Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Melatonin ameliorates hypertension in hypertensive pregnant mice and suppresses the hypertension-induced decrease in Ca2+-activated K+ channels in uterine arteries


Decreased secretion of melatonin was reported to be associated with an enhanced risk of hypertension and diabetes. However, the effect of melatonin on gestational hypertension (GH) and the underlying mechanism remain unclear. A GH mouse model was established via electrical stimulation. The hypertensive phenotypes were indicated by systolic blood pressure (SBP) and urinary protein levels. Uterine artery (UtA) endothelial function was detected by relaxation, peak systolic velocity (PSV), end-diastolic velocity (EDV), resistance index (RI) and pulsatility index (PI). Protein expression levels were determined using immunochemistry and Western blots. Pregnancy outcomes were indicated by the fetal live ratio, fetal weight and placental weight. Melatonin supplementation ameliorated hypertensive phenotypes in the mice with GH and enhanced UtA endothelial response to acetylcholine. The BKCa potassium channel was involved in the effect of melatonin on UtA endothelial function, and melatonin promoted BKCa potassium channel expression and function in UtAs. Finally, melatonin improved pregnancy outcomes in pregnant mice. In conclusion, melatonin ameliorates hypertension in hypertensive pregnant mice and suppresses hypertension-induced decreases in Ca2+-activated K+ channels in uterine arteries.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Wang Z, Bao X, Song L, Tian Y, Sun P. Role of miR-106-mediated mitogen-activated protein kinase signaling pathway in oxidative stress injury and inflammatory infiltration in the liver of the mouse with gestational hypertension. J Cell Biochem. 2019.

  2. 2.

    Ghulmiyyah L, Sibai B. Maternal mortality from preeclampsia/eclampsia. Semin Perinatol. 2012;36:56–59.

    Article  Google Scholar 

  3. 3.

    Al-Jameil N, Aziz Khan F, Fareed Khan M, Tabassum H. A brief overview of preeclampsia. J Clin Med Res. 2014;6:1–7.

    CAS  Article  Google Scholar 

  4. 4.

    Weinberger MH. Journal of the American Society of Hypertension. From the editor. J Am Soc Hypertens. 2013;7:105–6.

    Article  Google Scholar 

  5. 5.

    Dai L, Chen Y, Sun W, Liu S. Association between hypertensive disorders during pregnancy and the subsequent risk of end-stage renal disease: a population-based follow-up study. J Obstet Gynaecol Can. 2018;40:1129–38.

    Article  Google Scholar 

  6. 6.

    Bellamy L, Casas JP, Hingorani AD, Williams DJ. Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. BMJ. 2007;335:974.

    Article  Google Scholar 

  7. 7.

    Vangrieken P, Remels AHV, Al-Nasiry S, Bast A, Janssen GMJ, von Rango U, et al. Placental hypoxia-induced alterations in vascular function, morphology, and endothelial barrier integrity. Hypertens Res. 2020;43:1361–74.

    CAS  Article  Google Scholar 

  8. 8.

    Salmani D, Purushothaman S, Somashekara SC, Gnanagurudasan E, Sumangaladevi K, Harikishan R, et al. Study of structural changes in placenta in pregnancy-induced hypertension. J Nat Sci Biol Med. 2014;5:352–5.

    Article  Google Scholar 

  9. 9.

    Luo JY, Fu D, Wu YQ, Gao Y. Inhibition of the JAK2/STAT3/SOSC1 signaling pathway improves secretion function of vascular endothelial cells in a rat model of pregnancy-induced hypertension. Cell Physiol Biochem. 2016;40:527–37.

    CAS  Article  Google Scholar 

  10. 10.

    Chen X, Qi L, Fan X, Tao H, Zhang M, Gao Q, et al. Prenatal hypoxia affected endothelium-dependent vasodilation in mesenteric arteries of aged offspring via increased oxidative stress. Hypertens Res. 2019;42:863–75.

    CAS  Article  Google Scholar 

  11. 11.

    Ren Y, Wang H, Qin H, Yang J, Wang Y, Jiang S, et al. Vascular Endothelial Growth Factor expression in peripheral blood of patients with pregnancy induced hypertension syndrome and its clinical significance. Pak J Med Sci. 2014;30:634–7.

