Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stair climbing activity and vascular function in patients with hypertension

Abstract

We evaluated the relationship between daily stair climbing activity and vascular function as assessed by flow-mediated vasodilation (FMD) and nitroglycerine-induced vasodilation (NID). This study was a cross-sectional study. A total of 374 patients with hypertension were enrolled. The subjects were divided into three groups based on their daily stair climbing habit: no stairs group, climbing stairs to the 2nd-floor group, and climbing stairs to the ≥3rd-floor group. There was a significant difference in FMD between the ≥3rd-floor group and the other two groups (3.3 ± 2.5% vs. 2.3 ± 2.7% and 2.4 ± 2.7%, p = 0.02, respectively). FMD values were similar in the no stairs group and the 2nd-floor group (p = 0.96). There was a significant difference in NID between the no stairs group and the other two groups (7.4 ± 4.2% vs. 10.9 ± 5.3% and 11.3 ± 5.1%, p < 0.001, respectively). NID values were similar in the second-floor group and the ≥3rd-floor group (p = 0.86). These findings suggest that both endothelial function and vascular smooth muscle function are impaired in individuals who do not climb stairs and that endothelial function but not vascular smooth muscle function is impaired in individuals who climb stairs to the second floor compared with individuals who climb stairs to the ≥3rd floor. Stair climbing activity, a simple method for assessing daily physical activity, may reflect vascular function in patients with hypertension.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Jeong SW, Kim SH, Kang SH, Kim HJ, Yoon CH, Youn TJ, et al. Mortality reduction with physical activity in patients with and without cardiovascular disease. Eur Heart J. 2019;40:3547–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Bull FC, Al-Ansari SS, Biddle S, Borodulin K, Buman MP, Cardon G, et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med. 2020;54:1451–62.

    Article  PubMed  Google Scholar 

  3. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American college of cardiology/American heart association task force on clinical practice guidelines. Circulation. 2019;140:e596–e646.

    PubMed  PubMed Central  Google Scholar 

  4. Hallal PC, Andersen LB, Bull FC, Guthold R, Haskell W, Ekelund U. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet. 2012;380:247–57.

    Article  PubMed  Google Scholar 

  5. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2019;74:1376–414.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Teh KC, Aziz AR. Heart rate, oxygen uptake, and energy cost of ascending and descending the stairs. Med Sci Sports Exerc. 2002;34:695–9.

    PubMed  Google Scholar 

  7. Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR Jr, Tudor-Locke C, et al. 2011 Compendium of Physical Activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;43:1575–81.

    Article  PubMed  Google Scholar 

  8. Morris JN, Heady JA, Raffle PA, Roberts CG, Parks JW. Coronary heart-disease and physical activity of work. Lancet (Lond, Engl). 1953;262:1111–20.

    Article  CAS  Google Scholar 

  9. Ninomiya T, Ohara T, Hirakawa Y, Yoshida D, Doi Y, Hata J, et al. Midlife and late-life blood pressure and dementia in Japanese elderly: the Hisayama study. Hypertension. 2011;58:22–28.

    Article  CAS  PubMed  Google Scholar 

  10. Hozawa A, Okamura T, Murakami Y, Kadowaki T, Okuda N, Takashima N, et al. High blood pressure in middle age is associated with a future decline in activities of daily living. NIPPON DATA80. J Hum Hypertens. 2009;23:546–52.

    Article  CAS  PubMed  Google Scholar 

  11. Tozawa M, Iseki K, Iseki C, Kinjo K, Ikemiya Y, Takishita S. Blood pressure predicts risk of developing end-stage renal disease in men and women. Hypertension. 2003;41:1341–5.

    Article  CAS  PubMed  Google Scholar 

  12. Klag MJ, Whelton PK, Randall BL, Neaton JD, Brancati FL, Ford CE, et al. Blood pressure and end-stage renal disease in men. N Engl J Med. 1996;334:13–18.

    Article  CAS  PubMed  Google Scholar 

  13. Collins R, Peto R, MacMahon S, Hebert P, Fiebach NH, Eberlein KA, et al. Blood pressure, stroke, and coronary heart disease. Part 2, short-term reductions in blood pressure: overview of randomised drug trials in their epidemiological context. Lancet. 1990;335:827–38.

    Article  CAS  PubMed  Google Scholar 

  14. Levy D, Larson MG, Vasan RS, Kannel WB, Ho KK. The progression from hypertension to congestive heart failure. Jama 1996;275:1557–62.

    Article  CAS  PubMed  Google Scholar 

  15. Dickinson HO, Mason JM, Nicolson DJ, Campbell F, Beyer FR, Cook JV, et al. Lifestyle interventions to reduce raised blood pressure: a systematic review of randomized controlled trials. J Hypertens. 2006;24:215–33.

