Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Isometric handgrip exercise training reduces resting systolic blood pressure but does not interfere with diastolic blood pressure and heart rate variability in hypertensive subjects: a systematic review and meta-analysis of randomized clinical trials

Abstract

To evaluate the effects of isometric handgrip exercise training (IHET) on blood pressure and heart rate variability in hypertensive subjects. Five databases were searched for randomized clinical trials in English, Spanish, or Portuguese evaluating the effect of IHET vs. no exercise on blood pressure (systolic and/or diastolic) and/or heart rate variability (low frequency [LF], high frequency [HF], and/or LF/HF ratio) through December 2020. Random-effects meta-analyses of mean differences (MDs) and/or standardized mean differences (SMDs) with 95% confidence intervals (CIs) were performed. Five trials were selected (n = 324 hypertensive subjects), whose durations ranged from 8 to 10 weeks. Compared to no exercise, IHET reduced systolic blood pressure (MD −8.11 mmHg, 95% CI −11.7 to −4.53, p < 0.001) but did not affect diastolic blood pressure (MD −2.75 mmHg, 95% CI −9.47–3.96, p = 0.42), LF (SMD −0.14, 95% CI −0.65–0.37, p = 0.59), HF (SMD 0.38, 95% CI −0.14–0.89, p = 0.15), or the LF/HF ratio (SMD −0.22, 95% CI −0.95–0.52, p = 0.57). IHET performed for 8–10 weeks had a positive effect on resting systolic blood pressure but did not interfere with diastolic blood pressure or heart rate variability in hypertensive subjects. These data should be interpreted with caution since all volunteers included in the studies were clinically medicated and their blood pressure was controlled.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study. J Am Coll Cardiol. 2020;76:2982–3021.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jagannathan R, Patel SA, Ali MK, Narayan KMV. Global updates on cardiovascular disease mortality trends and attribution of traditional risk factors. Curr Diabetes Rep. 2019;19:44.

    Article  Google Scholar 

  3. Tsuji H, Venditti FJ Jr., Manders ES, Evans JC, Larson MG, Feldman CL, et al. Reduced heart rate variability and mortality risk in an elderly cohort. The Framingham Heart Study. Circulation. 1994;90:878–83.

    Article  CAS  PubMed  Google Scholar 

  4. Kiecolt-Glaser JK, McGuire L, Robles TF, Glaser R. Emotions, morbidity, and mortality: new perspectives from psychoneuroimmunology. Annu Rev Psychol. 2002;53:83–107.

    Article  PubMed  Google Scholar 

  5. Thayer JF, Yamamoto SS, Brosschot JF. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int J Cardiol. 2010;141:122–31.

    Article  PubMed  Google Scholar 

  6. Naci H, Salcher-Konrad M, Dias S, Blum MR, Sahoo SA, Nunan D, et al. How does exercise treatment compare with antihypertensive medications? A network meta-analysis of 391 randomised controlled trials assessing exercise and medication effects on systolic blood pressure. Br J Sports Med. 2019;53:859–69.

    Article  PubMed  Google Scholar 

  7. MacDonald HV, Johnson BT, Huedo-Medina TB, Livingston J, Forsyth KC, Kraemer WJ, et al. Dynamic resistance training as stand-alone antihypertensive lifestyle therapy: a meta-analysis. J Am Heart Assoc. 2016;5:1–7.

  8. Cornelissen VA, Fagard RH. Effect of resistance training on resting blood pressure: a meta-analysis of randomized controlled trials. J Hypertens. 2005;23:251–259.

    Article  CAS  PubMed  Google Scholar 

  9. Pescatello LS, MacDonald HV, Lamberti L, Johnson BT. Exercise for hypertension: a prescription update integrating existing recommendations with emerging research. Curr hypertension Rep. 2015;17:87.

    Article  Google Scholar 

  10. Millar PJ, Bray SR, McGowan CL, MacDonald MJ, McCartney N. Effects of isometric handgrip training among people medicated for hypertension: a multilevel analysis. Blood Press Monit. 2007;12:307–14.

    Article  PubMed  Google Scholar 

  11. Millar PJ, Bray SR, MacDonald MJ, McCartney N. The hypotensive effects of isometric handgrip training using an inexpensive spring handgrip training device. J Cardiopulm Rehabil Prev. 2008;28:203–207.

    Article  PubMed  Google Scholar 

  12. Lind AR. Cardiovascular adjustments to isometric contractions: static effort. Compr Physiol. 2011:1;947–66.

  13. Olher RDRV, Bocalini DS, Bacurau RF, Rodriguez D, Figueira A Jr, Pontes FL Jr, et al. Isometric handgrip does not elicit cardiovascular overload or post-exercise hypotension in hypertensive older women. Clin Interv Aging. 2013;8:649.