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Claustrat B, Leston J. Melatonin: physiological effects in humans. Neurochirurgie. 2015;61:77–84.

    CAS  Article  Google Scholar 

  13. 13.

    Ohashi N, Ishigaki S, Isobe S. The pivotal role of melatonin in ameliorating chronic kidney disease by suppression of the renin-angiotensin system in the kidney. Hypertens Res. 2019;42:761–8.

    CAS  Article  Google Scholar 

  14. 14.

    Rahman A, Hasan AU, Kobori H. Melatonin in chronic kidney disease: a promising chronotherapy targeting the intrarenal renin-angiotensin system. Hypertens Res. 2019;42:920–3.

    Article  Google Scholar 

  15. 15.

    Nishi EE, Almeida VR, Amaral FG, Simon KA, Futuro-Neto HA, Pontes RB, et al. Melatonin attenuates renal sympathetic overactivity and reactive oxygen species in the brain in neurogenic hypertension. Hypertens Res. 2019;42:1683–91.

    CAS  Article  Google Scholar 

  16. 16.

    Ishigaki S, Ohashi N, Matsuyama T, Isobe S, Tsuji N, Iwakura T, et al. Melatonin ameliorates intrarenal renin-angiotensin system in a 5/6 nephrectomy rat model. Clin Exp Nephrol. 2018;22:539–49.

    CAS  Article  Google Scholar 

  17. 17.

    Nagasawa Y, Hasuike Y, Kuragano T, Ishihara M. Circadian rhythm and CKD: is melatonin a key player or bi-player? Intern Med. 2019;58:1531–2.

    Article  Google Scholar 

  18. 18.

    Ohashi N, Ishigaki S, Isobe S, Matsuyama T, Sato T, Fujikura T, et al. Salt loading aggravates the relationship between melatonin and proteinuria in patients with chronic kidney disease. Intern Med. 2019;58:1557–64.

    CAS  Article  Google Scholar 

  19. 19.

    Soliman A, Lacasse AA, Lanoix D, Sagrillo-Fagundes L, Boulard V, Vaillancourt C. Placental melatonin system is present throughout pregnancy and regulates villous trophoblast differentiation. J Pineal Res. 2015;59:38–46.

    CAS  Article  Google Scholar 

  20. 20.

    Steegers EA, von Dadelszen P, Duvekot JJ, Pijnenborg R. Pre-eclampsia. Lancet. 2010;376:631–44.

    Article  Google Scholar 

  21. 21.

    Shimada M, Seki H, Samejima M, Hayase M, Shirai F. Salivary melatonin levels and sleep-wake rhythms in pregnant women with hypertensive and glucose metabolic disorders: a prospective analysis. Biosci Trends. 2016;10:34–41.

    CAS  Article  Google Scholar 

  22. 22.

    Tain YL, Chen CC, Sheen JM, Yu HR, Tiao MM, Kuo HC, et al. Melatonin attenuates prenatal dexamethasone-induced blood pressure increase in a rat model. J Am Soc Hypertens. 2014;8:216–26.

    CAS  Article  Google Scholar 

  23. 23.

    Zuo J, Jiang Z. Melatonin attenuates hypertension and oxidative stress in a rat model of L-NAME-induced gestational hypertension. Vasc Med. 2020;25:295–301.

    CAS  Article  Google Scholar 

  24. 24.

    Nair AR, Silva SD Jr., Agbor LN, Wu J, Nakagawa P, Mukohda M, et al. Endothelial PPARγ (peroxisome proliferator-activated receptor-γ) protects from angiotensin ii-induced endothelial dysfunction in adult offspring born from pregnancies complicated by hypertension. Hypertension. 2019;74:173–83.

    CAS  Article  Google Scholar 

  25. 25.

    Hanswijk SI, Spoelder M, Shan L, Verheij MMM, Muilwijk OG, Li W, et al. Gestational factors throughout fetal neurodevelopment: the serotonin link. Int J Mol Sci. 2020;21:5850.

    CAS  Article  Google Scholar 

  26. 26.

    Medarov BI, Judson MA. The role of calcium channel blockers for the treatment of pulmonary arterial hypertension: How much do we actually know and how could they be positioned today? Respir Med. 2015;109:557–64.

    Article  Google Scholar 

  27. 27.

    Sica DA. Pharmacotherapy review: calcium channel blockers. J Clin Hypertens. 2006;8:53–56.