    Article  CAS  PubMed  Google Scholar 

  16. Roque FR, Briones AM, García-Redondo AB, Galán M, Martínez-Revelles S, Avendaño MS, et al. Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension. Br J Pharm. 2013;168:686–703.

    Article  CAS  Google Scholar 

  17. Umemura S, Arima H, Arima S, Asayama K, Dohi Y, Hirooka Y, et al. The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2019). Hypertens Res. 2019;42:1235–481.

    Article  PubMed  Google Scholar 

  18. 2018 ESC/ESH. Guidelines for the management of arterial hypertension. Rev Esp Cardiol. 2019;72:160.

  19. Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med. 1999;340:115–26.

    Article  CAS  PubMed  Google Scholar 

  20. Maruhashi T, Soga J, Fujimura N, Idei N, Mikami S, Iwamoto Y, et al. Relationship between flow-mediated vasodilation and cardiovascular risk factors in a large community-based study. Heart. 2013;99:1837–42.

    Article  CAS  PubMed  Google Scholar 

  21. Higashi Y, Noma K, Yoshizumi M, Kihara Y. Endothelial function and oxidative stress in cardiovascular diseases. Circulation J. 2009;73:411–8.

    Article  CAS  Google Scholar 

  22. Maruhashi T, Soga J, Fujimura N, Idei N, Mikami S, Iwamoto Y, et al. Endothelial dysfunction, increased arterial stiffness, and cardiovascular risk prediction in patients with coronary artery disease: FMD-J (flow-mediated dilation Japan) study A. J Am Heart Assoc. 2018;7:e008588.

  23. Yeboah J, Folsom AR, Burke GL, Johnson C, Polak JF, Post W, et al. Predictive value of brachial flow-mediated dilation for incident cardiovascular events in a population-based study: the multi-ethnic study of atherosclerosis. Circulation. 2009;120:502–9.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wolfrum S, Jensen KS, Liao JK. Endothelium-dependent effects of statins. Arterioscler Thromb Vasc Biol. 2003;23:729–36.

    Article  CAS  PubMed  Google Scholar 

  25. Sanada M, Higashi Y, Nakagawa K, Sasaki S, Kodama I, Tsuda M, et al. Relationship between the angiotensin-converting enzyme genotype and the forearm vasodilator response to estrogen replacement therapy in postmenopausal women. J Am Coll Cardiol. 2001;37:1529–35.

    Article  CAS  PubMed  Google Scholar 

  26. Goto C, Higashi Y, Kimura M, Noma K, Hara K, Nakagawa K, et al. Effect of different intensities of exercise on endothelium-dependent vasodilation in humans: role of endothelium-dependent nitric oxide and oxidative stress. Circulation. 2003;108:530–5.

    Article  PubMed  Google Scholar 

  27. Higashi Y, Sasaki S, Kurisu S, Yoshimizu A, Sasaki N, Matsuura H, et al. Regular aerobic exercise augments endothelium-dependent vascular relaxation in normotensive as well as hypertensive subjects: role of endothelium-derived nitric oxide. Circulation. 1999;100:1194–202.

    Article  CAS  PubMed  Google Scholar 

  28. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP). Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). Jama 2001;285:2486–97.

    Article  Google Scholar 

  29. American Diabetes Association. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2019. Diabetes Care. 2019;42(Suppl 1):S13–S28.

    Article  Google Scholar 

  30. Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ, et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc. 2000;32(9 Suppl):S498–504.

    Article  CAS  PubMed  Google Scholar 

  31. Maruhashi T, Soga J, Fujimura N, Idei N, Mikami S, Iwamoto Y, et al. Nitroglycerine-induced vasodilation for assessment of vascular function: a comparison with flow-mediated vasodilation. Arterioscler Thromb Vasc Biol. 2013;33:1401–8.

    Article  CAS  PubMed  Google Scholar 

  32. Fahlman MM, Boardley D, Lambert CP, Flynn MG. Effects of endurance training and resistance training on plasma lipoprotein profiles in elderly women. J Gerontol A Biol Sci Med Sci. 2002;57:B54–60.

    Article  PubMed  Google Scholar 

  33. Snowling NJ, Hopkins WG. Effects of different modes of exercise training on glucose control and risk factors for complications in type 2 diabetic patients: a meta-analysis. Diabetes Care. 2006;29:2518–27.

    Article  PubMed  Google Scholar 

  34. Kodama S, Tanaka S, Saito K, Shu M, Sone Y, Onitake F, et al. Effect of aerobic exercise training on serum levels of high-density lipoprotein cholesterol: a meta-analysis. Arch Intern Med. 2007;167:999–1008.

    Article  CAS  PubMed  Google Scholar 

  35. Wadden TA, Berkowitz RI, Womble LG, Sarwer DB, Phelan S, Cato RK, et al. Randomized trial of lifestyle modification and pharmacotherapy for obesity. N Engl J Med. 2005;353:2111–20.

