Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Development of a risk prediction model for incident hypertension in Japanese individuals: the Hisayama Study

Abstract

The identification of individuals at high risk of developing hypertension can be of great value to improve the efficiency of primary prevention strategies for hypertension. The objective of this study was to develop a risk prediction model for incident hypertension based on prospective longitudinal data from a general Japanese population. A total of 982 subjects aged 40–59 years without hypertension at baseline were followed up for 10 years (2002–12) for the incidence of hypertension. Hypertension was defined as systolic blood pressure (SBP) ≥ 140 mmHg, diastolic blood pressure (DBP) ≥ 90 mmHg, or the use of antihypertensive agents. The risk prediction model was developed using a Cox proportional hazards model. A simple risk scoring system was also established based on the developed model. During the follow-up period (median 10 years, interquartile range 5–10 years), 302 subjects (120 men and 182 women) developed new-onset hypertension. The risk prediction model for hypertension consisted of age, sex, SBP, DBP, use of glucose-lowering agents, body mass index (BMI), parental history of hypertension, moderate-to-high alcohol intake, and the interaction between age and BMI. The developed model demonstrated good discrimination (Harrell’s C statistic=0.812 [95% confidence interval, 0.791–0.834]; optimism-corrected C statistic based on 200 bootstrap samples=0.804) and calibration (Greenwood-Nam-D’Agostino χ2 statistic=12.2). This risk prediction model is a useful guide for estimating an individual’s absolute risk for hypertension and could facilitate the management of Japanese individuals at high risk of developing hypertension in the future.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1

References

  1. 1.

    Stanaway JD, Afshin A, Gakidou E, Lim SS, Abate D, Abate KH, et al. GDB 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1923–94.

    Article  Google Scholar 

  2. 2.

    Poulter NR, Prabhakaran D, Caulfield M. Hypertension. Lancet. 2015;386:801–12.

    PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Fukuhara M, Arima H, Ninomiya T, Hata J, Yonemoto K, Doi Y, et al. Impact of lower range of prehypertension on cardiovascular events in a general population: the Hisayama Study. J Hypertens. 2012;30:893–900.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Neter JE, Stam BE, Kok FJ, Grobbee DE, Geleijnse JM. Influence of weight reduction on blood pressure: a meta-analysis of randomized controlled trials. Hypertension. 2003;42:878–84.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Appel LJ, Champagne CM, Harsha DW, Cooper LS, Obarzanek E, Elmer PJ, et al. Effects of comprehensive lifestyle modification on blood pressure control: main results of the PREMIER clinical trial. JAMA. 2003;289:2083–93.

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Aburto NJ, Ziolkovska A, Hooper L, Elliott P, Cappuccio FP, Meerpohl JJ. Effect of lower sodium intake on health: systematic review and meta-analyses. BMJ. 2013;346:f1326.

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    He FJ, Li J, MacGregor GA. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. BMJ. 2013;346:f1325.

    PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Roerecke M, Kaczorowski J, Tobe SW, Gmel G, Hasan OSM, Rehm J. The effect of a reduction in alcohol consumption on blood pressure: a systematic review and meta-analysis. Lancet Public Health. 2017;2:e108–120.

    PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Cornelissen VA, Smart NA. Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc. 2013;2:e004473.

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    He J, Whelton PK, Appel LJ, Charleston J, Klag MJ. Long-term effects of weight loss and dietary sodium reduction on incidence of hypertension. Hypertension. 2000;35:544–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Whelton PK, Appel L, Charleston J, Dalcin A, Haythornthwaite J, Rosofsky W, et al. The Trials of Hypertension Prevention Collaborative Research Group. Effects of weight loss and sodium reduction intervention on blood pressure and hypertension incidence in overweight people with high-normal blood pressure. The Trials of Hypertension Prevention, phase II. Arch Intern Med. 1997;157:657–67.

    Article  Google Scholar 

  12. 12.

    Julius S, Nesbitt SD, Egan BM, Weber MA, Michelson EL, Kaciroti N, et al. Feasibility of treating prehypertension with an angiotensin-receptor blocker. N. Engl J Med. 2006;354:1685–97.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Parikh NI, Pencina MJ, Wang TJ, Benjamin EJ, Lanier KJ, Levy D, et al. A risk score for predicting near-term incidence of hypertension: the Framingham Heart Study. Ann Intern Med. 2008;148:102–10.

    PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Paynter NP, Cook NR, Everett BM, Sesso HD, Buring JE, Ridker PM. Prediction of incident hypertension risk in women with currently normal blood pressure. Am J Med. 2009;122:464–71.

    PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Kivimaki M, Tabak AG, Batty GD, Ferrie JE, Nabi H, Marmot MG, et al. Incremental predictive value of adding past blood pressure measurements to the Framingham Hypertension Risk Equation: the Whitehall II Study. Hypertension. 2010;55:1058–62.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Kshirsagar AV, Chiu YL, Bomback AS, August PA, Viera AJ, Colindres RE, et al. A hypertension risk score for middle-aged and older adults. J Clin Hypertens. 2010;12:800–8.

    Article  Google Scholar 

  17. 17.

    Bozorgmanesh M, Hadaegh F, Mehrabi Y, Azizi F. A point-score system superior to blood pressure measures alone for predicting incident hypertension: Tehran Lipid and Glucose Study. J Hypertens. 2011;29:1486–93.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Fava C, Sjögren M, Montagnana M, Danese E, Almgren P, Engström G, et al. Prediction of blood pressure changes over time and incidence of hypertension by a genetic risk score in Swedes. Hypertension. 2013;61:319–26.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Chien KL, Hsu HC, Su TC, Chang WT, Sung FC, Chen MF, et al. Prediction models for the risk of new-onset hypertension in ethnic Chinese in Taiwan. J Hum Hypertens. 2011;25:294–303.

    PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Lim NK, Son KH, Lee KS, Park HY, Cho MC. Predicting the risk of incident hypertension in a Korean middle-aged population: Korean Genome and Epidemiology Study. J Clin Hypertens. 2013;15:344–9.

    Article  Google Scholar 

  21. 21.

    Chen Y, Wang C, Liu Y, Yuan Z, Zhang W, Li X, et al. Incident hypertension and its prediction model in a prospective northern urban Han Chinese cohort study. J Hum Hypertens. 2016;30:794–800.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Xu F, Zhu J, Sun N, Wang L, Xie C, Tang Q, et al. Development and validation of prediction models for hypertension risks in rural Chinese populations. J Glob Health. 2019;9:020601.

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Kanegae H, Oikawa T, Suzuki K, Okawara Y, Kario K. Developing and validating a new precise risk-prediction model for new-onset hypertension: the Jichi Genki hypertension prediction model (JG model). J Clin Hypertens. 2018;20:880–90.

    CAS  Article  Google Scholar 

  24. 24.

    Otsuka T, Kachi Y, Takada H, Kato K, Kodani E, Ibuki C, et al. Development of a risk prediction model for incident hypertension in a working-age Japanese male population. Hypertens Res. 2015;38:419–25.

    PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    D’Agostino RB, Grundy S, Sullivan LM, Wilson P. Validation of the Framingham coronary heart disease prediction scores: results of a multiple ethnic groups investigation. JAMA. 2001;286:180–7.

    PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Ninomiya T. Japanese legacy cohort studies: the Hisayama Study. J Epidemiol. 2018;28:444–51.

    PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Ohmori S, Kiyohara Y, Kato I, Kubo M, Tanizaki Y, Iwamoto H, et al. Alcohol intake and future incidence of hypertension in a general Japanese population: the Hisayama Study. Alcohol Clin Exp Res. 2002;26:1010–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Figueiredo D, Azevedo A, Pereira M, de Barros H. Definition of hypertension: the impact of number of visits for blood pressure measurement. Rev Port Cardiol. 2009;28:775–83.

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Liu YL, Mi YJ, Zhang B, Wang HJ, Yu J, Pan XB, et al. The impact of hypertension definition based on two-visit strategy on estimate of hypertension burden: results from the China Health and Nutrition Survey 1989-2011. J Epidemiol. 2021;31:180–6.

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Umemura S, Arima H, Arima S, Asayama K, Dohi Y, Hirooka Y, et al. The Japanese Society of Hypertension Guidelines for the management of hypertension (JSH 2019). Hypertens Res. 2019;42:1235–481.

    PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Kobayashi S, Honda S, Murakami K, Sasaki S, Okubo H, Hirota N, et al. Both comprehensive and brief self-administered diet history questionnaires satisfactorily rank nutrient intakes in Japanese adults. J Epidemiol. 2012;22:151–9.

    PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Resources Council of Science and Technology Agency. Standard tables of food composition in Japan, 4th revision (in Japanese). Tokyo, Japan: Ministry of Finance Printing Bureau, 1982.

  33. 33.

    Willett WC, Howe GR, Kushi LH. Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr. 1997;65:1220S–28S.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Pencina MJ, D’Agostino RB. Overall C as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation. Stat Med. 2004;23:2109–23.

    PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Harrell FE, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15:361–87.

    PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Demler OV, Paynter NP, Cook NR. Tests of calibration and goodness-of-fit in the survival setting. Stat Med. 2015;34:1659–80.

    PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    D’Agostino RB, Pencina MJ, Massaro JM, Coady S. Cardiovascular disease risk assessment: insights from Framingham. Glob Heart. 2013;8:11–23.

    PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Sullivan LM, Massaro JM, D’Agostino RB. Presentation of multivariate data for clinical use: the Framingham Study risk score functions. Stat Med. 2004;23:1631–60.

    PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Whelton PK, Carey RM, Aronow WS, Casey DE, Collins KJ, Himmelfarb CD, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/ American Heart Association task force on clinical practice guidelines. Hypertension. 2018;71:e13–115.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Williams B, Mancia G, Spiering W, Rosei EA, Azizi M, Burnier M, et al. ESC/ESH Guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Eur Heart J. 2018;2018:3021–104.

  41. 41.

    Franklin SS, Gustin W, Wong ND, Larson MG, Weber MA, Kannel WB, et al. Hemodynamic patterns of age-related changes in blood pressure. the Framingham Heart Study. Circulation. 1997;96:308–15.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Benetos A, Waeber B, Izzo J, Mitchell G, Resnick L, Asmar R, et al. Influence of age, risk factors, and cardiovascular and renal disease on arterial stiffness: clinical applications. Am J Hypertens. 2002;15:1101–8.

    PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Hisamatsu T, Segawa H, Kadota A, Ohkubo T, Arima H, Miura K. Epidemiology of hypertension in Japan: beyond the new 2019 Japanese guidelines. Hypertens Res. 2020;43:1344–51.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Nishi N. Monitoring obesity trends in health Japan 21. J Nutr Sci Vitaminol (Tokyo). 2015;61:S17–S19.

    CAS  Article  Google Scholar 

  45. 45.

    Colafella KMM, Denton KM. Sex-specific differences in hypertension and associated cardiovascular Disease. Nat Rev Nephrol. 2018;14:185–201.

    PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Wang F, Han L, Hu D. Fasting insulin, insulin resistance and risk of hypertension in the general population: a meta-analysis. Clin Chim Acta. 2017;464:57–63.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Hottenga JJ, Boomsma DI, Kupper N, Posthuma D, Snieder H, Willemsen G, et al. Heritability and stability of resting blood pressure. Twin Res Hum Genet. 2005;8:499–508.

    PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Ehret GB, Ferreira T, Chasman DI, Jackson AU, Schmidt EM, Johnson T, et al. The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nat Genet. 2016;48:1171–84.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Warren HR, Evangelou E, Cabrera CP, Gao H, Ren M, Mifsud B, et al. Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nat Genet. 2017;49:403–15.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Kotsis V, Jordan J, Micic D, Finer N, Leitner DR, Toplak H, et al. Obesity and cardiovascular risk: a call for action from the European Society of Hypertension Working Group of Obesity, Diabetes and the High-risk Patient and European Association for the Study of Obesity: part A: mechanisms of obesity induced hypertension, diabetes and dyslipidemia and practice guidelines for treatment. J Hypertens. 2018;36:1427–40.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Wilson PW, D’Agostino RB, Sullivan L, Parise H, William B, Kannel WB. Overweight and obesity as determinants of cardiovascular risk: the Framingham experience. Arch Intern Med. 2002;162:1867–72.

    PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Liu F, Liu Y, Sun X, Yin Z, Li H, Deng K, et al. Race- and sex-specific association between alcohol consumption and hypertension in 22 cohort studies: A systematic review and meta-analysis. Nutr Metab Cardiovasc Dis. 2020;30:1249–59.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Husain K, Ansari RA, Ferder L. Alcohol-induced hypertension: mechanism and prevention. World J Cardiol. 2014;6:245–52.

    PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Roerecke M, Kaczorowski J, Tobe SW, Gmel G, Hasan OSM, Rehm J. The effect of a reduction in alcohol consumption on blood pressure: a systematic review and meta-analysis. Lancet Public Health. 2017;2:e108–120.

    PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Nagahama K, Inoue T, Iseki K, Touma T, Kinjyo K, Ohya Y, et al. Hyperuricemia as a predictor of hypertension in a screened cohort in Okinawa, Japan. Hypertens Res. 2004;27:835–41.

    PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Okubo Y, Suwazono Y, Kobayashi E, Nogawa K. An association between smoking habits and blood pressure in normotensive Japanese men: a 5-year follow-up study. Drug Alcohol Depend. 2004;73:167–74.

    PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Wang W, Lee ET, Fabsitz RR, Devereux R, Best L, Welty TK, et al. A longitudinal study of hypertension risk factors and their elation to cardiovascular disease: the Strong Heart Study. Hypertension. 2006;47:403–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Bowman TS, Gaziano JM, Buring JE, Sesso HD. A prospective study of cigarette smoking and risk of incident hypertension in women. J Am Coll Cardiol. 2007;50:2085–92.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Dochi M, Sakata K, Oishi M, Tanaka K, Kobayashi E, Suwazono Y. Smoking as an independent risk factor for hypertension: a 14-year longitudinal study in male Japanese workers. Tohoku J Exp Med. 2009;217:37–43.

    PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Talukder MA, Johnson WM, Varadharaj S, Lian J, Kearns PN, El-Mahdy MA, et al. Chronic cigarette smoking causes hypertension, increased oxidative stress, impaired NO bioavailability, endothelial dysfunction, and cardiac remodeling in mice. Am J Physiol Heart Circ Physiol. 2011;300:H388–396.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Greens MS, Jucha E, Luz Y. Blood pressure in smokers and nonsmokers: epidemiologic findings. Am Heart J. 1986;111:932–40.

    Article  Google Scholar 

  62. 62.

    Yoon C, Goh E, Park SM, Cho B. Effects of smoking cessation and weight gain on cardiovascular disease risk factors in Asian male population. Atherosclerosis. 2010;208:275–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    Filozof C, Pinilla MCF, Fernández-Cruz A. Smoking cessation and weight gain. Obes Rev. 2004;5:95–103.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Vasan RS. A risk score for risk factors: rationale and roadmap for preventing hypertension. Hypertension. 2009;54:454–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

The authors thank the residents of the town of Hisayama for their participation in the survey and the staff of the Division of Health of Hisayama for their cooperation with this study. The statistical analyses were carried out using the computer resources offered under the category of General Projects by the Research Institute for Information Technology, Kyushu University.

Funding

This study was supported in part by Grants-in-Aid for Scientific Research A (JP16H02692), B (JP17H04126, JP18H02737, and JP19H03863), and C (JP18K07565, JP18K09412, JP19K07890, JP20K10503, and JP20K11020), and by Grants-in-Aid for Early-Career Scientists (JP18K17925) and Research Activity Start-up (JP19K23971) from the Ministry of Education, Culture, Sports, Science and Technology of Japan; by the Health and Labour Sciences Research Grants of the Ministry of Health, Labour and Welfare of Japan (20FA1002); and by the Japan Agency for Medical Research and Development (JP20dk0207025, JP20km0405202, and JP20fk0108075).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Toshiharu Ninomiya.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oishi, E., Hata, J., Honda, T. et al. Development of a risk prediction model for incident hypertension in Japanese individuals: the Hisayama Study. Hypertens Res (2021). https://doi.org/10.1038/s41440-021-00673-7

Download citation

Keywords

  • Epidemiology
  • General population
  • Hypertension
  • Risk factors
  • Risk prediction model

Search

Quick links