    CAS  Article  Google Scholar 

  28. 28.

    Forman JP, Curhan GC, Schernhammer ES. Urinary melatonin and risk of incident hypertension among young women. J Hypertens. 2010;28:446–51.

    CAS  Article  Google Scholar 

  29. 29.

    Gubin DG, Gubin GD, Gapon LI, Weinert D. Daily melatonin administration attenuates age-dependent disturbances of cardiovascular rhythms. Curr Aging Sci. 2016;9:5–13.

    CAS  Article  Google Scholar 

  30. 30.

    Simko F, Reiter RJ, Paulis L. Melatonin as a rational alternative in the conservative treatment of resistant hypertension. Hypertens Res. 2019;42:1828–31.

    Article  Google Scholar 

  31. 31.

    Jackson WF. Potassium channels in regulation of vascular smooth muscle contraction and growth. Adv Pharm. 2017;78:89–144.

    CAS  Article  Google Scholar 

  32. 32.

    Sobey CG. Potassium channel function in vascular disease. Arterioscler Thromb Vasc Biol. 2001;21:28–38.

    CAS  Article  Google Scholar 

  33. 33.

    Finol-Urdaneta RK, Remedi MS, Raasch W, Becker S, Clark RB, Strüver N, et al. Block of Kv1.7 potassium currents increases glucose-stimulated insulin secretion. EMBO Mol Med. 2012;4:424–34.

    CAS  Article  Google Scholar 

  34. 34.

    Choi BH, Hahn SJ. Kv1.3: a potential pharmacological target for diabetes. Acta Pharm Sin. 2010;31:1031–5.

    CAS  Article  Google Scholar 

  35. 35.

    Djokic V, Jankovic S, Labudovic-Borovic M, Rakocevic J, Stanisic J, Rajkovic J, et al. Pregnancy-induced hypertension decreases K(v)1.3 potassium channel expression and function in human umbilical vein smooth muscle. Eur J Pharm. 2020;882:173281.

    CAS  Article  Google Scholar 

  36. 36.

    Hill MA, Yang Y, Ella SR, Davis MJ, Braun AP. Large conductance, Ca2+-activated K+ channels (BKCa) and arteriolar myogenic signaling. FEBS Lett. 2010;584:2033–42.

    CAS  Article  Google Scholar 

  37. 37.

    Hu XQ, Xiao D, Zhu R, Huang X, Yang S, Wilson SM, et al. Chronic hypoxia suppresses pregnancy-induced upregulation of large-conductance Ca2+-activated K+ channel activity in uterine arteries. Hypertension. 2012;60:214–22.

    CAS  Article  Google Scholar 

  38. 38.

    Hu XQ, Xiao D, Zhu R, Huang X, Yang S, Wilson S, et al. Pregnancy upregulates large-conductance Ca(2+)-activated K(+) channel activity and attenuates myogenic tone in uterine arteries. Hypertension. 2011;58:1132–9.

    CAS  Article  Google Scholar 

  39. 39.

    Xu Z, Wu Y, Zhang Y, Zhang H, Shi L. Melatonin activates BK(Ca) channels in cerebral artery myocytes via both direct and MT receptor/PKC-mediated pathway. Eur J Pharm. 2019;842:177–88.

    CAS  Article  Google Scholar 

  40. 40.

    Zhao T, Zhang H, Jin C, Qiu F, Wu Y, Shi L. Melatonin mediates vasodilation through both direct and indirect activation of BK(Ca) channels. J Mol Endocrinol. 2017;59:219–33.

    CAS  Article  Google Scholar 

  41. 41.

    Al Dera H, Alassiri M, Eleawa SM, AlKhateeb MA, Hussein AM, Dallak M, et al. Melatonin improves memory deficits in rats with cerebral hypoperfusion, possibly, through decreasing the expression of small-conductance Ca(2+)-activated K(+) channels. Neurochem Res. 2019;44:1851–68.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Fang Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Wang, C., Zhang, N. et al. Melatonin ameliorates hypertension in hypertensive pregnant mice and suppresses the hypertension-induced decrease in Ca2+-activated K+ channels in uterine arteries. Hypertens Res (2021).

Download citation


  • Melatonin
  • Hypertension
  • K+ channel
  • Uterine arteries


Quick links