton PK. Prevention and control of hypertension: JACC health promotion series. J Am Coll Cardiol 2018;72:1278–93.

    PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Iadecola C, Gottesman RF. Neurovascular and cognitive dysfunction in hypertension. Circ Res 2019;124:1025–44.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Shah NS, Vidal JS, Masaki K, Petrovitch H, Ross GW, Tilley C, et al. Midlife blood pressure, plasma beta-amyloid, and the risk for Alzheimer disease: the Honolulu Asia Aging Study. Hypertension 2012;59:780–6.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Ronnemaa E, Zethelius B, Lannfelt L, Kilander L. Vascular risk factors and dementia: 40-year follow-up of a population-based cohort. Dement Geriatr Cogn Disord 2011;31:460–6.

    PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Piscopo P, Lacorte E, Feligioni M, Mayer F, Crestini A, Piccolo L, et al. MicroRNAs and mild cognitive impairment: a systematic review. Ageing Res Rev 2019;50:131–41.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Busse A, Angermeyer MC, Riedel-Heller SG. Progression of mild cognitive impairment to dementia: a challenge to current thinking. Br J Psychiatry 2006;189:399–404.

    PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Lu Y, Liu C, Yu D, Fawkes S, Ma J, Zhang M, et al. Prevalence of mild cognitive impairment in community-dwelling Chinese populations aged over 55 years: a meta-analysis and systematic review. BMC Geriatr 2021;21:10.

    PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Vicario A, Cerezo GH, del Sueldo M, Zilberman J, Pawluk SM, Lódolo N, et al. Neurocognitive disorder in hypertensive patients. Heart–Brain Study. Hipertension y Riesgo Vascular 2018;35:169–76.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Lazo-Porras M, Ortiz-Soriano V, Moscoso-Porras M, Runzer-Colmenares FM, Málaga G, Jaime, et al. Cognitive impairment and hypertension in older adults living in extreme poverty: a cross-sectional study in Peru. BMC Geriatr 2017;17:250.

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Vicario A, Cerezo GH, Del Sueldo M, Zilberman J, Pawluk SM, Lódolo N, et al. Neurocognitive disorder in hypertensive patients. Heart-Brain Study Hipertens Riesgo Vasc 2018;35:169–76.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Yano Y, Bakris GL, Inokuchi T, Ohba Y, Tamaki N, Nagata M, et al. Association of cognitive dysfunction with cardiovascular disease events in elderly hypertensive patients. J Hypertens 2014;32:423–31.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Vicario A, del Sueldo MA, Zilberman JM, Cerezo GH. Cognitive evolution in hypertensive patients: a six-year follow-up. Vasc Health Risk Manag 2011;7:281–5.

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Hoy D, Brooks P, Woolf A, Blyth F, March L, Bain C, et al. Assessing risk of bias in prevalence studies: modification of an existing tool and evidence of interrater agreement. J Clin Epidemiol 2012;65:934–9.

    PubMed  Article  Google Scholar 

  17. 17.

    Jia LF, Du YF, Chu L, Zhang ZJ, Li FY, Lyu DY, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study. Lancet. Public Health 2020;5:E661–E71.

    PubMed  Google Scholar 

  18. 18.

    Heizhati M, Wang L, Li N, Li M, Pan F, Yang Z, et al. Prevalence of mild cognitive impairment is higher in hypertensive population: a cross-sectional study in less developed northwest China. Medicine. 2020;99:e19891.

    PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Fu J. Z., Liu Q., Du Y., Zhu Y., Sun C. Q., Lin H. Y., et al. Age- and sex-specific prevalence and modifiable risk factors of mild cognitive impairment among older adults in China: a population-based observational study. Front Aging Neurosci. 2020;12.

  20. 20.

    Wu L, He Y, Jiang B, Liu M, Wang JH, Yang SS, et al. The association between the prevalence, treatment and control of hypertension and the risk of mild cognitive impairment in an elderly urban population in China. Hyperten Res 2016;39:367–75.