    PubMed Central  Google Scholar 

  14. Jin YZ, Yan S, Yuan WX. Effect of isometric handgrip training on resting blood pressure in adults: a meta-analysis of randomized controlled trials. J sports Med Phys Fit. 2017;57:154–60.

    Google Scholar 

  15. Farah BQ, Christofaro DGD, Correia MA, Oliveira CB, Parmenter BJ, Ritti-Dias RM. Effects of isometric handgrip training on cardiac autonomic profile: a systematic review and meta-analysis study. Clin Physiol Funct Imaging. 2020;40:141–147.

    Article  PubMed  Google Scholar 

  16. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336:924–926.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Badrov MB, Horton S, Millar PJ, McGowan CL. Cardiovascular stress reactivity tasks successfully predict the hypotensive response of isometric handgrip training in hypertensives. Psychophysiology. 2013;50:407–14.

    Article  PubMed  Google Scholar 

  22. Millar PJ, Levy AS, McGowan CL, McCartney N, MacDonald MJ. Isometric handgrip training lowers blood pressure and increases heart rate complexity in medicated hypertensive patients. Scand J Med Sci Sports. 2013;23:620–626.

    CAS  PubMed  Google Scholar 

  23. Punia S, Kulandaivelan S. Home-based isometric handgrip training on RBP in hypertensive adults-Partial preliminary findings from RCT. Physiother Res Int. 2020;25:e1806.

    Article  PubMed  Google Scholar 

  24. Stiller-Moldovan C, Kenno K, McGowan CL. Effects of isometric handgrip training on blood pressure (resting and 24 h ambulatory) and heart rate variability in medicated hypertensive patients. Blood Press Monit. 2012;17:55–61.

    Article  PubMed  Google Scholar 

  25. Taylor AC, McCartney N, Kamath MV, Wiley RL. Isometric training lowers resting blood pressure and modulates autonomic control. Med Sci Sports Exerc. 2003;35:251–256.

    Article  PubMed  Google Scholar 

  26. Bowling CB, Davis BR, Luciano A, Simpson LM, Sloane R, Pieper CF, et al. Sustained blood pressure control and coronary heart disease, stroke, heart failure, and mortality: an observational analysis of ALLHAT. J Clin Hypertens. 2019;21:451–459.

    Article  CAS  Google Scholar 

  27. McGowan CL, Visocchi A, Faulkner M, Verduyn R, Rakobowchuk M, Levy AS, et al. Isometric handgrip training improves local flow-mediated dilation in medicated hypertensives. Eur J Appl Physiol. 2007;99:227–34.

    Article  PubMed  Google Scholar 

  28. Kingwell BA. Nitric oxide-mediated metabolic regulation during exercise: effects of training in health and cardiovascular disease. FASEB J. 2000;14:1685–96.

    Article  CAS  PubMed  Google Scholar 

  29. Higashi Y, Yoshizumi M. Exercise and endothelial function: role of endothelium-derived nitric oxide and oxidative stress in healthy subjects and hypertensive patients. Pharmacol Therapeutics. 2004;102:87–96.

    Article  CAS  Google Scholar 

  30. Baross AW, Wiles JD, Swaine IL. Effects of the intensity of leg isometric training on the vasculature of trained and untrained limbs and resting blood pressure in middle-aged men. Int J Vasc Med. 2012;2012:964697.

    PubMed  PubMed Central  Google Scholar 

  31. Peters PG, Alessio HM, Hagerman AE, Ashton T, Nagy S, Wiley RL. Short-term isometric exercise reduces systolic blood pressure in hypertensive adults: possible role of reactive oxygen species. Int J Cardiol. 2006;110:199–205.

    Article  PubMed  Google Scholar 

  32. Santangelo L, Cigliano L, Montefusco A, Spagnuolo MS, Nigro G, Golino P, et al. Evaluation of the antioxidant response in the plasma of healthy or hypertensive subjects after short-term exercise. J Hum Hypertens. 2003;17:791–798.

    Article  CAS  PubMed  Google Scholar 

  33. Kelley GA, Kelley KS. Isometric handgrip exercise and resting blood pressure: a meta-analysis of randomized controlled trials. J Hypertens. 2010;28:411–418.

