Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Independent association of plasma xanthine oxidoreductase activity with hypertension in nondiabetic subjects not using medication

Abstract

Xanthine oxidoreductase (XOR), a rate-limiting and catalyzing enzyme of uric acid formation in purine metabolism, is involved in reactive oxygen species generation. Plasma XOR activity has been shown to be a novel metabolic biomarker related to obesity, liver dysfunction, hyperuricemia, dyslipidemia, and insulin resistance. However, the association between plasma XOR activity and hypertension has not been fully elucidated. We investigated the association of hypertension with plasma XOR activity in 271 nondiabetic subjects (male/female: 119/152) who had not taken any medications in the Tanno–Sobetsu Study, a population-based cohort. Males had higher plasma XOR activity than females. Plasma XOR activity was positively correlated with mean arterial pressure (r = 0.128, P = 0.036). When the subjects were divided by the presence and absence of hypertension into an HT group (male/female: 34/40) and a non-HT group (male/female: 85/112), plasma XOR activity in the HT group was significantly higher than that in the non-HT group (median: 39 vs. 28 pmol/h/mL, P = 0.028). There was no significant difference in uric acid levels between the two groups. Multivariable logistic regression analysis showed that plasma XOR activity (odds ratio: 1.091 [95% confidence interval: 1.023–1.177] per 10 pmol/h/mL, P = 0.007) was an independent determinant of the risk for hypertension after adjustment for age, sex, current smoking and alcohol consumption, estimated glomerular filtration rate, brain natriuretic peptide, and insulin resistance index. The interaction of sex with plasma XOR activity was not significant for the risk of hypertension. In conclusion, plasma XOR activity is independently associated with hypertension in nondiabetic individuals who are not taking any medications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2

References

  1. 1.

    Feig DI, Kang DH, Johnson RJ. Uric acid and cardiovascular risk. N. Engl J Med. 2008;359:1811–21.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Mori K, Furuhashi M, Tanaka M, Numata K, Hisasue T, Hanawa N, et al. U-shaped relationship between serum uric acid level and decline in renal function during a 10-year period in female subjects: BOREAS-CKD2. Hypertens Res. 2021;44:107–16.

    PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Wakasugi M, Kazama JJ, Narita I, Konta T, Fujimoto S, Iseki K, et al. Association between hypouricemia and reduced kidney function: a cross-sectional population-based study in Japan. Am J Nephrol. 2015;41:138–46.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Zhu P, Liu Y, Han L, Xu G, Ran JM. Serum uric acid is associated with incident chronic kidney disease in middle-aged populations: a meta-analysis of 15 cohort studies. PLoS One. 2014;9:e100801.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  5. 5.

    Verdecchia P, Schillaci G, Reboldi G, Santeusanio F, Porcellati C, Brunetti P. Relation between serum uric acid and risk of cardiovascular disease in essential hypertension. The PIUMA study. Hypertension 2000;36:1072–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Zhang W, Iso H, Murakami Y, Miura K, Nagai M, Sugiyama D, et al. Serum uric acid and mortality form cardiovascular disease: EPOCH-JAPAN study. J Atheroscler Thromb. 2016;23:692–703.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Li X, Meng X, Timofeeva M, Tzoulaki I, Tsilidis KK, Ioannidis JP, et al. Serum uric acid levels and multiple health outcomes: umbrella review of evidence from observational studies, randomised controlled trials, and Mendelian randomisation studies. BMJ 2017;357:j2376.

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Furuhashi M. New insights into purine metabolism in metabolic diseases: role of xanthine oxidoreductase activity. Am J Physiol Endocrinol Metab. 2020;319:E827–E34.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Nishino T, Okamoto K. Mechanistic insights into xanthine oxidoreductase from development studies of candidate drugs to treat hyperuricemia and gout. J Biol Inorg Chem. 2015;20:195–207.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Battelli MG, Bolognesi A, Polito L. Pathophysiology of circulating xanthine oxidoreductase: new emerging roles for a multi-tasking enzyme. Biochim Biophys Acta. 2014;1842:1502–17.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Kelley EE. A new paradigm for XOR-catalyzed reactive species generation in the endothelium. Pharm Rep. 2015;67:669–74.

    CAS  Article  Google Scholar 

  12. 12.