    Article  CAS  Google Scholar 

  21. 21.

    Bai J, Wei P, Zhao N, Xiao Y, Yang C, Zhong J, et al. A study of mild cognitive impairment in veterans: role of hypertension and other confounding factors. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2016;23:703–15.

    PubMed  Article  Google Scholar 

  22. 22.

    Mehra A., Suri V., Kumari S., Avasthi A., Grover S. Association of mild cognitive impairment and metabolic syndrome in patients with hypertension. Asian J Psychiatry. 2020;53.

  23. 23.

    Jimenez-Balado J, Riba-Llena I, Abril O, Garde E, Penalba A, Ostos E, et al. Cognitive impact of cerebral small vessel disease changes in patients with hypertension. Hypertension 2019;73:342–9.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Sizova Z. M., Karaulov A. V., Lapidus N. I., Shikh E. V., Shindryaeva N. N., Zakharova V. L., et al. Clinical and instrumental peculiarities of the course of arterial hypertension in patients with cognitive function impairments. Electron J Gen Med. 2018;15.

  25. 25.

    Yaneva-Sirakova T, Traykov L, Petrova J, Gruev I, Vassilev D. Screening for mild cognitive impairment in patients with cardiovascular risk factors. Neuropsychiatr Dis Treat 2017;13:2925–34.

    PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Chudiak A, Uchmanowicz I, Mazur G. Relation between cognitive impairment and treatment adherence in elderly hypertensive patients. Clin Inter Aging 2018;13:1409–18.

    Article  Google Scholar 

  27. 27.

    Koyanagi A, Lara E, Stubbs B, Carvalho AF, Oh H, Stickley A, et al. Chronic physical conditions, multimorbidity, and mild cognitive impairment in low- and middle-income countries. J Am Geriatr Soc 2018;66:721–7.

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Pais R., Ruano L., O. P. C., Barros H. Global cognitive impairment prevalence and incidence in community dwelling older adults—a systematic review. Geriatrics. 2020;5.

  29. 29.

    Xue J, Li J, Liang J, Chen S. The prevalence of mild cognitive impairment in China: a systematic review. Aging Dis 2018;9:706–15.

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Baiano C, Barone P, Trojano L, Santangelo G. Prevalence and clinical aspects of mild cognitive impairment in Parkinson’s disease: a meta-analysis. Mov Disord. 2020;35:45–54.

    PubMed  Article  Google Scholar 

  31. 31.

    Yaneva-Sirakova T, Tarnovska-Kadreva R, Traykov L, Vassilev D, Gruev I, Yaneva M. The incidence of mild cognitive impairment in diabetic patients with arterial hypertension. Alzheimer’s Dement. 2016;12:P909.

    Article  Google Scholar 

  32. 32.

    Ismail Z, Elbayoumi H, Fischer CE, Hogan DB, Millikin CP, Schweizer T, et al. Prevalence of depression in patients with mild cognitive impairment: a systematic review and meta-analysis. JAMA Psychiatry. 2017;74:58–67.

    PubMed  Article  Google Scholar 

  33. 33.

    Kapusta J, Kidawa TM, Rynkowska-Kidawa M, Irzmanski TR, Kowalski TJ. Evaluation of frequency of occurrence of cognitive impairment in the course of arterial hypertension in an elderly population. Psychogeriatrics. 2020;20:406–11.

    PubMed  Article  Google Scholar 

  34. 34.

    Mariani E, Monastero R, Mecocci P. Mild cognitive impairment: a systematic review. J Alzheimer’s Dis. 2007;12:23–35.

    Article  Google Scholar 

  35. 35.

    Cho MH, Shin DW, Chang SA, Lee JE, Jeong SM, Kim SH, et al. Association between cognitive impairment and poor antihypertensive medication adherence in elderly hypertensive patients without dementia. Sci Rep. 2018;8:11688.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. 36.