    Article  CAS  PubMed  Google Scholar 

  36. Igarashi Y, Akazawa N, Maeda S. Effects of aerobic exercise alone on lipids in healthy east Asians: a systematic review and meta-analysis. J Atheroscler Thromb. 2019;26:488–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Boreham CA, Kennedy RA, Murphy MH, Tully M, Wallace WF, Young I. Training effects of short bouts of stair climbing on cardiorespiratory fitness, blood lipids, and homocysteine in sedentary young women. Br J Sports Med. 2005;39:590–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vital TM, Stein AM, de Melo Coelho FG, Arantes FJ, Teodorov E, Santos-Galduróz RF. Physical exercise and vascular endothelial growth factor (VEGF) in elderly: a systematic review. Arch Gerontol Geriatr. 2014;59:234–9.

    Article  CAS  PubMed  Google Scholar 

  39. Riccioni G, Scotti L, Guagnano MT, Bosco G, Bucciarelli V, Di Ilio E, et al. Physical exercise reduces synthesis of ADMA, SDMA, and L-Arg. Front Biosci. 2015;7:417–22.

    Article  Google Scholar 

  40. Zalba G, Beaumont FJ, San José G, Fortuño A, Fortuño MA, Etayo JC, et al. Vascular NADH/NADPH oxidase is involved in enhanced superoxide production in spontaneously hypertensive rats. Hypertension. 2000;35:1055–61.

    Article  CAS  PubMed  Google Scholar 

  41. Urso ML, Clarkson PM. Oxidative stress, exercise, and antioxidant supplementation. Toxicology. 2003;189:41–54.

    Article  CAS  PubMed  Google Scholar 

  42. Rodrigo R, Prat H, Passalacqua W, Araya J, Guichard C, Bächler JP. Relationship between oxidative stress and essential hypertension. Hypertens Res. 2007;30:1159–67.

    Article  CAS  PubMed  Google Scholar 

  43. Brandes RP. Vascular functions of NADPH oxidases. Hypertension. 2010;56:17–21.

    Article  CAS  PubMed  Google Scholar 

  44. Gamil S, Erdmann J, Schwedhelm E, Bakheit KH, Abdalrahman IBB, Mohamed AO. Increased serum levels of asymmetric dimethylarginine and symmetric dimethylarginine and decreased levels of arginine in Sudanese patients with essential hypertension. Kidney Blood Press Res. 2020;45:727–36.

    Article  CAS  PubMed  Google Scholar 

  45. Benjamin EJ, Larson MG, Keyes MJ, Mitchell GF, Vasan RS, Keaney JF Jr, et al. Clinical correlates and heritability of flow-mediated dilation in the community: the Framingham heart study. Circulation 2004;109:613–9.

    Article  PubMed  Google Scholar 

  46. Maruhashi T, Iwamoto Y, Kajikawa M, Oda N, Kishimoto S, Matsui S, et al. Interrelationships among flow-mediated vasodilation, nitroglycerine-induced vasodilation, baseline brachial artery diameter, hyperemic shear stress, and cardiovascular risk factors. J Am Heart Assoc. 2017;7:e006797.

  47. Maruhashi T, Soga J, Fujimura N, Idei N, Mikami S, Iwamoto Y, et al. Brachial artery diameter as a marker for cardiovascular risk assessment: FMD-J study. Atherosclerosis. 2018;268:92–98.

    Article  CAS  PubMed  Google Scholar 

  48. Chung WB, Hamburg NM, Holbrook M, Shenouda SM, Dohadwala MM, Terry DF, et al. The brachial artery remodels to maintain local shear stress despite the presence of cardiovascular risk factors. Arterioscler Thromb Vasc Biol. 2009;29:606–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Korshunov VA, Schwartz SM, Berk BC. Vascular remodeling: hemodynamic and biochemical mechanisms underlying Glagov’s phenomenon. Arterioscler Thromb Vasc Biol. 2007;27:1722–8.

    Article  CAS  PubMed  Google Scholar 

  50. Rey-Lopez JP, Stamatakis E, Mackey M, Sesso HD, Lee IM. Associations of self-reported stair climbing with all-cause and cardiovascular mortality: the Harvard Alumni Health Study. Prev Med Rep. 2019;15:100938.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all of the patients who participated in this study. In addition, we thank Miki Kumiji, Megumi Wakisaka, Ki-ichiro Kawano, and Satoko Michiyama for their excellent secretarial assistance.

Funding

Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan (18590815 and 21590898 to Y. Higashi).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukihito Higashi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamaji, T., Harada, T., Hashimoto, Y. et al. Stair climbing activity and vascular function in patients with hypertension. Hypertens Res 44, 1274–1282 (2021). https://doi.org/10.1038/s41440-021-00697-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-021-00697-z

Keywords

This article is cited by

Search

Quick links