    Parks DA, Granger DN. Xanthine oxidase: biochemistry, distribution and physiology. Acta Physiol Scand Suppl. 1986;548:87–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Murase T, Nampei M, Oka M, Miyachi A, Nakamura T. A highly sensitive assay of human plasma xanthine oxidoreductase activity using stable isotope-labeled xanthine and LC/TQMS. J Chromatogr B Anal Technol Biomed Life Sci. 2016;1039:51–8.

    CAS  Article  Google Scholar 

  14. 14.

    Washio KW, Kusunoki Y, Murase T, Nakamura T, Osugi K, Ohigashi M, et al. Xanthine oxidoreductase activity is correlated with insulin resistance and subclinical inflammation in young humans. Metabolism 2017;70:51–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Furuhashi M, Matsumoto M, Tanaka M, Moniwa N, Murase T, Nakamura T, et al. Plasma xanthine oxidoreductase activity as a novel biomarker of metabolic disorders in a general population. Circ J. 2018;82:1892–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Furuhashi M, Matsumoto M, Murase T, Nakamura T, Higashiura Y, Koyama M, et al. Independent links between plasma xanthine oxidoreductase activity and levels of adipokines. J Diabetes Investig 2019;10:1059–67.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Furuhashi M, Koyama M, Matsumoto M, Murase T, Nakamura T, Higashiura Y, et al. Annual change in plasma xanthine oxidoreductase activity is associated with changes in liver enzymes and body weight. Endocr J. 2019;66:777–86.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Furuhashi M, Mori K, Tanaka M, Maeda T, Matsumoto M, Murase T, et al. Unexpected high plasma xanthine oxidoreductase activity in female subjects with low levels of uric acid. Endocr J. 2018;65:1083–92.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Furuhashi M, Koyama M, Higashiura Y, Murase T, Nakamura T, Matsumoto M, et al. Differential regulation of hypoxanthine and xanthine by obesity in a general population. J Diabetes Investig. 2020;11:878–87.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Yoshida S, Kurajoh M, Fukumoto S, Murase T, Nakamura T, Yoshida H, et al. Association of plasma xanthine oxidoreductase activity with blood pressure affected by oxidative stress level: MedCity21 health examination registry. Sci Rep. 2020;10:4437.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Otaki Y, Watanabe T, Kinoshita D, Yokoyama M, Takahashi T, Toshima T, et al. Association of plasma xanthine oxidoreductase activity with severity and clinical outcome in patients with chronic heart failure. Int J Cardiol. 2017;228:151–7.

    PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53:982–92.

    CAS  Article  Google Scholar 

  23. 23.

    Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28:412–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Amaya Y, Yamazaki K, Sato M, Noda K, Nishino T, Nishino T. Proteolytic conversion of xanthine dehydrogenase from the NAD-dependent type to the O2-dependent type. Amino acid sequence of rat liver xanthine dehydrogenase and identification of the cleavage sites of the enzyme protein during irreversible conversion by trypsin. J Biol Chem. 1990;265:14170–5.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Battelli MG, Abbondanza A, Stirpe F. Effects of hypoxia and ethanol on xanthine oxidase of isolated rat hepatocytes: conversion from D to O form and leakage from cells. Chem Biol Interact. 1992;83:73–84.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Houston M, Estevez A, Chumley P, Aslan M, Marklund S, Parks DA, et al. Binding of xanthine oxidase to vascular endothelium. Kinetic characterization and oxidative impairment of nitric oxide-dependent signaling. J Biol Chem. 1999;274:4985–94.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Huh JH, Ahn SV, Koh SB, Choi E, Kim JY, Sung KC, et al. A prospective study of fatty liver index and incident hypertension: the KoGES-ARIRANG study. PLoS One. 2015;10:e0143560.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  28. 28.

    Bonnet F, Gastaldelli A, Pihan-Le Bars F, Natali A, Roussel R, Petrie J, et al. Gamma-glutamyltransferase, fatty liver index and hepatic insulin resistance are associated with incident hypertension in two longitudinal studies. J Hypertens. 2017;35:493–500.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Roh JH, Park JH, Lee H, Yoon YH, Kim M, Kim YG, et al. A close relationship between non-alcoholic fatty liver disease marker and new-onset hypertension in healthy korean adults. Korean Circ J. 2020;50:695–705.

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Matthew Morris E, Fletcher JA, Thyfault JP, Rector RS. The role of angiotensin II in nonalcoholic steatohepatitis. Mol Cell Endocrinol. 2013;378:29–40.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    da Silva AA, do Carmo JM, Li X, Wang Z, Mouton AJ, Hall JE. Role of hyperinsulinemia and insulin resistance in hypertension: metabolic syndrome revisited. Can J Cardiol. 2020;36:671–82.

    PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Rivera CA. Risk factors and mechanisms of non-alcoholic steatohepatitis. Pathophysiology 2008;15:109–14.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Meex RCR, Watt MJ. Hepatokines: linking nonalcoholic fatty liver disease and insulin resistance. Nat Rev Endocrinol. 2017;13:509–20.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Major TJ, Dalbeth N, Stahl EA, Merriman TR. An update on the genetics of hyperuricaemia and gout. Nat Rev Rheumatol. 2018;14:341–53.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Gill D, Cameron AC, Burgess S, Li X, Doherty DJ, Karhunen V, et al. Urate, blood pressure, and cardiovascular disease: evidence from mendelian randomization and meta-analysis of clinical trials. Hypertension 2021;77:383–92.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Scheepers LE, Wei FF, Stolarz-Skrzypek K, Malyutina S, Tikhonoff V, Thijs L, et al. Xanthine oxidase gene variants and their association with blood pressure and incident hypertension: a population study. J Hypertens. 2016;34:2147–54.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Ichida K, Amaya Y, Okamoto K, Nishino T. Mutations associated with functional disorder of xanthine oxidoreductase and hereditary xanthinuria in humans. Int J Mol Sci. 2012;13:15475–95.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Maynard J, Benson P. Hereditary xanthinuria in 2 Pakistani sisters: asymptomatic in one with beta-thalassemia but causing xanthine stone, obstructive uropathy and hypertension in the other. J Urol. 1988;139:338–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Sanchez-Lozada LG, Rodriguez-Iturbe B, Kelley EE, Nakagawa T, Madero M, Feig DI, et al. Uric acid and hypertension: an update with recommendations. Am J Hypertens. 2020;33:583–94.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Piani F, Cicero AFG, Borghi C. Uric acid and hypertension: prognostic role and guide for treatment. J Clin Med. 2021;10:448.

  41. 41.

    Kario K, Nishizawa M, Kiuchi M, Kiyosue A, Tomita F, Ohtani H, et al. Comparative effects of topiroxostat and febuxostat on arterial properties in hypertensive patients with hyperuricemia. J Clin Hypertens (Greenwich). 2021;23:334–44.

    CAS  Article  Google Scholar 

  42. 42.

    Nakamura T, Murase T, Nampei M, Morimoto N, Ashizawa N, Iwanaga T, et al. Effects of topiroxostat and febuxostat on urinary albumin excretion and plasma xanthine oxidoreductase activity in db/db mice. Eur J Pharm. 2016;780:224–31.

    CAS  Article  Google Scholar 

  43. 43.

    Nakamura T, Murase T, Satoh E, Miyachi A, Ogawa N, Abe K, et al. The influence of albumin on the plasma xanthine oxidoreductase inhibitory activity of allopurinol, febuxostat and topiroxostat: Insight into extra-urate lowering effect. Integrative. Mol Med. 2019;6:1–7.

    Article  Google Scholar 

  44. 44.

    Higa S, Shima D, Tomitani N, Fujimoto Y, Kario K. The effects of topiroxostat on vascular function in patients with hyperuricemia. J Clin Hypertens (Greenwich). 2019;21:1713–20.

    CAS  Article  Google Scholar 

  45. 45.

    Maruhashi T, Hisatome I, Kihara Y, Higashi Y. Hyperuricemia and endothelial function: from molecular background to clinical perspectives. Atherosclerosis 2018;278:226–31.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

MF was supported by a grant from the Japan Society for the Promotion of Science.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Masato Furuhashi.

Ethics declarations

Conflict of interest

TM, TN, and SA in Sanwa Kagaku Kenkyusho Co., Ltd. developed the plasma XOR activity assay and measured the activity. This does not alter our adherence to sharing data and materials. There are no competing nonfinancial interests for any authors.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Furuhashi, M., Higashiura, Y., Koyama, M. et al. Independent association of plasma xanthine oxidoreductase activity with hypertension in nondiabetic subjects not using medication. Hypertens Res (2021). https://doi.org/10.1038/s41440-021-00679-1

Download citation

Keywords

  • Hypertension
  • Uric acid
  • Xanthine dehydrogenase
  • Xanthine oxidase

Search

Quick links