    Firbank M, Wiseman R, Burton E, Saxby B, O’Brien J, Ford G. Brain atrophy and white matter hyperintensity change in older adults and relationship to blood pressure. Brain atrophy, WMH change and blood pressure. J Neurol. 2007;254:713–21.

    PubMed  Article  Google Scholar 

  37. 37.

    Glodzik L, Mosconi L, Tsui W, de Santi S, Zinkowski R, Pirraglia E, et al. Alzheimer’s disease markers, hypertension, and gray matter damage in normal elderly. Neurobiol aging 2012;33:1215–27.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Gottesman R, Schneider A, Albert M, Alonso A, Bandeen-Roche K, Coker L, et al. Midlife hypertension and 20-year cognitive change: the atherosclerosis risk in communities neurocognitive study. JAMA Neurol. 2014;71:1218–27.

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Suvila K, Lima J, Yano Y, Tan Z, Cheng S, Niiranen T. Early-but not late-onset hypertension is related to midlife cognitive function. Hypertension 2021;77:972–9.

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Ashby E, Miners J, Kehoe P, Love S. Effects of hypertension and anti-hypertensive treatment on amyloid-β (Aβ) plaque load and Aβ-synthesizing and Aβ-degrading enzymes in frontal cortex. J Alzheimer’s Dis. 2016;50:1191–203.

    CAS  Article  Google Scholar 

  41. 41.

    Martinez-Lemus L, Hill M, Meininger G. The plastic nature of the vascular wall: a continuum of remodeling events contributing to control of arteriolar diameter and structure. Physiology. 2009;24:45–57.

    PubMed  Article  Google Scholar 

  42. 42.

    Scuteri A, Nilsson P, Tzourio C, Redon J, Laurent S. Microvascular brain damage with aging and hypertension: pathophysiological consideration and clinical implications. J Hypertens. 2011;29:1469–77.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Capone C, Faraco G, Peterson J, Coleman C, Anrather J, Milner T, et al. Central cardiovascular circuits contribute to the neurovascular dysfunction in angiotensin II hypertension. J Neurosci. 2012;32:4878–86.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Pires P, Jackson W, Dorrance A. Regulation of myogenic tone and structure of parenchymal arterioles by hypertension and the mineralocorticoid receptor. Am J Physiol Heart Circ Physiol. 2015;309:H127–36.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Chang-Quan H, Hui W, Chao-Min W, Zheng-Rong W, Jun-Wen G, Yong-Hong L, et al. The association of antihypertensive medication use with risk of cognitive decline and dementia: a meta-analysis of longitudinal studies. Int J Clin Pract. 2011;65:1295–305.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Rouch L, Cestac P, Hanon O, Cool C, Helmer C, Bouhanick B, et al. Antihypertensive drugs, prevention of cognitive decline and dementia: a systematic review of observational studies, randomized controlled trials and meta-analyses, with discussion of potential mechanisms. CNS Drugs. 2015;29:113–30.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Haring B., Wu C., Coker L. H., Seth A., Snetselaar L., Manson J. E., et al. Hypertension, antihypertensive treatment, sodium intake and cognitive decline. Circulation. 2015;131.

  48. 48.

    Cho M, Shin D, Chang S, Lee J, Jeong S, Kim S, et al. Association between cognitive impairment and poor antihypertensive medication adherence in elderly hypertensive patients without dementia. Sci Rep. 2018;8:11688.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

QJ and ZL designed the research, QJ and LQ conducted the research, HZ and WL collected data, and WW and LY assessed the risk of bias. QJ and ZL participated in data analysis and interpretation and wrote the paper. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Jiawei Qin or Liling Zheng.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qin, J., He, Z., Wu, L. et al. Prevalence of mild cognitive impairment in patients with hypertension: a systematic review and meta-analysis. Hypertens Res 44, 1251–1260 (2021). https://doi.org/10.1038/s41440-021-00704-3

Download citation

Keywords

  • prevalence
  • mild cognitive impairment
  • hypertension
  • systematic review
  • meta-analysis

Search

Quick links