    Article  CAS  PubMed  Google Scholar 

  34. Ruivo JA, Alcantara P. [Hypertension and exercise]. Rev Port Cardiol. 2012;31:151–158.

    Article  PubMed  Google Scholar 

  35. Boutcher YN, Boutcher SH. Exercise intensity and hypertension: what’s new? J Hum Hypertens. 2017;31:157–64.

    Article  CAS  PubMed  Google Scholar 

  36. Brito LC, Fecchio RY, Peçanha T, Andrade-Lima A, Halliwill JR, Forjaz CL. Postexercise hypotension as a clinical tool: a “single brick” in the wall. J Am Soc Hypertens. 2018;12:e59–e64.

    Article  PubMed  Google Scholar 

  37. Souza LR, Vicente JB, Melo GR, Moraes VC, Olher RR, Sousa IC, et al. Acute hypotension after moderate-intensity handgrip exercise in hypertensive elderly people. J Strength Conditioning Res. 2018;32:2971–2977.

    Article  Google Scholar 

  38. Nascimento DDC, da Silva CR, Valduga R, Saraiva B, de Sousa Neto IV, Vieira A, et al. Blood pressure response to resistance training in hypertensive and normotensive older women. Clin Inter Aging. 2018;13:541–53.

    Article  Google Scholar 

  39. Zanetti HR, Ferreira AL, Haddad EG, Gonçalves A, Jesus LFD, Lopes LTP. Análise das respostas cardiovasculares agudas ao exercício resistido em diferentes intervalos de recuperação. %J Rev Brasileira de Med do Esport. 2013;19:168–70.

    Article  Google Scholar 

  40. Bilchick KC, Fetics B, Djoukeng R, Fisher SG, Fletcher RD, Singh SN, et al. Prognostic value of heart rate variability in chronic congestive heart failure (Veterans Affairs’ Survival Trial of Antiarrhythmic Therapy in Congestive Heart Failure). Am J Cardiol. 2002;90:24–28.

    Article  PubMed  Google Scholar 

  41. Galinier M, Pathak A, Fourcade J, Androdias C, Curnier D, Varnous S, et al. Depressed low frequency power of heart rate variability as an independent predictor of sudden death in chronic heart failure. Eur heart J. 2000;21:475–82.

    Article  CAS  PubMed  Google Scholar 

  42. Routledge FS, Campbell TS, McFetridge-Durdle JA, Bacon SL. Improvements in heart rate variability with exercise therapy. Can J Cardiol. 2010;26:303–312.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cooke WH, Carter JR. Strength training does not affect vagal-cardiac control or cardiovagal baroreflex sensitivity in young healthy subjects. Eur J Appl Physiol. 2005;93:719–25.

    Article  PubMed  Google Scholar 

  44. Heffernan KS, Fahs CA, Shinsako KK, Jae SY, Fernhall B. Heart rate recovery and heart rate complexity following resistance exercise training and detraining in young men. Am J Physiol Heart circulatory Physiol. 2007;293:H3180–3186.

    Article  CAS  Google Scholar 

  45. Karavirta L, Tulppo MP, Laaksonen DE, Nyman K, Laukkanen RT, Kinnunen H, et al. Heart rate dynamics after combined endurance and strength training in older men. Med Sci sports Exerc. 2009;41:1436–43.

    Article  PubMed  Google Scholar 

  46. Collier SR, Kanaley JA, Carhart R Jr, Frechette V, Tobin MM, Bennett N, et al. Cardiac autonomic function and baroreflex changes following 4 weeks of resistance versus aerobic training in individuals with pre-hypertension. Acta Physiologica. 2009;195:339–48.

    Article  CAS  PubMed  Google Scholar 

  47. Sandercock GR, Bromley PD, Brodie DA. Effects of exercise on heart rate variability: inferences from meta-analysis. Med Sci sports Exerc. 2005;37:433–439.

    Article  PubMed  Google Scholar 

  48. Besnier F, Labrunee M, Pathak A, Pavy-Le Traon A, Gales C, Senard JM, et al. Exercise training-induced modification in autonomic nervous system: an update for cardiac patients. Ann Phys Rehabil Med. 2017;60:27–35.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Ribeiro Zanetti.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, J.P.A.d.S., Bessa, M., Lopes, L.T.P. et al. Isometric handgrip exercise training reduces resting systolic blood pressure but does not interfere with diastolic blood pressure and heart rate variability in hypertensive subjects: a systematic review and meta-analysis of randomized clinical trials. Hypertens Res 44, 1205–1212 (2021). https://doi.org/10.1038/s41440-021-00681-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-021-00681-7

Keywords

This article is cited by

Search

Quick links